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Abstract  Öz 

Hospital admission necessity of a patient who is under care for the 
possibility of arbovirus infection is a critical decision for healthcare 
practitioners. Medical staff may experience stress when making this 
decision due to the potential risks it poses to the broader community. 
Current capacities for diagnosis can be confusing. For this reason, data 
mining approaches have been proven to be highly effective in the 
diagnosis of diseases as well as in many other fields. As many research 
studies suggest, they can also be used to decide whether a patient with 
arbovirus infection should be hospitalized or not. For this purpose, this 
study uses Severity Index for Suspected Arbovirus (SISA) dataset and 
implements various machine learning classification techniques with the 
aim of binary classification to detect the hospitalization status of a 
specific patient. Several neural networks, single classifiers, and 
ensemble supervised learning methods are selected as classifiers during 
the experiments. The best classification accuracy value is obtained by 
Random Forest (RF) model with 0.9908. This model has been shown to 
outperform many data mining techniques previously applied in 
prominent studies. This improved result leads to additional experiments 
with a different number of estimators when implementing RF. The 
outcome also improves the maximum classification performance up to 
0.9926 using 25 estimators. The study reveals the effectiveness of 
ensemble models, especially bagging and boosting approaches, for 
Arbovirus suspected case analysis. 

 Arbovirüs enfeksiyonu şüphesiyle gözlem altında tutulan bir hastanın 
hastaneye yatış gerekliliği, sağlık profesyonelleri için kritik bir karardır. 
Tıbbi personel, bu kararın sağlıklı bireyler üzerindeki potansiyel riskleri 
nedeniyle baskı altında olabilir. Mevcut teşhis olanakları zaman zaman 
kafa karıştırıcı olabilir. Bu nedenle, veri madenciliği yaklaşımlarının 
hastalıkların teşhisinde ve birçok farklı alanda oldukça etkili olduğu 
kanıtlanmıştır. Yapılan araştırmalar, veri madenciliği yöntemlerinin 
arbovirüs enfeksiyonu taşıyan bir hastanın hastaneye yatırılıp 
yatırılmaması kararında da kullanılabileceğini göstermektedir. Bu 
amaç doğrultusunda, bu çalışma Şüpheli Arbovirüs Vakaları için Şiddet 
İndeksi (SISA) veri kümesini kullanarak, bir hastanın hastaneye yatış 
durumunu belirlemek için ikili sınıflandırma gerçekleştiren çeşitli 
makine öğrenmesi tekniklerini uygulamaktadır. Deneylerde 
sınıflandırıcı olarak çeşitli yapay sinir ağları, tekil sınıflandırıcılar ve 
topluluk destekli öğrenme yöntemleri kullanılmıştır. En yüksek 
sınıflandırma doğruluğu, %99,08 ile Rastgele Orman (Random Forest- 
RF) modeli tarafından elde edilmiştir. Bu modelin, literatürdeki önemli 
araştırmalarda uygulanan birçok veri madenciliği tekniğinden daha 
etkili olduğu kanıtlanmıştır. Bu olumlu sonuçlar, RF modelinin farklı 
sayıda tahmin edici (estimators) ile ek deneyler yapılmasını teşvik 
etmiştir. Çalışma sonucunda, en yüksek sınıflandırma performansı 25 
tahmin edici kullanılarak %99,26'ya yükseltilmiştir. Elde edilen 
bulgular, arbovirüs şüpheli vaka analizinde özellikle torbalama 
(bagging) ve güçlendirme (boosting) yaklaşımlarına dayalı topluluk 
modellerinin etkinliğini ortaya koymaktadır. 
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1 Introduction  

In recent years, the number of visits to hospital emergency 
departments (ED) has risen substantially [1]. Making clinical 
decisions in the context of arboviral infections is especially 
complex in settings with limited resources. This situation 
causes emergency department overcrowding, increasing 
morbidity and mortality and disrupting clinical workflows. 
Severe crowding in EDs has resulted in increased mortality due 
to delays in care and heightened risks for critically ill patients 
[2]. Infrastructural constraints create a demanding clinical 
environment, particularly as healthcare providers must decide 
whether hospitalization is necessary for patients suspected of 
having arboviral infections. Managing a surge of cases within a 
short timeframe has significantly strained the functioning of 
healthcare systems, making their operation increasingly 
challenging [2]. All these circumstances necessitate the 
implementation of an effective and efficient triage system to 
prioritize care and optimize resource utilization. 

