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Abstract

The frequency and complexity of DDoS attacks have significantly
increased with the growth of the internet, posing severe threats to
network security. Traditional machine learning and deep learning-
based detection systems often face limitations due to their reliance on
centralized data collection, leading to privacy concerns, high
computational costs, and challenges in adapting to heterogeneous data
distributions. This study proposes DDoS_FL, a federated learning-based
model designed to detect DDoS attacks without requiring data sharing
between devices. The model has demonstrated effectiveness under both
Independent and Identically Distributed (IDD) and Non-Independent
and Identically Distributed (Non-IDD) data distributions while
preserving data privacy and maintaining high detection accuracy. The
proposed model is trained and evaluated using the CIC-DD0S2019
dataset, which includes various types of DDoS attacks. Experimental
results show that federated learning significantly reduces training time
compared to traditional centralized approaches while achieving
detection accuracy ranging from 82% to 97%. Furthermore, the
scalability of the model is analyzed based on the number of
participating clients, highlighting the advantages of its distributed
nature. Comparative analyses confirm that the proposed approach is
competitive in both privacy preservation and detection performance.
This study demonstrates that federated learning provides an effective
solution for detecting DDoS attacks and has significant potential in
enhancing network security.

Keywords: DDoS attack, Federated learning, Data privacy, Deep
neural network, Deep learning, Information security.
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DDoS saldirilarinin sikligt ve karmasikligi, internetin biiytimesiyle
birlikte énemli élgtide artmis ve ag giivenligi icin ciddi tehditler
olusturmustur. Geleneksel makine 6grenimi ve derin égrenme tabanli
tespit sistemleri, genellikle merkezi veri toplama gereksinimi nedeniyle
gizlilik ihlalleri, hesaplama maliyetleri ve heterojen veri dagilimina
uyum saglama konularinda sinirlamalarla karsilasmaktadir. Bu
calisma, cihazlar arasinda veri paylasimi gerektirmeden DDoS
saldirilarini tespit etmek icin federe 6grenme tabanl bir model olan
DDoS FLyi énermektedir. Model, hem Independent and Identically
Distributed (IDD) hem de Non-Independent and Identically Distributed
(Non-IDD) veri dagilimlarinda etkinligini kanitlamis olup, istemciler
arasinda veri gizliligini korurken yiiksek tespit dogrulugu
saglamaktadir. Onerilen model, CIC-DD0S2019 veri kiimesi kullanilarak
egitilmis ve farkli DDoS saldiri tiirlerine karsi test edilmistir. Deneysel
sonuglar, geleneksel merkezi yaklasimlara kiyasla federe 6grenmenin
egitim stiresini énemli 6lgiide azalttigint ve %82 ila %97 arasinda
degisen tespit dogrulugu elde ettigini gostermektedir. Ayrica, istemci
sayisina bagl olarak modelin olgeklenebilirligi analiz edilmis ve dagitik
yapisinin avantajlart ortaya konmustur. Karsilastirmali analizler,
onerilen yéntemin hem gizlilik korumast hem de tespit basarimi
agisindan rekabet¢i oldugunu géstermektedir. Bu calisma, federe
6grenmenin DDoS saldirilarinin tespiti icin etkili bir yaklasim
sundugunu ve ag giivenliginde 6nemli bir ¢éziim olabilecegini ortaya
koymaktadir.

Anahtar kelimeler: DDoS saldirisi, Federe 6grenme, Veri gizliligi,
Derin sinir agl, Derin 6grenme, Bilgi glivenligi.

1 Introduction

The use of the internet has significantly increased in recent
years due to the rapid advancements in information
technologies, including a growing number of users, higher
bandwidth capacities, and improvements in networking
technologies. As a result, there is a possibility that cyberattacks
may target the internet [1]. One of the greatest threats to
internet services is Distributed Denial of Service (DDoS). An
attack type which avoids users from accessing target machine
is called a denial-of-service attack, such as a server, by
overwhelming it with requests. A DDoS attack occurs when a
DoS operation is carried out on multiple machines [2]. The first
DDoS attack was executed in 1999. It is one of the most

*Corresponding author/Yazisilan Yazar

prevalent and sophisticated online threats. DDoS attacks can be
carried out through multiple protocols and at various stages,
making them difficult to detect [3].

Automatic attack detection is achieved through the use of
machine learning (ML) and deep learning (DL) [4]. Detecting
and blocking traditional DDoS attacks typically involve
monitoring network traffic and identifying abnormal traffic
patterns. However, these methods have some limitations.
Traditional intrusion detection systems running on a central
server raise concerns about data privacy. It can also lead to
scalability issues, as large amounts of traffic must be processed
at a central point. In addition, the model developed for attack
detection to produce accurate results depends on the adequacy

1004


mailto:busra.buyuktanir@marmara.edu.tr
mailto:zeki.ciplak@gedik.edu.tr
mailto:acil@marun.edu.tr
mailto:acil@marun.edu.tr
https://orcid.org/0000-0003-2571-4029
https://orcid.org/0000-0002-0086-3223
https://orcid.org/0000-0001-7632-2389
https://orcid.org/0000-0002-9346-7325
https://orcid.org/0000-0002-7987-272X
https://orcid.org/0000-0001-6999-1410

Pamukkale Univ Muh Bilim Derg, 31(6), 1004-1018, 2025
B. Biiytiktanir, Z. Ciplak, A.E. (il, 0. Yakar, M.B. Adoum, K. Yildiz

of the data. Therefore, a lack of data leads to poor model
performance in DDoS detection methods.

The handling of big data make it necessary to ensure data
security. To protect data privacy, the General Data Protection
Regulation (GDPR), served by the European Union and effective
as of May 23, 2018, and the Personal Data Protection Law
(KVKK), implemented in Turkey, are legislative measures
aimed at addressing people's privacy concerns. These
measures taken to ensure data privacy are insufficient in
practical applications, as they only address the legal aspects of
the issue. Therefore, new technological solutions must be
developed.

McMahan and friends suggested a federated learning (FL)
architecture to protect data privacy from a technological
perspective [5]. The design specifies that each client transmits
model parameters to the central server after training the model
on locally generated data. Each client receives an updated
model after the server aggregates the models obtained from all
clients. Since model training occurs locally and only the model
is transmitted to the server instead of the data, data privacy is
ensured. Furthermore, as more data becomes available, the
performance of the trained model improves proportionally.
Network anomaly detection is another application of FL
technology, which is increasingly being adopted each day [6].

The increasing frequency and complexity of DDoS attacks have
posed serious security threats to data confidentiality and
effective detection methods. Traditional centralized systems
introduce privacy risks during data collection and processing,
while also facing limitations such as scalability. This study
proposes a DDoS attack detection model, called DDoS_FL,
developed on the FL architecture, as a solution to these
challenges. The model offers an up-to-date and effective
solution by combining locally trained models from each client
on the server, while preserving data confidentiality. The aim of
our work is to present a scalable method for detecting DDoS
attacks and to develop a more secure solution by addressing
critical issues such as data confidentiality and model
performance. The performance of this model is assesed using
the CIC-DD0S2019 dataset [3] and experimental results are
presented.

1.1 Background

DDoS attacks are among the cyber threats that have existed
since the early days of the internet, but have become more
complex and damaging with recent technological
advancements. These attacks aim to disable targeted systems
by overwhelming their resources. DDoS attacks pose a
significant risk to online services, leading to financial losses,
disruption of business continuity, and decreased user
confidence [7, 8].

