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This paper analyses various 2D acoustic wave propagation problems in the time domain BEM through 

geophysical environments. To this end the existing BEM code for the boundary nodes is expanded to optional 

internal nodes. Using appropriate and predominant temporal variations for the field quantities the time-related 

kernels are obtained explicitly. The BEM and FDM solutions presented are generated using synthetic 

seismograms and are seen to be stable. The qualitative agreement between the two methods is excellent. 
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İKİ FARKLI NÜMERİK METOT KULLANARAK AKUSTİK DALGA MODELLEMESİ 
 

 

Bu makale, jeofiziksel ortamlardan geçen çeşitli iki boyutlu akustik dalga yayılımı problemlerini zaman-domain 

SEM yardımıyla analiz eder. Bu, sınır noktaları için mevcut olan SEM programlarının keyfi sayıdaki iç noktalar 

için genişletilmesi ile başarılır. Alan değişkenleri için uygun ve sıklıkla kullanılan temporal değişimlerin 

benimsenmesi ile zamana bağlı kernellar açık olarak elde edilir. Sunulan SEM ve SFM sonuçları sentetik 

sismogramların kullanılmasıyla genelleştirilir ve bu sonuçların kararlı olduğu görülür. İki metot sonuçları 

arasındaki niteliksel uyum mükemmeldir. 

 

Anahtar Kelimeler : SEM, Akustik dalga yayılımı, Jeofiziksel yapı, Sentetik sismogram 

 

 

1. INTRODUCTION 
 

Due to difficulties of obtaining an analytic solution 

to a dynamic problem, and because of advances in 

computer technology, numerical methods have 

become more and more popular over the last three 

decades. The finite element method (FEM) is 

probably the most popular and well studied to solve 

dynamic problems see for example                  

(Zienkiewicz, 1977). However the FEM, like the 

finite difference method (FDM), requires full-

discretization of the domain and in case of an 

infinite or semi-infinite domain a complete 

discretization is not practical. Another numerical 

technique called the boundary element method 

(BEM) only requires the discretization of the 

boundaries. Since the BEM has natural advantage 

over the domain approaches, the BEM has been used 

over the last three decades to tackle many different 

problems in various disciplines (Brebbia and 

Dominguez, 1992; Beskos, 1997). In this paper the 

BEM is used to ascertain the behaviour of acoustic 

waves governed by the scalar wave equation through 

single-layered bounded and unbounded media. 

 

The general time domain BEM formulation for the 

scalar wave equation was established by             

Mansur (1983). Since then many BEM formulations 

have been employed to analyse various problems in 

the time domain for example (Israil and Banerjee, 

1990; Wang and Takemiya, 1992;                     

Carrer and Mansur, 1994). 

 

Accuracy and numerical stability of the BEM 

solutions was discussed in (Sarı, 2000;                    

Meijs et al., 1989). So far in the BEM community, 

attentions were usually paid to singular integrals, 

variation of the field variables, use of time or 

frequency methods and lately stability of the BEMs. 

The minuses and pluses of the earlier works were 
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examined by Birgisson and Crouch, (1998) in the 

context of the 2D-elastodynamic problems.  

 

This work applies the best and commonest         

(Gallego and Dominguez, 1996; Richter, 1997; 

Bonnet, 1998) scheme, that is constant and linear 

time variations for the flux and potential, 

respectively. For the space approximation of the 

field variables constant elements are used. 

 

Physically, the paper focuses on the determination of 

the wave behaviour in homogeneous media of finite 

and infinite extent. Despite increased volume of 

research devoted to the analysis of wave propagation 

problems, most authors use the FDM to do their 

investigation. However, there is some literature that 

uses the BEM. Some of the few examples are 

(Ahmad and Banerjee, 1988; Cheung et al., 1993). 

Note that their investigations are not in the time 

domain. 

 

Consideration of the wave propagation problems in 

the BEM is a deep problem due to its structural 

complexity. The equation is solved for geophysical 

structures of finite and infinite extent. Synthetic 

seismograms generated from the solutions are 

presented. The sensitivity of the solutions to varying 

time steps is reported in Sari (2000). To solve our 

problem, a main program of Dominguez (1993) is 

expanded to internal potential variables. The present 

analysis shows that the BEM is capable of treating 

large-sized problems. A number of examples are 

presented and comparisons with the FDM results are 

also made. The FDM formulation can be found in 

(Demir, 1999). 

 

 

2. THE INTEGRAL EQUATION 
 

The 2D governing wave equation corresponding to a 

homogeneous isotropic elastic body  enclosed by 

the boundary B  is given by Morse and Feshbach, 

(1953), as follows: 

 

 fc ii
2

,                                                       (1) 

 

In this equation , f and   are functions of position 

and time, and represent potential, body source and 

acceleration respectively, whilst c is the wave speed. 