Triage is a common method used to determine which patients 
should be hospitalized.  Triage improves decision performance 
by healthcare providers, adjusts the timing, and queue position 
of patients [3]. This decision should be taken before starting the 
treatment process. Efficient use of the resources of a clinic 
depends on this decision. The right decision leads to a decrease 
in treatment expenditure [4]. Triage, while conceptually 
straightforward, becomes challenging due to factors such as 
time constraints, limited patient information, diverse medical 
conditions, and a heavy dependence on clinicians' intuition. 
Current triage systems often struggle to assess critical illnesses 
because too few physicians are available for too many patients, 
limiting the time spent on each case. [5]. Innovative 
computational algorithms present a promising solution to 
support decision-making in optimizing triage processes. 

Machine learning combines principles of statistics and 
computer science to analyze and derive insights from extensive 
datasets effectively. Unlike traditional statistical methods like 
regression models, machine learning approaches impose fewer 
assumptions about data distributions and variable 
relationships, allowing for greater flexibility in handling 
complex and non-linear patterns [6]. They are not similar to 
statistical learning modelling. Machine learning approach 
provides a wide range of assumptions about the data 
distribution and is capable of discovering interesting 
relationships between features. An increase in the number of 
features and instances generally improves prediction 
performance for machine learning models.  

This study focuses on creating a machine learning (ML) 
application to predict whether patients should be hospitalized 
during the triage phase. The goal is to enhance the decision-
making process by providing physicians with more data in a 
short time, improving accuracy, and optimizing resource use. 
This study focuses on patients with suspected arboviral 
infections, which are common in tropical areas and cause fever, 
fatigue, and joint pain. These infections, transmitted by 
mosquitoes and flies, include diseases like malaria, river 
blindness, and yellow fever, which account for millions of 
deaths globally. For instance, malaria caused an estimated 
435,000 deaths in 2017. 

Emerging arboviruses, such as the Zika virus, dengue virus 
(DENV), chikungunya virus (CHIKV), and Zika virus (ZIKV), 
present significant public health challenges, particularly under 
changing climatic conditions [7]. While most infected patients 

recover with mild symptoms, a small percentage develop 
severe conditions that can result in death [8]. The study 
addresses the critical need for improved tools to manage the 
clinical challenges associated with these infections effectively. 

In the rapidly evolving landscape of healthcare, the integration 
of advanced computational techniques has become essential for 
optimizing patient outcomes and resource allocation [9]. 
Among these techniques, data mining and ML have emerged as 
pivotal tools in the early detection and prediction of a patient's 
hospitalization status [10]. These methods use large healthcare 
datasets to reveal patterns that traditional statistics often miss 
[11]. 

Data mining approaches are strategies to extract valuable 
knowledge from vast and unorganized data. Data mining 
involves extracting meaningful information from large 
datasets, often by identifying hidden patterns and relationships 
[12]. In the context of healthcare, this process can analyze 
electronic health records (EHRs) [13], clinical test results [14], 
and demographic information [15] to predict hospitalization 
risks. For instance, factors such as age, comorbidities, 
medication adherence, and previous hospital visits can be 
correlated to anticipate a patient's likelihood of requiring 
hospital care. By automating the analysis of these complex 
variables, data mining not only enhances diagnostic accuracy 
but also aids in prioritizing at-risk patients for preventive 
interventions [16]. 