While traditional DDoS detection systems rely on a centralized
data analysis structure, this approach presents several
challenges, particularly for large and distributed datasets. Legal
restrictions on data privacy and access to data limit the
effectiveness of centralized systems. In this context, FL offers a
privacy-preserving method of model training by keeping data
local and only sharing model updates. Federated learning
stands out as an innovative approach in DDoS attack detection,
better accuracy and scalability of detection models while
ensuring data privacy.

Through an assessment of the viability and efficacy of FL-based
DDoS intrusion detection systems, this work aims to address

the existing gaps in this field. By evaluating robustness against
various DDoS attack scenarios, including both Independent
and Identically Distributed (IID) [10, 11] and Non-
Independent and Identically Distributed (Non-IID) [10, 11]
data distributions, the proposed methodology seeks to enhance
attack detection rates while reducing false alarm rates. The
model’s ability to perform effectively in both data distribution
scenarios is crucial for ensuring scalability and robustness in
real-world, heterogeneous environments.

1.2 Contributions

This work introduces an innovative approach and
improvements by using an FL-based DL architecture to detect
DDoS attacks. Our main contributions are as follows:

e In this work, we present an FL architecture that
enables model training without requiring data
aggregation at a central location, while ensuring data
privacy. With this method, multiple clients can
individually train models on local data before
combining the model parameters on a central server.

e The FL method significantly reduces model training
time by 82% to 97% compared to traditional
methods. This improvement results in substantial
time and resource savings, especially in applications
involving large and distributed datasets. Additionally,
the method proves its effectiveness in both Non-IDD
data distributions, providing scalability and
adaptability in real-world scenarios.

e The developed model is suitable for real-world
applications in areas such as network security and
[oT. Furthermore, its ability to work effectively under
Non-IDD data distributions makes it highly applicable
to scenarios where data is not evenly distributed
among clients.

e A multi-class model is proposed for classifying
different types of DDoS attacks.

e Our model performs well on large and updated
dataset such as CIC-DDo0S2019, demonstrating its
ability to adapt to various data structures, attack
types, and real-time data distributions, IDD or Non-
IDD. This highlights the robustness and
generalisability of the model in different
environments.

The structure of the article is organized as follows: In the
second section, studies on DDoS attack detection and FL are
discussed comprehensively. The third section explains the FL-
based DDoS attack detection model and the methods used in
this context in detail. The fourth section presents the results,
where the performance of the developed application is
evaluated. In the fifth section, the analysis and discussion of the
findings are provided under the title "Results and Discussion."”
Finally, in the sixth section, the findings are evaluated, and
suggestions for future studies are offered. This section aims to
contribute to the direction of current research and inspire
readers with new research areas.

2 Related work

FL is a ML technique that provides major benefits in terms of
data access and privacy since it trains locally on devices rather
than requiring data collection in a central location. It lowers the
possibility of privacy violations while sensitive data stays on
devices and enables the creation of general models using data
gathered from various devices. Education, wearable
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technology, finance, healthcare, blockchain and the internet of
things are just a few of the industries that use FL technology
[12], which offers solutions to issues like data access and
privacy [13].

This article discusses the use of FL for DDoS attack detection. In
this section, past studies on federated learning, federated
learning with attacks and DDoS attacks in the context of
federated learning between 2019-2024 are summarised. In
Figure 1, the distribution of the studies in the related databases
in the fields of FL, attacks on FL and DDoS attacks in the context
of federated learning is shown graphically.

m Federated Leaming

28%

= Federated Leaming

Federated Leaming
34% - DDoS Attacks

Figure 1. Graphical representation of the number of studies
reviewed in the literature.

2.1 Paststudies about Federated learning

Zue et al. developed a model that recognizes Chinese text in
2019. The aim of the study is to demonstrate the application
potential of the FL approach through data consisting of textual
images that need to be preserved. To achieve this, comparative
experiments are conducted on the PySyft [14] and TensorFlow
Federated (TFF) [15] frameworks. While previous similar
studies used alphanumeric libraries or single-character images,
the proposed model performed text recognition on a larger
collection of images. The experimental results show an
accuracy rate of 49.20% with TFF. Additionally, in the
experiments carried out on the non-distributed dataset, an
accuracy rate of 54.33% was achieved with TFF [16].

Jabtecki et al. are performed cloud-based medical image
analysis using FL techniques. Two Deep Neural Network (DNN)
models, ResNet50 and EfficientNetBO, are used with
TensorFlow Federated, PySyft and Flower frameworks to
facilitate the analysis. Comparative analyses are performed
between two DNN models and three FL frameworks.
Experimental results show that EfficientNetBO outperforms
ResNet50 in terms of accuracy, regardless of the parameter
settings. Moreover, the accuracy of EfficientNetBO are
improved with an increasing number of local epochs, while
ResNet50 are reached its highest accuracy with four local
epochs. In addition, on a single client proposed models in the
test set showed superior accuracy. All findings emphasize that
FL is a valuable approach that not only provides a reasonable
level of computational security, but also allows efficient models
[17].

Yazdinejad et al. are proposed a model for the authentication of
drones using Radio Frequency (RF) features and the FL method.
The model, designed with the DNN method, is used together
with the Stochastic Gradient Descent (SGD) optimization to
enable the authentication process in drones. In the study, study
was developed in the PySyft environment by using a dataset
containing RF data of 1500 Phantom and 1500 Mavric type

drones. The outcomes demonstrated that the suggested
approach has higher performance compared to classical ML
methods, with an accuracy rate of 90.7% [18].

Dasari et al. are developed a method using FL architecture to
prevent unnecessary energy consumption in smart buildings.
In the study, a DNN model is applied to the American Society of
Heating, Refrigerating and Air-Conditioning Engineers
(ASHRAE) [19] dataset. The proposed method requires less
data compared to similar studies conducted with ML
algorithms. The ASHRAE dataset created for energy estimation
consists of three-year data from more than 1000 buildings,
including building (1449, 6), meter (20216100,4) and weather
(139773, 9) data. The DNN model consists of a fully connected
Feed Forward Neural Network (FFNN) with the Rectified
Linear Unit (ReLU) activation function. The applications are
implemented using the PySyft and PyTorch libraries in the
Python programming language. In the experimental phase, 10,
25, 50, and 100 building data are used to make a comparison
between the Centralized Learning (CL) and FL methods.
Accuracy is selected as the evaluation metric. According to the
experimental results, it can be said that the results obtained
with FL show better performance [20].

Borger et al. are developed an application within the scope of
FL architecture for the prediction of violent events in patients
in a psychiatric ward in a simulated environment. The dataset
[21] is used within the scope of the application is the violent
event dataset created to assess the risk of violence among
patients in the psychiatric ward of UMC Utrecht. Since the
dataset consists of hospital data, FL architecture is adopted
using Natural Language Processing (NLP) (Doc2Vec) methods
to train the model with more data without compromising
patient privacy. Four models are trained and compared for the
application: two of them local, one of FL and one data-
centralized model. The applications are implemented using the
PySyft library in Python. Fl-score is selected as the
performance metric. When the models are tested on the
combined test data the FL model obtained an F1-score value of
0.388 and the data-centric model obtained an F1-score value of
0.397. The results show that models trained with FL
outperform data-centralized learning and have similar
performance to data-centric models [22].