In the above ii,  and   are the second derivatives of 

the potential   with respect to the direction i
x  and 

the time t, respectively. 

 

For all points x of the boundary B  with time tℝ , 

the boundary conditions may be specified 

conveniently using the two known functions ),( tx , 

),( txq  defined by: 
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where BBx 2  ,  and 
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with BB 
1

x . Here, n is the outward unit 

normal vector at the position vector x, 1
B  and 2

B  

are parts of boundary 21
BBB   and where 


21

BB . Considering the domain   bounded 

by its boundary B; the fundamental solutions and the 

actual states of the governing differential equation 

(1) can be combined through the use of the 

dynamical reciprocity theorem, to give the following 

time-domain potential boundary integral equation, 
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Where  tt* . Equation (4) expresses the scalar 

potential field at any point of a medium as a function 

the field quantities on the boundary. Here i  

depends only upon the local geometry of the body at 

the load point iy . In equation (4), zero body source 

and zero initial conditions are assumed. Also in the 

equation: 
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Where r is the distance between the load point iy  

and the field point x. In the above   and s  

represent the actual and fundamental solution states 

of the scalar potential respectively, whilst H stands 

for the Heaviside function. As can be seen from the 
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fundamental solutions (5) and (6) the disturbance 

sent initially from the load point iy  is received at 

the field point x at time 
*ctr   and decays as 

*t  

increases. Here the upper limit t  is used to avoid 

ending the integration at the peak of the Dirac delta 

function (Morse and Feshbach, 1953). 

 

Since the radiation conditions (Eringen and Şuhubi, 

1975) are automatically satisfied, the boundary 

integral equation (4) is valid for unbounded media as 

well as bounded media. These conditions ensure the 

uniqueness of the BEM solution (Bonnet, 1998). It 

may, therefore, be seen that there is no need to 

discretize an external boundary when it is of infinite 

extent. This makes the BEM advantageous over the 

domain techniques. The 2D fundamental solutions 

satisfy the causality, reciprocity and time translation 

properties. 

 

 

3. NUMERICAL FORMULATION 
 

 

In this work, linear line elements are used to 

approximate the boundary. Temporal variation of the 

kernels of equation (4) is used to obtain a numerical 

solution of the partial differential equation. The 

evaluation of the kernels is discussed in Sari (2000). 

In the corresponding work, the potential and its 

normal derivative are interpolated by linear and 

constant approximations in time, respectively. The 

choice of the time functions is also discussed in the 

previously mentioned work as well as the research 

of (Gallego and Dominguez, 1996; Birgisson and 

Crouch, 1998;  Mansur et al. (1998). 

 

In this analysis time is divided into n equal 

intervals, tnt  . The approximations of the field 

quantities are: 
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where )(m  and )(m  are temporal interpolation 

functions. Moreover m  and 
mq  indicate the 

potential and flux, respectively, at time tmtm   at 

point x. The time interpolation functions used by us 

explicitly are: 
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The discretized form of equation (4) is: 
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Where 
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and                      
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Use of equations (9) and (11) gives the effect of the 

load at the field point x at time ntt  . The effect in 

a categorized form can be found in                   

(Dominguez, 1993;  Sari, 2000). Also consideration 

of the integral (12) by using (8) gives the flux kernel 

explicitly in those works.  

 

3. 1. Discretization 
 

The boundary is discretized into a number of 

elements. Over each element, the co-ordinates are 

expressed by means of their nodal values by using 

linear elements whilst the field variables are 

represented by constant elements. The nodal values 

of the field variables on the boundary are 

approximated using the spatial interpolation function 

j  for the node j so that (7) becomes: 
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Where mj  and mjq  denote the potential and its 

normal derivative at node j for  time tmtm   

whilst j  is the spatial interpolation function for the 

field variables. When the boundary nodal quantities 

are constant over the element in approximation (13) 

1j  . Using the spatial variations for the boundary 

node iy  with a set of discrete elements j
B , j = 1, 

2,…, N on the boundary B , equation (10) can be 

written as: 
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In equation (14) n shows the final time, tnt  , 

whilst ni  denotes the unknown potential at the load 

point iy , at time step n. 

 

3. 1. 1. Regular Integrals 
 

Here, the fundamental idea is to solve equation (4) 

numerically by discretizing boundary values 

spatially and temporally. The boundary B  of the 

domain is discretized, as opposed to the domain 

techniques in which the domain is also discretized, 

to integrate spatially the kernels 
nmU  and 

nmQ  over 

the all boundary elements. The regular integrals are 

evaluated using a standard Gaussian quadrature. The 

integration to be evaluated is expressed by means of 

the homogeneous co-ordinate 11   along the 

elements. To evaluate the integrals the differential is 

expressed, in the 21
xx -plane, as 
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where J  is the Jacobian of the transformation. With 

the spatial discretization equation (14) takes the 

following form for the two-dimensional wave 

problems, 
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The boundary is divided into N elements and the 

field variables are assumed to be constant over each 

element and equal to the value at the mid-element 

node. 