ML uses data mining insights to build predictive models that 
improve over time. These models use algorithms to learn from 
historical data, enabling them to forecast hospitalization 
outcomes with remarkable precision. Techniques such as 
supervised learning, unsupervised learning, and deep learning 
can identify subtle trends in patient data that may indicate 
worsening health conditions. For example, supervised learning 
algorithms can classify patients based on hospitalization risk 
levels by analyzing labeled datasets with known outcomes. 
Similarly, unsupervised learning can cluster patients into 
groups with similar risk factors, aiding in personalized care 
planning [17]. Deep learning methods, particularly neural 
networks, have demonstrated efficacy in processing 
unstructured data such as medical imaging or physician notes, 
further expanding the scope of hospitalization prediction. 

The application of data mining and machine learning in 
hospitalization prediction offers several advantages, which are 
early detection and prevention, resource optimization, cost 
reduction, and improved patient outcomes. Identifying high-
risk patients allows healthcare providers to intervene early, 
potentially preventing hospital admissions [18]. Hospitals can 
allocate beds, staff, and medical equipment more efficiently by 
predicting patient inflows [19]. By reducing unnecessary 
admissions and optimizing care pathways, these technologies 
help decrease healthcare costs for both providers and patients. 
Finally, proactive management of health risks enhances the 
overall quality of care, leading to better health outcomes. 

Despite their transformative potential, the adoption of data 
mining and ML in healthcare is not without challenges. Issues 
such as data privacy, algorithm bias, and the need for high-
quality datasets remain significant hurdles. Additionally, 
integrating these technologies into existing healthcare 
workflows requires collaboration between data scientists, 
clinicians, and policymakers. 

Future research should focus on developing interpretable ML 
models that provide actionable insights to healthcare 
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professionals. Moreover, ensuring the ethical use of patient 
data and addressing disparities in algorithmic predictions will 
be critical for maximizing the impact of these technologies. 

2 Related work 

Several important studies in the literature have used the SISA 
dataset and made predictions about the hospitalization status 
of a patient with arbovirus infection using machine learning 
methods. Lee et al. [20] conducted a retrospective case-control 
study involving 117 patients diagnosed with chikungunya 
infection, confirmed via reverse transcription-polymerase 
chain reaction (RT-PCR). These cases were identified during 
the August 2008 outbreak and involved individuals who were 
hospitalized at Tan Tock Seng Hospital in Singapore, the 
designated national outbreak response center. Predictive tools 
were developed using classification and regression trees 
(CART) to differentiate between dengue fever (DF), dengue 
hemorrhagic fever (DHF), and chikungunya at the time of 
presentation. These tools aim to support clinical decision-
making by identifying patterns and key features associated 
with each condition, enhancing diagnostic accuracy in the early 
stages of illness. 

Sippy et al. [3] analyzed data retrospectively from a prospective 
arbovirus surveillance study conducted in Machala, Ecuador. 
The study spanned November 2013 to September 2017 and 
included participants aged six months and older who were 
recruited from clinical sites of the Ecuadorian Ministry of 
Health (MoH). This analysis aimed to investigate patterns and 
outcomes related to arboviral infections in the region. In the 
Surveillance for Arboviral Infections in Southern Ecuador 
(SISA) study, several machine learning algorithms were 
employed to predict outcomes using only symptom and 
demographic data. Among these methods, generalized boosting 
models, elastic net, neural networks, and logistic regression 
demonstrated strong performance on the test set, achieving 
accuracies ranging from 89.8% to 96.2%. The Cohen’s kappa 
values varied from 0.00 to 0.77, while the AUC ranged between 
0.50 and 0.91. The generalized boosting model (GBM) emerged 
as the top performer, achieving the highest AUC of 0.91 on the 
test dataset. It also ranked as the second-best algorithm when 
evaluated on the training set, indicating its robustness and 
predictive strength in this context. 

Huang et al. [21] developed a machine learning (ML) model 
utilizing an artificial neural network (ANN) to predict dengue 
outcomes, leveraging patient demographic data and laboratory 
test results. Upon evaluating its prognostic performance, our 
ANN-based ML model outperformed established models in 
predicting severe dengue cases. This indicates its potential as a 
superior tool for early and accurate prognosis, aiding in clinical 
decision-making and resource allocation. 