2.2  Attacks and federated learning

It is challenging to build a robust DL model and guarantee data
security in intelligent intrusion detection techniques that are
trained on a single client or central server. An independent and
identically distributed (1ID) approach based on the FL-assisted
Long Short-Term Memory (FL-LSTM) architecture was
developed by Zhao et al. as a solution to this issue.
Convolutional Neural Network (CNN) and Long Short-Term
Memory (LSTM) algorithms are first compared, followed by
local LSTM approaches, centralized learning-LSTM (CL-LSTM),
and centralized learning-CNN (CL-CNN). The study measures
the success rates of the suggested approach. The dataset
utilized in the experiments consists of 10,000 command blocks
(each block containing 50 commands) that involve specific
attacks such as massive reads, file deletions, directory traversal
attacks and batch uninstalls. To estimate the model's
performance, comparisons are made based on F1-score values,
accuracy, recall, and precision. The evaluation's findings
indicate that the suggested FL-LSTM approach outperforms the
others (acc (99.21%), pre (99.19%), rec (99.23%), and F1-
score (99.21%)) [23].

1006



Pamukkale Univ Muh Bilim Derg, 31(6), 1004-1018, 2025
B. Biiytiktanir, Z. Ciplak, A.E. (il, 0. Yakar, M.B. Adoum, K. Yildiz

Singh et al. are aimed to use Artificial Neural Network (ANN)
based Autoencoder model and FL approach to find anomaly
events in the data flow. These anomalies can be false or
malicious entries in the transaction pool. PyTorch models and
the PySyft library were used in the experimental phase. Two
unsupervised anomaly detection datasets were obtained from
the Harvard Dataverse. The experimental results highlighted
that the federated model outperformed 97% of the full model
with the F1-score and could classify all anomalies as positive.
Therefore, it has been argued that this method is a better option
for in-network anomaly detection [24].

Tang et al. suggested a network intrusion detection approach
based on FL. Experiments were conducted out on the
CICIDS2017 dataset. The dataset was trained using the Gated
Recurrent Unit (GRU) DL algorithm. The experiment was
implemented in Python and the PyTorch 1.3.0 DL framework.
Experimental findings were evaluated using performance
measures The performances of the CL and FL methods were
compared in the simulation environment. According to the
experimental studies, it was shown that the FL method
achieved nearly the same accuracy as the centralized learning
method, with an accuracy value of 97.2%. The proposed
method demonstrates the applicability of the model in network
intrusion detection while also ensuring data privacy in network
traffic [25].

A privacy-preserving FL (PPFL) solution for Android malware
detection was developed by Hsu et al. The suggested PPFL
approach allows mobile devices to work together to train a
classifier ~without disclosing private data, including
authorization settings, application programming interface
(API) calls, and the local model that every mobile client has
learned. Secure multi-party computation techniques and
Support Vector Machine (SVM) are used in the study to build
the PPFL system. The performance of CL and FL architectures
in various applications is compared. The experiments
examined how specific attributes were used across different
datasets and mobile devices. It can be concluded that the PPFL
system created using FL achieved a 93% success rate and
demonstrated strong malware data privacy. This study is the
first privacy-conscious Android malware detection system built
on the FL framework [26].

FELIDS, a FL-based intrusion detection system, is proposed by
Friha et al. to ensure the security of agricultural IoT (Agri-IoT)
networks. The proposed system utilizes three DL techniques:
CNN, RNN, and DNN-based neural networks. Furthermore,
models based on CL and FL are compared. Three different
current traffic datasets are used for the FELIDS system: CSE-
CIC-IDS2018 [27], MQTTset [28], and InSDN. Upon examining
the experimental results, the FELIDS system applied to all three
datasets performed better than the results from DL methods,
but in most cases, it performed similarly to the CL model. For
the FELIDS system, the corresponding accuracy rates are
98.63%, 99.71%, and 99.05%. Consequently, it can be
concluded that, compared to alternative techniques, the
proposed FELIDS system has the best accuracy in identifying
attacks [29].

2.3 DoS/DDosS attacks and federated learning

The research indicates that DDoS attack detection is another
application of FL methods. These methods are employed to
trace the attack's origin and identify irregularities in network
data.

In the study prepared by Siracusa and Doriguzzi-Corin in 2022,
the FLAD (Federated Learning Adaptive to DDoS Attack
Detection) system is presented for the detecting of DDoS
attacks using distributed ML techniques. This new method
detects DDoS attacks in the network by creating a training
model without collecting data from multiple devices in a central
location using the FL technique. FLAD is applied to the
CICDD0S2019 [30] DDoS attack dataset created by the
Canadian Cyber Security Institute. It consists of several days of
network activity, benign network traffic, and 13 different DDoS
attack types. In the FLAD system developed within the scope of
the study, an F1-Score value between 0.90 and 0.97 (average
0.9667) is achieved. This work aims to advance the field of
network security, particularly by using distributed ML
techniques [31].

Zhang et al. conducted the FL-based FLDDoS model for DDoS
attack detection. This model is based on the combination of
various features (e.g., number of TCP SYN packets, UDP traffic
sent to the target, etc.) for DDoS attack detection, and the
learning algorithm detects attacks using these features.
Autoencoder-based RNN, MLP, and CNN models are used to
automatically extract features in the proposed model and
improve its performance. The datasets used in the experiments
are CICDDoS [32], NLSKDD [33], and CICIDS [34]. Since the data
distribution in the datasets used for attack detection is
unbalanced, a K-Means-based hierarchical aggregation
algorithm and the SMOTEENN [35] data resampling algorithm
were used as a solution to this problem. In addition, the
proposed FLDDoS model is compared with the Federated
Averaging (FedAvg) [36] algorithm. The experimental findings
show that the suggested model gets accuracy rates for the
CICIDS and NLSKDD datasets were 93.26% and 99.13%,
respectively., and demonstrates good detection performance in
attack detection. The results show that the proposed FLDDoS
model increases the accuracy by 4% compared to traditional
methods [37].

Li et al. Proposed a new architecture called FLEAM against
DDoS attacks by combining FL architecture and fog/edge
computing in IIoT devices. In this architecture, Iterative Model
Averaging (IMA)-based GRU models are developed to overcome
various attacks emerging in IIoT. The IMA-GRU model performs
accurate detections on distributed data. The UNSW NB15
dataset [38] is used for the applications. Compared to classical
solutions, the proposed FLEAM architecture has about 72%
lower DDoS attack mitigation time, while achieving about 47%
higher DDoS attack mitigation accuracy. Finally, the evaluation
of the IMA-GRU model shows that the accuracy in DDoS attack
detection based on the UNSW NB15 dataset is about 98% on FL,
which is almost the same as the accuracy achieved with
centralized training [39].

The Weighted Federation Learning (WFL) model is suggested
by Ali et al. for the identification of Low Rate-DDoS (LR-DDoS)
attacks. To ensure the success of the proposed model, three
distinct ANN training procedures were employed which
Bayesian Regularization (BR), Scaled Conjugate Gradient (SCG)
and Levenberg-Marquardt (LM) algorithms. The tests were
conducted using the CAIDA dataset [40]. The applications used
MATLAB 22 software. With a classification accuracy of 98.85%,
the WFL model is the most used model approach for intrusion
detection systems, according to the test results [41].

Fotse et al. Proposed a FL scheme named FedLAD for the
detection of DDoS attacks in large-scale Software-Defined
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Networks (SDN). The accuracy assessment for DDoS attack
detection in the FedLAD approach is performed with three
different aggregation techniques: FedAVG, Astraes, and
Ranking Client techniques. These techniques are used to
combine the new models participating in the FL process. The
FedLAD scheme is evaluated on the CICD0S2017 [42],
CICDD0S2019, and InSDN [43] datasets. Oracle VirtualBox
Manager 6.0 is used to simulate the experiment. The
experimental results show that the proposed FedLAD method
has an accuracy of approximately 98% (FedAVG: 92.62%,
Astraes: 97.54%, Ranking Client: 97.64%) across all three
techniques compared to related studies. This work presents a
new technique for DDoS attack detection in SDN using the FL
approach [44].