 

3. 1. 2. Improper Integrals 
 

A singularity exists if and only if the load and field 

points coincide at the first time step. In the case of 

singular integrations, which arise when the field 

point is on the element being integrated, the integrals 

are treated analytically. In that case, the fundamental 

flux solution is zero since 0nr  / . The integral 

of the potential fundamental solution can be found in 

(Dominguez, 1993). 

 

After evaluation of the regular and singular 

integrals, for each element j, one can write, 
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Where, 
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With, 
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Taking all boundary elements, equation (17) can be 

rewritten in a more abbreviated form: 

 

0qGH
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Where nmG  and nmH  are square matrices which are 

calculated by spatial integration for each element 

and m  and mq  are the column vectors of boundary 

nodal quantities.  

 

At time t, there are as many unknowns as the 

number of equations in the matrix equation (21). If 

the boundary quantities m  and mq  are known for 

the time m = 1, 2,…, n-1, then for each time step n, 

the solution can be found. The details of the solution 

procedure used here can be found in                  

(Dominguez, 1993; Sarı, 2000). 
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4. NUMERICAL RESULTS 
 

The examples presented below have been taken to 

demonstrate the usefulness of the boundary element 

implementation. To justify the BEM results, the 

FDM solutions of the problems were obtained. Also 

Reynolds (1978) used the FDM to obtain similar 

results. In the examples, the dynamical behaviour of 

the two-dimensional rock structures is examined. 

The boundary conditions are taken to be 

homogeneous and inhomogeneous for external and 

internal boundaries, respectively. 

 

Consider the acoustic problem of solving equation 

(1) for a medium of finite and infinite extent. The 

geometries of the problem are shown in Figures 1 

and 4, respectively. The wave speed for seawater is 

1500 m/s. As can be seen from Figure 1, the 

receivers are accommodated in a horizontal line at 

10 m below the top boundary. 
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Figure 1. Physical the geometry of the medium used 

to generate seismograms 

 

The seismograms correspond to the physical 

geometries of Figures 1 and 4 have time (in seconds) 

on the horizontal axis. All displacement values 

received at the selected receiver points are 

positioned on the vertical axis. The number of 

receivers used is 120. The distance between the 

adjacent receivers is equal. The vertical axis shows 

the length of the topside of the physical model in 

Figures 3 and 5, and its unit is meters (m). To obtain 

the synthetic seismograms the boundary elements 

used are uniform with 4 m element length and the 

total elapsed time is 1 s with 0.004 s the time 

increment. The source position is (180.445). In this 

work, the source is taken as an internal boundary, 

which is a small square. The Dirichlet boundary 

condition is prescribed for the sides of the small 

square with the length being 4 m. The Neumann 

boundary condition, 0n  / , is specified for the 

topside. While the boundary quantities are defined 

using the Dirichlet boundary conditions for the other 

sides in Figure 2. 

The results obtained from the BEM are in very good 

qualitative agreement on comparison to those found 

using the FDM to simulate a medium of infinite 

extent on the sides. Sari (2000) dealt with the 

quantitative differences between the BEM results 

and the FDM results. As expected there is no 

reflection from the sides or bottom, when the sides 

and the bottom at infinity. 
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Figure 2. Definition of the boundary conditions of 

the problem 
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Figure 3. Synthetic seismograms generated from the 

BEM and FDM solutions of the 2D acoustic wave 

equation for a medium of finite extent (from left to 

right, respectively) 
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Figure 4 Physical model showing the medium of 

infinite extent used to generate the seismograms. 
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Figure 5 Synthetic seismograms generated from the 

BEM(*) and FDM solutions of the 2D acoustic wave 

equation for a medium of infinite extent (from left to 

right, respectively) 
 
(*) : The BEM results in Figure 5 submitted in a paper to an 

International Journal 

 

 

5. CONCLUSIONS AND FUTURE 
WORK 

 

 

In this paper the time-domain 2D BEM has been 

used for solving 2D transient acoustic wave 

propagation problems in bounded and unbounded 

geophysical structures. The results have been 

compared with the FDM solutions. Since the 

structure of the BEM is profoundly intricate, it is 

believed that the BEM results presented here are 

important. 

 

It is also concluded that to increase the numerical 

stability of the results for the time domain direct 

BEM, an increase in the number of elements is 

suggested. However it should not be forgotten that if 

the elements’ size is taken to be very small then the 

desired stability might not be obtained. An 

alternative way to increase the stability of the 

solution is to use high order spatial variation of the 

field variables.  

 

A possible improvement to this approach includes 

the coupling of the BEM with the FEM. This would 

retain the advantages of the BEM, but not require 

the fundamental solutions and evaluation of singular 

integrals. 
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