Gorur et al. [22] classified individuals as either hospitalized or 
outpatient by applying shallow machine learning algorithms to 
the SISA and SISAL (Severity Index for Suspected Arbovirus 
with Laboratory) datasets. The algorithms included Feed 
Forward Neural Network (FFNN), Probabilistic Neural 
Network (PNN), and Decision Tree (DecT) with three splitting 
criteria. The classification results demonstrated significant 
improvements in performance, achieving an area under the 
curve (AUC) score of 0.973 and accuracy rates up to 98.73% 
with FFNN. These outcomes surpassed the performance 
metrics reported in prior studies related to machine learning 
and arbovirus prediction, highlighting the effectiveness of our 
approach.  

Fathima et al. [23] compared the performance of Support 
Vector Machine and Naïve Bayes for the same dataset. They 
differentiated dengue from other febrile illnesses in primary 
care and forecasted the likelihood of severe arboviral disease 
within populations, and obtained 90.43% accuracy at most. 
Likely, Akhtar et al. [24] introduced a dynamic neural network 
model for real-time prediction of the geographic spread of 
outbreaks. They forecasted the geographic spread of Zika 
across the Americas with an average accuracy exceeding 85%, 
even for prediction horizons extending up to 12 weeks. 
Additionally, Salim et al. [25] analyzed to determine the most 
effective machine learning model for predicting dengue 
outbreaks of five districts in Selangor, Malaysia, with the 
highest dengue fever incidence from 2013 to 2017. They 
obtained the best prediction performance with 70.12% 
accuracy using Support Vector Machine. 

Apart from SISA dataset, there are also different studies using 
deep learning models with the aim of arbovirus infection 
detection and hospital admission prediction. For instance, Neto 
et al. [26] provided an overview of current research on 
automated classification of arboviral diseases, aimed at 
supporting clinical diagnosis through Machine Learning (ML) 
and Deep Learning (DL) approaches. Additionally, Neto et al. 
[27] evaluated different methods for converting tabular data 
into images, identify the most effective approach, optimize a 
CNN using random search, and compare its performance 
against an optimized machine learning algorithm, XGBoost. 
Ozer et al. [28] intended to inform clinicians about the 
effectiveness of machine learning with transfer learning for 
diagnosis, along with a comprehensive comparison of 
classification performances on hospitalization status datasets, 
particularly in resource-limited settings where arboviral 
infection data are often scarce. Similarly, Sciannameo et al. [29] 
employed a deep learning approach to forecast the spatio-
temporal spread of COVID-19, predicting new cases and 
hospital admissions in Reggio Emilia, Northern Italy.  

3 Material and method 

3.1 Dataset description 

The dataset, part of an ongoing surveillance study in Machala, 
Ecuador, includes comprehensive data for individuals with 
suspected arboviral infections. The information consists of 
demographic details, past medical histories, symptom records, 
and laboratory results. Outputs from the analysis focus on 
determining individuals' hospitalization status and recognizing 
gender distinctions. The dataset is composed of 543 instances 
and 28 attributes. These attributes provide information on 
symptoms, demographics, and medical history of patients. For 
example, Table 1 shows binary symptom values for some 
attributes. The value 1 indicates existence and the value 0 
indicates absence of the related symptom. Table 2 reveals the 
data distribution of SISA dataset with respect to hospitalization 
status. 

Table 1. A snapshot of five instances of the dataset with values 
of some symptomatic attributes. 

Symp 
Fever 
7Days 

Symp 
Head 

Symp 
Nausea 

Symp 
Muscle 

Symp 
Rash 

Symp 
Bleed 

1 1 1 1 0 0 

1 1 1 0 0 0 

1 1 1 1 0 0 

1 1 1 1 0 0 
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1 1 0 1 0 0 
Table 2. Data distribution for all classes in SISA Dataset. 