Zainudin et al. proposed a unified model addressing FL-based
DDoS classification to ensure the security of SDN-based IloT
networks. In the study, comparisons are made using FL-based
Chi-square FS and FL-based feature selection (FS) techniques,
along with the Pearson correlation coefficient (PCC). In
addition, the FedAvg algorithm is used to calculate the training
parameters collected from SDN. An FL-based CNN-MLP model
is also proposed for DDoS classification. Applications for DDoS
attack detection are carried out on the CICDD0S2019 dataset.
Comparisons are made with CNN, Multi-MLP, Existing CNN-
MLP, and the proposed FedDDoS models for FL-based DDoS
classification. Analyzing the results reveals that a calculation
time of 3.917 ms yields an accuracy of 98.37% [45].

Lee et al. proposed a personalized FL-based DDoS attack
detection model using the DBSCAN clustering (FedDB) method.
LSTM models are combined with the FL framework FedMe
framework [46] for model training; DBSCAN clustering is used
for model clustering and modification. In this model, DBSCAN
clustering improves the overall detection accuracy by
addressing data distribution imbalances and also enhances the
proposed method. The CICDD0OS2019 dataset is used for the
evaluation of the proposed approach. When alpha = 0.2 in the
dataset, certain DDoS attack types are not included in the data
of each client. On the other hand, when alpha = 0.9, they are
included as DDoS attack types in the data of each client.
According to the experimental results, when the performance
evaluation of the proposed FedDB model using FedAvg, FedMe,
CL, and FL methods is examined, when alpha = 0.9, the FedDB
method showed accuracy values of 0.95, and when alpha = 0.2,
the FedDB method showed accuracy values of 0.97. As a result,
the proposed FedDB approach protects data privacy by
increasing model accuracy as a solution to data distribution
imbalances in DDoS attack detection [47].

Table 1 presents a comparison of the functionality provided by
literature solutions and current studies. This study aims to
overcome the limitations of traditional ML and DL techniques,
such as privacy risks and insufficient training performance due
to the necessity of centralized data collection. The DDoS_FL
model was developed as a FL-based architecture, enabling the
detection of DDoS attacks without requiring data sharing
between devices.

Table 1. State of the art works.

Year [Ref.] Application FL Architecture Method Dataset(s) Key_findings
- - o -
2025 [44] DDosS attack FedAVG, Astraes, CICDo0S2017, Deep learnlng rr.lode'ls achieve ?8 % accuracy, but they require
A FedLAD . . CICDDo0S2019, longer training times and higher resource allocation as
Fotse et al. detection in SDN Ranking Client
InSDN network scales expand.
DBSCAN ) .
2024 [47] clustering based FedAvg, Fedme, The K-means method, with an accuracy of 95% for a=0.9 and
FedDB g ! CICDD0S2019 97% for a=0.2, tends to include outliers in clusters when
Lee etal. DDosS attack CL, FL . ) -
. dealing with unevenly distributed data.
detection
The WFL model, utilizing Bayesian Regularization, Scaled
R Conjugate Gradient, and Levenberg-Marquardt algorithms,
22121 ?:at[::)] LR (]i)e]i:cstfotrtuaCk WFL LM, BR, SCG CAIDA achieved 98.85% accuracy in detecting Low-Rate DDoS
' attacks on the CAIDA dataset. It stands out as a widely
adopted approach for intrusion detection systems.
FL-based DDoS FedDDoS, CNN, The FL-based CNN-MLP model proposed by Zainudin et al.
2022 [45] classification for Multi-MLP, Achieved 98.37% accuracy in DDoS classification with a
S security of SDN- FedDDoS Existing CNN-MLP, CICDDo0S2019 computation time of 3.917 ms on the CIC-DD0S2019 dataset.
Zainudin et al. . . . . . :
based IIoT FedAvg Comparisons with various models highlight its effectiveness in
networks securing SDN-based IloT networks.
2022 [31] DDosS attack CIC-DD0S2019 The proposed model attains an F1-score between 0.90 and
i & detection FLAD FedAvg, FLAD, 0.97, yet it lacks a test set to assess its performance against
lracusa FLDDoS various attack types. Additionally, the FEDAVG method
D.Corin 0 A
struggles with imbalanced and Non-IID data.
RNN, MLP, CNN, K- The FLDDoS model by Zhang et al. Achieved 93.26% accuracy
Means-based on the CICIDS dataset and 99.13% accuracy on the NLSKDD
2021 [37] FL-based DDoS FLDDoS hierarchical CICDDoS, dataset, improving detection performance by 4% compared to
Zhang et al. attack detection acoresation NLSKDD, traditional methods. Using autoencoder-based RNN, MLP, and
8 : | gg' hg d CICIDS CNN models, along with K-Means-based hierarchical
algorit m,‘ ata aggregation and SMOTEENN resampling, the model effectively
resampling handles imbalanced data in DDoS attack detection.
algorithm, FedAvg
With 98% accuracy, the model faces challenges due to the
diversity of DDoS attacks, the complexity of Industrial IoT
2021 [39] DDoS in FLEAM IMA. GRU, FL UNSW NB15 environments, and the inherent limitations of federated
. industrial lIoT ’ ’ learning.
Lietal.
This paper addresses the limitations of traditional ML and DL
Our Proposed FL based DDoS FL, DL, methods by introducing the DDoS_FL model, which enables
Model attack approach DDoS_FL DDoS detection without data sharing by providing both high

Buyuktanir et
al.

CIC-DD0S2019

accuracy (82-97%) and data privacy. The model achieves an
F1-score between 0.89 and 0.99, significantly reduces the
training time and effectively detects various types of DDoS
attacks as verified on the CIC-DD0S2019 dataset.
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Its most important difference compared to the existing
literature is that it provides high accuracy (82 to 97 percent)
along with the data privacy preservation feature and
significantly reduces training times. Experiments conducted
with the CIC-DDoS2019 dataset show that the model can
successfully detect various types of DDoS attacks. This study
aims to introduce the FL approach to the literature as a
promising solution for effective DDoS attack detection while
preserving data privacy.

The use of FL techniques against DDoS attacks helps make the
learning models used to detect the attack more up-to-date and
accurate. In addition, FL also helps protect distributed data and
provides better scalability, as it does not require a central
server. According to literature research, FL techniques are seen
as a promising method for developing defense mechanisms
against DDoS attacks. However, more research needs to be
conducted, and further testing of how the techniques work in
real-world scenarios is required.

3 Proposed approach

This section contains the detailed methods of the model
developed for detecting DDoS attacks using the FL method. FL
is a distributed learning approach that provides training on
local devices instead of a central server to protect data privacy.
The goal of this work is to create a more safe and scalable
approach for identifying DDoS attacks using FL.

3.1 Dataset and data preprocessing

Before the model training, preprocessing steps were performed
on the raw dataset. In order to implement the DL model, the
ready dataset is first loaded into the system.

Within the scope of the study, the DDoS Evaluation Dataset
(CIC-DD0S2019), an up-to-date and well-designed dataset
shared by the Canadian Institute for Cybersecurity, was used to
detect DDoS attacks and classify attack types [3].

The CIC-DD0S2019 dataset consists of a total of 79 attributes
(columns) and 431,371 (rows) observations. Two datasets
were derived from the raw dataset to be used in Binary
Classification (BC) and Multiclass Classification (MC). The BC
dataset was used for DDoS attack detection, and the MC dataset
was used for DDoS type classification.