 

Classes of Data # of instances % 

Hospitalized 59 11.05 

Outpatient 475 88.95 

Total 534 100 

Several preprocessing steps were applied to ensure data 
consistency and model compatibility. First, missing or empty 
values were replaced with zeros, as the machine learning 
models employed cannot process null entries. Second, comma-
based decimal separators were converted to periods to 
standardize numeric formats across the dataset. All numerical 
features were then cast from string to float. Additionally, 
categorical variables such as gender were encoded into integer 
format (e.g., female = 0, male = 1). These preprocessing steps 
were essential for enabling effective model training and 
ensuring reproducible results. 

In medical datasets, class imbalance is a common challenge, 
particularly when the positive class represents a rare but 
clinically significant condition. In the SISA dataset used in this 
study, only approximately 11% of the instances correspond to 
hospitalized patients, while the remaining 89% represent 
outpatient cases. This substantial imbalance can mislead 
evaluation metrics such as overall accuracy, as a model may 
achieve high accuracy simply by predicting the majority class. 

To mitigate this issue, we employed several strategies. First, 
evaluation metrics that are more informative in imbalanced 
scenarios, such as precision, recall, and F1-score, were 
emphasized alongside accuracy. These metrics provide a more 
nuanced understanding of the model’s ability to correctly 
identify true positives (hospitalized cases) without being 
biased toward the majority class. 

Second, we used stratified k-fold cross-validation to maintain 
the original class distribution across all training and testing 
folds. This ensures that each fold reflects the inherent class 
proportions in the dataset, allowing for more reliable and 
generalizable performance evaluation. 

Overall, these measures help ensure that the models are not 
only accurate in general, but also effective in identifying the 
minority class, which is critical for real-world clinical 
applications where under-detection of hospitalized cases could 
have serious consequences. 

3.2 Ensemble learning and Random Forest method 

Ensemble methods in machine learning improve predictive 
accuracy and robustness by combining multiple models to 
reach a collective decision. These methods use strategies such 
as stacking, bagging, boosting, and majority voting. Each 
technique has unique characteristics. The mathematical model 
of general ensemble learning is given in Equation (1), where M 
is the number of models and F is the aggregation function: 

ŷ𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 =  𝐹(ŷ1, ŷ2, … , ŷ𝑀) (1) 

Stacking integrates different models by training a meta-model 
to synthesize their outputs, offering flexibility but requiring 
higher computational resources. In stacking, a meta-model g 
learns to combine the predictions of multiple base models as 
shown in Equation (2): 

ŷ𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 =  𝑔(ŷ1, ŷ2, … , ŷ𝑀) (2) 

Bagging (e.g., Random Forest) reduces variance by averaging 
predictions from independently trained models, enhancing 
stability. It is the short form of bootstrap aggregation. The 
mathematical model of bagging for regression is given in 
Equation (3) and for classification is given in Equation (4), 
which is equal to majority voting. 

ŷ𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 =  
1

𝑀
 ∑ ŷ𝑖

𝑀

𝑖=1

 
(3) 

ŷ𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 =  𝑚𝑜𝑑𝑒(ŷ1, ŷ2, … , ŷ𝑀) (4) 

Boosting (e.g., Gradient Boosting) focuses on correcting errors 
by training models sequentially, improving accuracy, but at the 
cost of sensitivity to overfitting. The prediction is given in 
Equation (5). 

ŷ𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 =  ∑ ŷ𝑖𝑎𝑖

𝑀

𝑖=1

 
(5) 

Majority Voting uses a straightforward approach of selecting 
the most common output, making it efficient but sometimes less 
nuanced in decision-making. 

One of the most popular ensemble learning classifiers is 
Random Forest algorithm. It is a widely used classification 
method offering numerous advantages. Known for its 
robustness compared to other algorithms, it is less susceptible 
to overfitting. This resilience stems from its approach of 
averaging predictions across multiple decision trees, which 
reduces the impact of any single tree that may overfit the data. 
Additionally, random forest is highly flexible, capable of 
handling various input data types, including categorical and 
numerical values, as well as accommodating missing data. 
Furthermore, it excels at identifying outliers, as they are often 
isolated within their own trees. 

Random Forest (RF) classifiers are also capable of maintaining 
accuracy even when a substantial portion of the data is missing. 
Their ability to estimate feature importance and model 
complex interactions between features with minimal 
preprocessing makes them especially suitable for tasks such as 
spam detection. There are N decision trees in RF model. When 
they are represented as T, the final prediction is obtained as 
given in Equation (6). 

ŷ𝑅𝐹 =  𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦𝑣𝑜𝑡𝑒(𝑇1(𝑥), 𝑇2(𝑥), … , 𝑇𝑀(𝑥)) (6) 

Random Forest (RF) consists of a hierarchy of base classifiers 
organized in a tree topology. Text data, often characterized by 
high dimensionality, typically contains numerous irrelevant 
attributes, while only a limited number of key features are 
informative for the classifier model. The RF method utilizes a 
straightforward and predetermined probability to identify and 
select the most relevant features. 

The approach, introduced by Breiman, generates multiple 
decision trees by randomly sampling subspaces of features and 
mapping them to subsets of the data. The process begins with 
constructing individual RF trees, followed by iterative 
development to enhance the model. The architecture of RF, 
illustrating its hierarchical structure and feature selection 
mechanism, is shown in Figure 1. 
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Figure 1. Random Forest architecture. 

3.3 Classification performance evaluation metrics 

Evaluating the performance of classification models is critical 
in determining their effectiveness for specific tasks. Various 
metrics are used to measure the performance of these models, 
taking into account their ability to handle imbalanced data, 
trade-offs between precision and recall, and overall predictive 
capability. Below, the most commonly used evaluation metrics 
are discussed along with their formulas. 
Accuracy measures the proportion of correctly classified 
instances among all instances as shown in Equation 7. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
 (7) 

Where: 
TP (True Positive): Correctly classified positive instances 
TN (True Negative): Correctly classified negative instances 
FP (False Positive): Incorrectly classified negative instances as 
positive 
FN (False Negative): Incorrectly classified positive instances as 
negative 
Precision measures the proportion of correctly predicted 
positive instances out of all instances predicted as positive as 
shown in Equation 8. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (8) 

Recall measures the proportion of correctly predicted positive 
instances out of all actual positive instances as shown in 
Equation 9.  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (9) 

Specificity measures the proportion of correctly predicted 
negative instances out of all actual negative instances as shown 
in Equation 10. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 (10) 

The F1-score is the harmonic mean of precision and recall, 
providing a balance between them as shown in Equation 11. 
 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  2.
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
  (11) 

  

The ROC curve plots the True Positive Rate (Recall) against the 
False Positive Rate (1 - Specificity) at various threshold 
settings. The AUC measures the area under this curve. The AUC 
provides an aggregated measure of performance across all 
classification thresholds as shown in Equation 12. 

𝐴𝑈𝐶 =  ∫ 𝑇𝑃𝑅(𝑥)𝑑𝑥
1

0

 

 

(12) 

  

K-fold cross-validation is a resampling procedure to evaluate 
model performance by splitting the dataset into k subsets 
(folds). The model is trained on k−1 folds and tested on the 
remaining fold. This process is repeated k times, with each fold 
used as a test set exactly once.  

4 Experimental studies 

This section outlines the prediction accuracies, recall, and f-
score values attained through the implemented methods. The 
SISA dataset was used as input for the implementation of 
various machine learning methods. In the first part of the 
experiments, the dataset is divided into two parts randomly. 
Those parts are called training set and test set. Training set is 
composed of 80% of the whole dataset. In contrast, the 
remaining 20% of the dataset becomes test set.  

All model training and evaluation procedures were performed 
on a standard laptop computer running Windows 11, equipped 
with an Intel Core i7-1165G7 CPU @ 2.80 GHz and 16 GB of 
RAM. No GPU acceleration was used during experimentation. 
Training time for the Random Forest model with 25 estimators 
was approximately 3.2 seconds using 10-fold cross-validation. 
XGBoost, CatBoost, and LightGBM models were also trained 
under 5 seconds each. These results demonstrate that the 
proposed approach is computationally lightweight and can be 
executed efficiently on modest hardware, making it suitable for 
real-world applications in clinical environments with limited 
computational resources. 