First, 12 features that were deemed unnecessary due to their
lack of contribution to model training were removed from both
datasets. The deleted attribute names are: "FIN Flag
Count","Bwd PSH Flags", "ECE Flag Count", "Fwd URG Flags",
"Bwd URG Flags", "PSH Flag Count", "Bwd Avg Packets/Bulk",
"Fwd Avg Bytes/Bulk", "Fwd Avg Packets/Bulk", "Fwd Avg Bulk
Rate", "Bwd Avg Bytes/Bulk" and "Bwd Avg Bulk Rate". As a
result, a total of 67 features remained in the raw dataset.

The "Label" and "Class" attributes in the raw dataset serve as
identifiers for the BC and MC datasets, respectively. The "Class"
attribute contains values of 0 and 1, while the "Label" attribute
contains 17 different DDoS types and the "Benign" value.
Subsequently, the BC dataset was created first, followed by the
MC dataset.

Since the BC dataset was created to detect attacks on network
traffic, the "Class" attribute was used as the target variable in
the models trained with this dataset. In the dataset, "Benign" is
labeled as "0", and other attacks are labeled as "1". Table 2
shows the distribution of the "Class" attribute in the BC dataset.

Table 2. Class names and numbers in the BC dataset.

Class Count
Bening / "0" 97831
Attacks /"1" 333540

Table 2 shows that the different "Class" values are unbalanced
in the dataset. The "Label" attribute in the raw dataset contains
information about "Benign" and "DDoS types". If the "Label"
value is 0, the "Class" value is definitely 0. For other values that
the "Label" takes, the "Class” value is definitely 1. In this case,
the other attributes in the dataset have no significance or effect.
A prediction model built on this data could make a decision
about the "Class" simply by looking at the "Label" attribute. To
avoid this issue, the "Label" attribute was also removed from
the BC dataset.

Thus, the models created with the BC dataset (Models 1, 2, 3, 4,
5) were trained using the remaining 66 features, with 65
features as independent variables and 1 feature as the target
variable.

Since the MC dataset was created to classify DDoS attack types,
the "Label" attribute was used as the target variable in the
models produced with this dataset. The "Label” attribute was
converted into a column containing numeric values from 0 to
17 using Label Encoding. "Benign", which represents normal
traffic in the dataset, is labeled with a value of "0". The dataset
contains 17 different attack types, which are labeled from "1"
to "17". The "Class" attribute was not removed from the MC
dataset. The value of the "Class" attribute is 0 when the "Label"
value is also 0. In this context, the "Class" attribute provides
important information for predicting one of the multiple
classes.

In other words, when the "Class" attribute takes the value 0, a
corresponding class of the "Label" is determined. However,
when the "Class" attribute takes the value 1, the value of the
"Label" cannot be determined by looking at the "Class" attribute
alone. Therefore, the "Class" attribute is not removed from the
MC dataset, as it carries partial information.

Thus, the models created with the MC dataset (Models 6, 7, 8, 9,
10) were trained using the remaining 67 features, with 66
features as independent variables and 1 feature as the target
variable.

Figure 2 shows the names of the attack types in the MC dataset
and the number of occurrences of each in the dataset. As seen
in Figure 2, the attack types are unbalanced in the dataset.

In both datasets, Z-Score Normalization (Standardization) [48]
process was applied, which transforms the values in the
columns of the attributes other than the target variables into a
standard distribution using the mean and standard deviation.
Thus, different scales and distributions in the dataset were
eliminated and it was aimed to improve the model
performance. After all these preprocessing steps were
completed, the datasets were made ready for the training of the
model.

3.2 Federated learning

FL, which has recently gained popularity in the field of ML, is
used in scenarios where data does not need to be collected in a
central location due to privacy and security concerns [49, 50,
51]. After training models on their local datasets, data owners
(clients) distribute the modified parameters of the learned
models with a central server.
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Distribution of Attack Types in MultiClass Dataset(Logarithmic Scale)
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Figure 2. Distribution of attack types in the Label attribute of the MC dataset.

In this method, data owners can contribute to the final model
generated on the server without sharing their data. FL is
suitable for and used in many application areas that require
security and confidentiality, such as financial data, customer
data, and patient data. Figure 3 illustrates the working
architecture of both the classical learning method and the FL
method for systems with clients and servers. In Figure 3, the
model training steps for both methods are numbered.

CLASSICAL LEARNING ARCHITECTURE

BB -

B -
N

@ ﬁ e ———

4

z@iu/

Figure 3. The working architecture of classical learning
method and FL method.

In the conventional technique, clients send their data to the
server in the first phase, the server uses the incoming data to
train the model in the second phase, and the trained model is
then distributed to each client in the third phase. For the FL
method; The first step is model training with the data on the
clients, the second step sending the models to the server, the
third step is the merging of the models on the server, and the
fourth step is the distribution of the current model to the
clients. Proposed models were trained and their performances
were compared by using the DDoS dataset, classical method,
and FL method.

3.3 DDoS_FL

Within the scope of the study, a DDoS attack detection model
named DDoS_FL based on FL architecture was designed. Since
the FL architecture is implemented in systems with clients and
server, the success of DDoS_FL models according to different
client numbers is measured by comparing them with the model
developed using the classical learning method. All models are
developed with DNN models. Virtual clients/devices were
created in the simulation used to set up the DDoS_FL
architecture. To observe the operation with different client
numbers, the operations were repeated for client numbers
assumed to be 5, 10, 50, and 100. In model training, the BC and
MC datasets, obtained by editing the CIC-DD0oS2019 dataset,
were used. Firstly, the aim was to distribute the data evenly
across the clients, each of which was evaluated individually,
assuming the numbers to be 5, 10, 50, and 100, respectively. To
achieve this, 371 samples were removed from the entire
dataset, reducing the total number of data points from 431,371
to 431,000. The 371 extracted samples were set aside as test
data. Then, 10% of the 431,000 data points were reserved as
test data. Thus, a total of 10% + 371 data points were used for
testing. The data allocated for training were equally distributed
among 5, 10, 50, and 100 users. In the simulation environment,
firstly, since observations will be made using the IID data
distribution, the data are equally distributed. For the Non-IID
data distribution, a total of 10% plus 371 data points were used
for testing purposes. The training data was divided into three
repeated distributions with different proportions between 5,
10, 50 and 100 clients and the results obtained under these
different distributions were analysed.
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Data distribution to virtual clients is done using TensorFlow
[52]. The records in the training data are assumed to be
generated on different clients to ensure an IID data distribution
and are randomly partitioned based on the number of clients.
For instance, if the number of clients is five, the training data is
randomly divided into five equal parts. To achieve a Non-IID
data distribution, 80% of the classes in the data are randomly
distributed within the same class, while 20% are assigned to
different classes. In other scenarios, 65% of the classes are kept
within the same class, and 35% are distributed across different
classes, in another case, 50% are the same while the other 50%
are assigned to different classes. Additionally, the data owned
by users in each round is mixed. In each round, nearly different
data is assigned to each user. Thus, a simulation environment is
created in which devices regenerate data and reproduce
models with that data, aiming to closely resemble real-world
conditions.

On the other hand, time measurements were taken in each
round. After the rounds were completed, the total time spent by
the model was calculated, allowing for comparison with other
models and non-federated models.

3.4 Model architectures, systems used and libraries

Experiments are processed on Windows 10 OS, an Intel Core i7-
12650H CPU 2.30 GHz processor, 16GB RAM, 512GB SSD, and
an NVIDIA GeForce RTX 3060 Laptop GPU. Jupyter Notebook
was chosen as the development environment, and Python 3.10
was used as the programming language. For the DL model, an
experimental environment was set up using the libraries
TensorFlow [52], Keras [53], Pandas [54], and Scikit-learn [55].

For BC and MC, two models were developed primarily using the
classical approach, without the FL approach. These are Model 1
and Model 6. Then, the versions of these models created with
the FL approach (Models 2, 3, 4, 5, and Models 7, 8,9, 10) were
compared with Model 1 and Model 6. Two separate DL
architectures were designed for binary and multiple
classifications. The DL architecture used for BC is called Binary
Architecture Deep Neural Network (BA-DNN), and the DL
architecture used for MC is called Multi Architecture Deep
Neural Network (MA-DNN).

There are 65 neurons in the input layer of the BA-DNN
architecture. Each of these neurons corresponds to an attribute
in the dataset that the model will take as input. The ReLU
activation function is used in the input layer. It converts values
below zero to zero, while leaving values above zero unchanged
[56]. This function is generally preferred in DL models because
it speeds up the training process and requires less computation.
BA-DNN has two hidden layers, each containing 35 neurons and
the ReLU is used. Additionally, the dropout technique was
applied to each hidden layer to prevent overfitting [57].
Dropout sets the activations of randomly selected neurons in
the specified percentage (0.3 in this example) to zero. Finally,
there is a single neuron forming the output of the model. Here,
the sigmoid activation function is used [58]. The sigmoid
function converts the model's output to a value between 0 and
1. This function is generally used in binary classification tasks
because it guarantees that the model’'s output can be
understood as a probability value. Figure 4 shows the BA-DNN
architecture.

MA-DNN shows similarities to BA-DNN architecture in many
ways. There are 66 neurons in the input layer. The neurons in
the input layer correspond to each seperate variable in the

dataset to be used for MC. The ReLU is used in the input layer
as an activation function.
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Figure 4. BA-DNN architecture.

As in BA-DNN, there are two hidden layers, each containing 30
neurons. Again, after each hidden layer, the dropout technique
was applied to prevent overfitting. The dropout rate is set to 0.1
in this architecture. Finally, there are 18 neurons that form the
output of the model. The softmax activation function is used
here [58]. It converts each input item into a range of 0 to 1. It is
generally used in multiclass classification problems to convert
the outputs in the last layer into class probabilities. was utilized
as an optimizer for both datasets to minimize the model's loss
function and speed up the training process by updating the
parameters [59]. Figure 5 shows the MA-DNN architecture.
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Figure 5. MA-DNN architecture.

4 Experimental results

This section discusses the experimental setup for the model
created using the FL method for DDoS attack detection and
classification, the evaluation criteria for the outcomes, and the
experimental results of testing the developed DNN model on
the dataset in question according to IID and Non-IID data
distribution. Accuracy, precision, recall and F1-score measures
are carried out in this study to get the performance of model.
These metrics, commonly used in the literature, give a complete
evaluation of the model's classification performance [60, 61].
Particularly in an FL design where the data distribution may be
uneven, each of these measures emphasizes distinct aspects of
the model and is crucial for ensuring its reliability. Sensitivity
shows how well the model detects all positive cases, accuracy
indicates overall success, precision measures how well the
model controls false positives, and F1-Score shows how well
precision and sensitivity are balanced in positive predictions.
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The model developed with classical learning and the models
developed with FL. were compared. Table 3 shows the designed
model information and comparison results. When the results in
Table 3 are examined, in identifying the existence of DDoS in
the network, for BC, it was observed that the performance of
the model trained with the traditional method (Model 1) and

many different Non-IID scenarios can be designed. However,
testing all possibilities would not only exceed the study time,
but also make it difficult to compare the results. Therefore, for
the purpose of interpreting the Non-IID effect, three scenarios
with a gradual change in the class distribution were determined
for a balanced and comparable structure.

the models trained with the FL. method (Models 2 and 3) had

the same accuracy. When the metrics of Models 4 and 5, where Confusion Matrix

the number of users is higher, are examined, it can be concluded 35000

that the FL method slightly reduces the model performance

compared to the classical method. However, since this decrease w 30000

is 1/1000, it is a reduction that can be ignored, considering the 7 218

advantages of FL. For MC, the performance of the classical £ 25000

model (Model 6) and the other FL-based models (Models 7, 8, w

9, and 10) were very close to each other, although there was a % - 20000

slight decrease. It is not unusual for federated models to be ¥

somewhat less efficient than classical learning models in = - 15000

general. @

When the DDoS types in the dataset used for MC are examined, g S 1ot j 10000

it is observed that there are 17 different types, which are =

unevenly distributed in the dataset. This imbalance led to a j Soo

decrease in the performance of the MC models. Among of this ' .

some DDoS types have very few data points in the dataset. For POSINE  cted Lapete Ve

example, while there are 121,368 data points belonging to the

DDoS type named DrDoS_NTP, there are only 51 data points for Figure 6. The Model 2 confusion matrix.

the DDoS type named WebDDoS. It is likely that the trained DL

model cannot effectively learn the characteristics of DDoS types Confusion Matrix

with a small number of data points, leading to incorrect

predictions. 40000

According to Table 3, the confusion matrix for the optimal FL u 35000

models Model 2 for BC and Model 7 for MC are presented. The g "3

confusion matrix for Model 2 and Model 7 are seen in Figure 6 - 20000

and Figure 7 seperately. These visualizations offer a detailed 2 35000

overview of the classification performance for each respective 7

model. 2 - 20000

=

When the model training times in both datasets are evaluated, mme.

itis seen that all FL-based models are shorter than the training 2 _

times in the models developed with the classical method ) = . - 10000

Figure 8. Shows the variation of the training times according to =

the number of users of the FL-based models for the BC and MC 2000

datasets. .

Positive Megative

In this study, three different comparable scenarios are Predicted Labels

constructed in order to systematically analyse the impact of

Non-IID data distribution on federated learning. Theoretically, Figure 7. The Model 7 confusion matrix.

Table 3. Evaluation of the models trained on the CIC-DD0S2019 dataset. (IID).

No Model Architecture Users  Epochs/Rounds ,];,ii?es(esc)i Accuracy  Precision Recall Sf;;e
1 Non-Fed + BC 1 10 84.35 0.997 0.999 0.997 0.998
2 Fed + BC 5 5 9.44 0.997 0.999 0.997 0.998
3 Fed + BC BA-DNN 10 6 6.78 0.997 0.999 0.996 0.998
4 Fed + BC 50 5 2.73 0.996 0.998 0.996 0.997
5 Fed + BC 100 6 2.84 0.996 0.998 0.996 0.997
6  Non-Fed + MC 1 10 82.03 0.932 0.954 0.932 0916
7 Fed + MC 5 7 14.63 0.920 0.944 0.920 0.901
8 Fed + MC MA-DNN 10 7 7.53 0919 0.942 0919 0.902
9 Fed + MC 50 7 5.12 0.912 0.921 0.912 0.891
10 Fed + MC 100 12 8.06 0.912 0.909 0.912 0.891

BC: Binary Classification, MC: MultiClass Classification, Fed: Federated Approach,

BA-DNN: Binary Architecture Deep Neural Network, MA-DNN: Multi Architecture Deep Neural Network.
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Figure 8. The variation of the training times according to the
number of users of the FL-based models for the BC and MC
datasets. (IID).