At this stage, 22 different machine learning methods have been 
applied in order to classify arbovirus as hospitalized or 
outpatient. These methods are support vector machine (SVM), 
decision trees (DT), random forest (RF), logistic regression 
(LR), Naïve Bayes (NB), Ridge Classifier, Stochastic Gradient 
Descent (SGD), Restricted Boltzmann Machine (RBM), Multi-
layer Perceptron (MLP), Gaussian Mixture, Logistic Regression 
(LR), Perceptron, Passive Aggressive Classifier (PA), Linear 
Support Vector Machine (LinearSVC), K-Nearest Neighborhood 
(KNN), Nearest Centroid, Gaussian Process, Gaussian Naïve 
Bayes, Bernoulli Naïve Bayes, Decision Trees (DT), Gradient 
Boosting (GB), AdaBoost, XGBoost, CatBoost, and LightGBM 
classifiers. RF obtained 0.9908 accuracy values. Table 3 reveals 
the classification performance results with accuracy, precision, 
recall, and F-score values. Figure 2 visualizes this comparison 
with a bar chart.  

 
Table 3. Classification performance results of the mentioned 
machine learning algorithms applied to SISA dataset divided 

into two parts: 80% training and 20% testing sets.  
Accuracy F1 Score Precision Recall 

RF 0.9908 0.9677 1.000 0.9333 

RBM 0.8624 0.0000 1.000 0.000 

MLP 0.8716 0.1250 1.000 0.0667 
Gaussian 
Mixture 0.8807 0.6977 0.5357 1.000 

LR 0.9358 0.7742 0.7500 0.800 
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Ridge 
Classifier 0.9817 0.9275 0.8824 1.000 

SGD 0.9083 0.5455 0.8571 0.40 

Perceptron 0.8807 0.6977 0.5357 1.000 

PA 0.8889 0.6250 0.5882 0.6667 

SVM 0.8624 0.000 1.000 0.000 

LinearSVM 0.9882 0.9655 0.9375 1.000 

KNN 0.8899 0.6250 0.5882 0.6667 
Nearest 
Centroid 0.8257 0.4571 0.4000 0.5333 
Gaussian 
Process 0.8624 0.000 1.000 0.000 

Gaussian 
NB 0.9174 0.7692 0.6250 1.000 

Bernoulli 
NB 0.9174 0.7692 0.6250 1.000 

DT 0.9817 0.9333 0.9333 0.9333 
Gradient 
Boosting 0.9358 0.6957 1.000 0.5333 

AdaBoost 0.9577 0.9442 1.000 1.000 

XGBoost 0.9713 0.9267 0.9329 0.9240 

CatBoost 0.9734 0.9269 0.9197 0.9381 

LightGBM 0.9771 0.9411 0.9483 0.9381 
 
As can be seen in Table 3, RF has the highest accuracy and F-
Score values while RBM, MLP, SVM, Gaussian Process, GB, and 
AdaBoost obtain the best precision values. Nearest Centroid 
acquires the far worse performance values compared to other 
methods. In the second part of the experiment, all of these 
mentioned five models have been implemented, but the dataset 
is split into two parts using the 10-folds cross validation 
technique. It means that the testing part is selected randomly 
as 10% of the dataset. In each of ten iterations, a different 10% 
of the data becomes testing set and the remaining instances 
become training set. Classification is performed in each 
iteration and finally, the average results are recorded as 
classification performance values of the applied classifier. As a 
result, Table 4 shows the outcomes of the same classifiers for 
10-folds cross validation process. It can be observed that there 
is no significant difference in the results compared to Table 3. 
 

Table 4. Classification performance results of machine the 
mentioned learning algorithms applied to apple plant leaf 

dataset divided into two parts using 10-folds cross validation. 
 