In the first scenario, 80% of each client's data was randomly
distributed from a single class and the remaining 20% from
other classes. In the second scenario, this was reduced to 65%,
so that clients were exposed to more class diversity. In the last
scenario, the classes were distributed completely evenly (50%
from a dominant class and 50% mixed from other classes),
creating a more balanced structure in the training process of
the clients. This configuration allows a direct comparison of the
impact of different data distributions on federated learning to
understand the progressive impact of the Non-IID level. Using
the same model architectures for each scenario, we retrained
with clients with different data distributions and analysed the
results in detail. This approach contributes to the step-by-step
evaluation of the impact of different Non-IID structures on
model performance and to understand how different situations
affect the federated learning process.

The experimental results in Table 4 clearly demonstrate the
effects of the Non-IID data distribution on federated learning.
In the binary classification (BC) task, the effect of Non-IID is
quite low. One of the most important reasons for this is that the
BC problem is a somewhat simpler task. Since the model only
needs to discriminate ‘is there an attack or not?’, even users
with a predominance of a single class do not affect the overall
model much. Therefore, even in the Non-IID system for BC, the
accuracy and other metrics are quite close to the IID system.

On the other hand, in the multiple classification (MC) task, the
effect of Non-IID was much more pronounced. While the
accuracy was 0.920 for 5 users in the IID system, it decreased
to 0.802 in the Non-IID system. This is mainly due to the fact
that some of the clients focus heavily on a single class. When the
centralised model combines these imbalanced learnings during
the training of federated learning, some classes are learned
extremely well, while others are hardly learned at all. As a
result, for small numbers of users, the Non-IID effect further
destabilised the overall balance of the model. The decrease in
F1-score supports this. The decrease in F1-score indicates that
the false positive rate and false negative rate of the model
increased in some classes.

However, as the number of users increased, the generalisation
ability of the central model increased and the accuracy
increased. For example, the Non-IID model with 100 users
experienced an accuracy decrease of only 0.02 compared to the
model with 100 users in the IID system (IID: 0.912, Non-IID:
0.892). This is due to the fact that with 100 users, the
centralised model is able to get information from a wider
perspective of different clients and thus generalise. The effect
of clients focusing too much on a single class during the
federation process is balanced with the data from more clients,
allowing the model to learn more comprehensively [62].

It is clearly seen that Non-IID increases the training time for
small numbers of users. Especially for 5 and 10 users, while the
training time was 14.63 and 7.53 seconds in the IID system, it
increased to 24.13 and 10.98 seconds in Non-IID. The reason
for this is that the model makes more errors in weight updates
during the federation process and requires more rounds due to
the high differences between local models. However, the
training times for 50 and 100 users were almost the same as
IID. This is due to the fact that updating the centralised model
becomes more stable as the number of clients increases. When
there are many clients, the impact of the data of different users
becomes more balanced and the negative impact of Non-IID is
reduced [63].

When the accuracy values of Models 7, 8,9 and 10 are analysed,
it is observed that the accuracy increases as the number of
users increases. In Model 7 (5 users) the accuracy was 0.802, in
Model 8 (10 users) 0.849, in Model 9 (50 users) 0.885 and in
Model 10 (100 users) 0.892. In other words, the accuracy of the
model gradually increased as the number of users increased.

Table 4. Evaluation of Non-IID models trained on the CIC-DD0S2019 dataset with 80% of the classes in the data being the same and
20% randomly distributed as other classes.

No Model Architecture Users Epochs/Rounds E!apsed Accuracy  Precision Recall F1-
Time(s) score
1 Non-Fed + BC 1 10 84.35 0.997 0.999 0.997 0.998
2 Fed + BC 5 3 5.8 0.996 0.999 0.996 0.998
3 Fed + BC BA-DNN 10 11 12.31 0.997 0.999 0.996 0.998
4 Fed + BC 50 6 3.55 0.996 0.999 0.996 0.997
5 Fed + BC 100 4 2.12 0.995 0.998 0.996 0.997
6  Non-Fed + MC 1 10 82.03 0.932 0.954 0.932 0916
7 Fed + MC 5 28 24.13 0.802 0.935 0.802 0.773
8 Fed + MC MA-DNN 10 16 10.98 0.849 0.898 0.849 0.844
9 Fed + MC 50 8 3.72 0.885 0.865 0.885 0.865
10 Fed + MC 100 14 5.9 0.892 0.880 0.892 0.870
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The main reason for this increase is that as the number of users
increases, the negative effects of the Non-IID distribution are
eliminated. In the first scenario, 80% of each user's data is
randomly selected from a single class and 20% is randomly
selected from other classes. With a small number of users, the
centralised model performed unbalanced learning due to some
clients over-focusing on certain classes. Especially in Model 7
(5 users), since there were very few clients, the class imbalance
of each client severely affected the overall performance of the
model. This resulted in the model generally learning some
classes very well but ignoring others, and the accuracy dropped
significantly. As the number of users increased, the centralised
model combined data from more clients and was better able to
balance between different classes.

Another reason is that the FedAvg algorithm can perform a
more balanced update as the number of users increases [64].
When the number of users is low, the weights of some clients
may influence the central model more and cause certain classes
to become dominant. However, when the number of users
increases, each client's model has a smaller impact and the
central model is updated with a broader data perspective. This
allows the model to minimize the Non-IID effect and develop a
more balanced decision mechanisim.

When the results in Table 5 are compared with the results of
the IID system in Table 3 and Table 4 (the first Non-IID
scenario), the effects of the Non-IID distribution on the
accuracy, training time and generalisation capacity of the model
become clearer. Unlike the first Non-IID scenario, the data
distribution used in Table 5 is organised in such a way that 65%
is a single class and 35% is mixed from other classes. This
change slightly reduces the Non-IID effect and improves the
accuracy performance of the model.

In binary classification models, similar to the IID system, it is
seen that Non-IID does not have a great effect. Accuracy values
remained at the level of 0.996 in all models and did not change
significantly. Since the Non-IID effect creates more problems in
multi-class learning, the accuracy in the BC system remained
almost the same as the IID system. However, the point to be
considered here is the change in Elapsed Time. Especially in
models with 5 and 10 users, the training time decreased
significantly. For example, while the training time was 12.31
seconds for 10 users in Table 4, it decreased to 3.43 seconds in

In the multi-classification task, it is seen that the Non-IID effect
decreases compared to Table 4. Especially the accuracy values
have increased compared to Table 4. While the accuracy value
of Model 7 (5 users) was 0.802 in Table 4, it increased to 0.836
in Table 5. While the accuracy value of Model 8 (10 users) was
0.849, it was 0.857 in Table 5. The reason for this is that the
class imbalance is less than the first Non-IID scenario. In the
first scenario, since 80% of the users' data came from a single
class, the model had difficulty in learning some classes.
However, in the second scenario, since the dominant class ratio
was reduced to 65%, the model was more exposed to other
classes and its generalisation capacity increased. It enabled the
model to achieve high accuracy in multi-class.

In Table 6, the third Non-IID scenario gave the best results
compared to the other two scenarios. The users' data was
mixed with 50% dominant class and 50% other classes. This
distribution provides a more balanced structure than the first
two Non-IID scenarios and is almost identical to the IID system,
especially in terms of the binary classification task. . This is
because binary classification involves only two classes and the
data is split 50%-50% on each client, so that the federated
learning works exactly as in the IID system.

This experiment proves that the impact of Non-IID is highly
dependent on the structure of the data distribution. If the data
is distributed completely unbalanced, as in the first scenario,
the model performance is severely degraded. However, when a
more balanced distribution is provided, it becomes much easier
for the central model to compensate for the Non-IID effect. As a
result, this third Non-IID scenario yielded exactly the same
results as the IID system, especially in the BC task, and very
close accuracy values to the IID system in the MC task. This
shows that Non-IID does not always have a negative effect and
that the model can continue to learn stably when the data
distribution is well adjusted. Especially as the number of users
increased, the generalisation capacity of the central model
increased and the negative effects of Non-IID were further
reduced. This study shows that the creation of a balanced data
structure across classes is critical to reduce the impact of Non-
IID data distribution and that client diversity in the federated
learning process can improve model accuracy.

Table 5. Evaluation of Non-IID models trained on the CIC-DD0S2019 dataset with 65% of the classes in the data being the same and
35% randomly distributed as other classes.

No Model Architecture Users Epochs/Rounds Elapsed Time(s) Accuracy Precision Recall stl:e
1 Non-Fed + BC 1 10 84.35 0.997 0.999 0.997 0.998
2 Fed + BC 5 3 4.73 0.996 0.999 0.996 0.998
3 Fed + BC BA-DNN 10 3 3.43 0.996 0.999 0.996 0.998
4 Fed + BC 50 5 3.07 0.996 0.999 0.996 0.998
5 Fed + BC 100 7 3.69 0.996 0.999 0.996 0.997
6 Non-Fed + MC 1 10 82.03 0.932 0.954 0.932 0.916
7 Fed + MC 5 18 23.39 0.836 0.936 0.836 0.839
8 Fed + MC MA-DNN 10 16 13.15 0.857 0.935 0.857 0.851
9 Fed + MC 50 14 6.61 0.888 0.888 0.888 0.875
10 Fed + MC 100 12 5.16 0.902 0.908 0.902 0.881
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Table 6. Evaluation of Non-IID models trained on the CIC-DD0S2019 dataset with 50% of the classes in the data being the same and
50% randomly distributed as other classes.

No Model Architecture  Users  Epochs/Rounds E?apsed Accuracy  Precision  Recall F1-
Time(s) score
1 Non-Fed + BC 1 10 84.35 0.997 0.999 0.997 0.998
2 Fed + BC 5 5 11.39 0.997 0.999 0.996 0.998
3 Fed + BC BA-DNN 10 5.78 0.996 0.999 0.996 0.998
4 Fed + BC 50 2.43 0.996 0.999 0.996 0.997
5 Fed + BC 100 5 2.09 0.995 0.998 0.996 0.997
6 Non-Fed + MC 1 10 82.03 0.932 0.954 0.932 0.916
7 Fed + MC 5 13 22.77 0.908 0.946 0.908 0.882
8 Fed + MC MA-DNN 10 22 22.67 0.912 0.945 0912 0.898
9 Fed + MC 50 13 6.78 0.910 0.927 0.910 0.896
10 Fed + MC 100 15 5.22 0.921 0.938 0.919 0.901

5 Results and discussion

In this study, we developed a DDoS attack detection based on
FL architecture. Our findings indicate that the FL strategy
maintains high accuracy levels comparable to traditional
methods, while drastically reducing training time by 82% to
97%, depending on the number of clients involved. This
reduction is crucial for real-time applications that demand high
speed and efficiency.

The primary advantage of the DDoS_FL model is its ability to
train directly on client devices, eliminating the need to
centralize sensitive data. In addition to enhancing data privacy
[65], this approach aligns with contemporary legal
requirements focused on data protection, such as GDPR and
KVKK. By utilizing local computations instead of centralized
data aggregation, we minimize vulnerability to data breaches.
The model’s resilience to various DDoS attack scenarios was
thoroughly validated using the CIC-DD0S2019 dataset. Our FL
model demonstrated a slight reduction in training times as the
number of clients increased, highlighting the scalability of our
method. Scalability is essential in environments with a large
number of [oT devices or network edges, as seen in modern
network topologies.

Compared to previous studies, DDoS_FL not only improves
operational efficiency but also offers a practical foundation for
deployment in a wide range of settings, from small-scale
networks to large distributed systems. The reduction in
training time without compromising accuracy illustrates the
practical applicability of FL in real-world scenarios.
Additionally, our evaluation under both IID and Non-IID data
distributions demonstrates the adaptability of the proposed
model to different real-world data conditions. While IID data
distribution provides more balanced learning across clients,
Non-IID scenarios introduce variations in local datasets,
reflecting realistic network environments. Our model
maintains high detection accuracy under both conditions,
proving its robustness against data heterogeneity. These
results further emphasize the effectiveness of our FL-based
approach in securing distributed systems against DDoS attacks,
regardless of data distribution characteristics.

Our results emphasize FL's efficiency in increasing the security
features of DDoS detection systems while addressing privacy
concerns. The balance between performance and privacy
presents a new paradigm in cybersecurity, particularly in DDoS

protection. Further research and development in this field will
help refine these models to better address the evolving cyber

threat landscape.

6 Conclusion and future works

The aim of this study is to propose a FL-based DL architecture
that detects anomalous traffic and classifies network traffic.
DNN offers a significant advantage in the analysis of network
traffic by combining extraction and classification capabilities
thanks to its multi-layered structure. In order to train DNN
models within the scope of the study, the current dataset
named CIC-DD0S2019 was preferred. This dataset has been
prepared in two different types, BC and MC, for DDoS attack
detection and classification. The BC dataset was developed in
order to identify network traffic attacks. "Bening" is labeled "0"
and others are labeled "1". The MC dataset was proposed for the
classification of attacks. Seventeen different attack types are
labeled as 1-17, with normal traffic as “Bening” 0.

Models were trained using classical and FL methods and their
performances were compared. FL-based models were created
with different user numbers and different epoch numbers.
Comparisons were made for both prepared datasets.
Additionally, additional experiments were performed for IID
and Non-IID data distributions.

This study compares traditional learning methods with
federated learning (FL) techniques on various datasets and
examines the impact of Non-IID data distribution on FL.
Experiments compared the accuracy of traditional learning and
FL methods on BC and MC datasets, revealing that FL achieved
significantly shorter training times but similar accuracy to
traditional learning. The effect of Non-IID data distribution was
more pronounced on the MC dataset, while it was less impactful
on the BC dataset.

The accuracy of FL. models increased with the number of users,
and the impact of Non-IID data was more significant with fewer
users. Balanced data distributions improved FL model accuracy
and reduced training times. Specifically, with 100 users, the FL
model's accuracy stabilized, and the effect of Non-IID data
decreased substantially. The results suggest that more
balanced class distributions can improve model performance
and mitigate the effects of Non-IID data.
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By using the FL method, the need to transfer all the data from
the clients to the server has been eliminated. Thus, the internet
traffic between the edges and the server was significantly
reduced and data privacy was ensured. The developed models
are both based on FL, which is the latest technology and gives
almost precise results in a shorter time compared to the
classical method, IDS and SDN. It shows that it can be used as a
reliable tool in cyber security areas such as IDS and SDN-based
systems, and it is thought that using these models in systems
where network traffic is managed will contribute to the early
detection and prevention of DDoS attacks.

This study addresses the fundamental challenges of data
privacy and centralized data collection. A federated learning
(FL)-based approach is proposed to detect DDoS attacks.

However, there are several areas planned for future work to
further enhance the applicability and robustness of the
proposed model. In real-world scenarios, data distribution
among clients is continuously changing. Therefore, integrating
online learning techniques [66, 67] to dynamically update the
model and adopting adaptive federated learning approaches
(e.g., personalized FL or meta-learning-based FL) can enhance
the model's adaptability to different network environments.
Additionally, due to the evolving nature of DDoS attacks, new
attack types may emerge over time. To ensure rapid adaptation
to these novel threats, federated transfer learning techniques
[68] can be leveraged, enabling previously trained models to
adjust to new attack patterns efficiently.
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