Model Accuracy F1 
Score 

Precision Recall 

RF 0.9908 0.9510 0.9633 0.9437 

RBM 0.8914 0.000 1.000 0.000 

MLP 0.9098 0.5476 0.7196 0.6443 
Gaussian 
Mixture 0.8079 0.5833 0.4408 0.9000 

LR 0.9337 0.7009 0.6974 0.7488 

Ridge Classifier 0.9741 0.8806 0.8652 0.9238 

SGD 0.8842 0.3407 0.6507 0.4476 

Perceptron 0.7376 0.3594 0.3704 0.60 

PA 0.8931 0.4201 0.6715 0.5444 

SVM 0.8914 0.000 1.000 0.000 

LinearSVM 0.9797 0.9169 0.9198 0.9238 

KNN 0.9153 0.6206 0.6330 0.6726 
Nearest 
Centroid 0.8656 0.5029 0.4189 0.6480 
Gaussian 
Process 0.8914 0.000 1.000 0.000 

Gaussian NB 0.9115 0.7029 0.5480 1.000 

Bernoulli NB 0.9189 0.7189 0.5712 1.0000 

DT 0.9742 0.8980 0.9149 0.8885 
Gradient 
Boosting 0.9577 0.7622 0.9417 0.7095 

AdaBoost 0.9889 0.9442 1.000 0.9571 

XGBoost 0.9752 0.9187 0.9300 0.9214 

CatBoost 0.9752 0.9367 0.9348 0.9437 

LightGBM 0.9726 0.9644 0.9657 0.9690 

As shown in Table 3 and Table 4, the most successfull classifiers 
appear to be Random Forest, Ridge, and Linear SVM. Their 
prediction about the status of patients in test sets when 10-
folds cross validation process was implemented are presented 
in the confusion matrices given in Figure 3, Figure 4, and Figure 
5. Standart deviation values are also revealed in Table 5 for 
each evaluation metric result when 10-folds cross validation is 
performed. Overall, models such as Random Forest, Ridge 
Classifier, Linear-SVM, Decision Tree, and AdaBoost exhibited 
very low variability across folds, indicating high consistency 
and robustness. In contrast, models like RBM, SVM, and 
Gaussian Process showed either extreme values or zero 
variance in certain metrics, suggesting unreliable or skewed 
performance, often due to predicting only one class. These 
findings highlight the importance of including stability metrics, 
in addition to average scores, when evaluating machine 
learning models for clinical applications. 
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Figure 2. Bar chart comparing tested methods applied to SISA 
dataset divided into two parts: 80% training and 20% testing 

sets.  
Table 5. Standart deviation values of each evaluation for 10- 

folds cross validation  
 

Model St. Dev 
Accuracy 

St. Dev 
F1 Score 

St. Dev 
Precision 

St. Dev 
Recall 

RF 0.0051 0.0124 0.0000 0.0205 

RBM 0.0143 0.0000 0.0000 0.0000 

MLP 0.0128 0.0365 0.0000 0.0111 

Gaussian 
Mixture 

0.0134 0.0221 0.0194 0.0000 

LR 0.0083 0.0195 0.0222 0.0200 

Ridge 
Classifier 

0.0059 0.0131 0.0183 0.0000 

SGD 0.0112 0.0342 0.0211 0.0234 

Perceptron 0.0140 0.0209 0.0178 0.0000 

PA 0.0123 0.0251 0.0203 0.0186 

SVM 0.0131 0.0000 1.0000 0.0000 

LinearSVM 0.0044 0.0118 0.0152 0.0000 

KNN 0.0108 0.0217 0.0193 0.0165 

Nearest 
Centroid 

0.0149 0.0301 0.0242 0.0228 

Gaussian 
Process 

0.0131 0.0000 1.0000 0.0000 

Gaussian 
NB 

0.0092 0.0184 0.0175 0.0000 

Bernoulli 
NB 

0.0089 0.0179 0.0180 0.0000 

DT 0.0058 0.0127 0.0127 0.0127 

Gradient 
Boosting 

0.0084 0.0231 0.0000 0.0182 

AdaBoost 0.0067 0.0110 0.0000 0.0000 

XGBoost 0.0055 0.0117 0.0130 0.0098 

CatBoost 0.0062 0.0123 0.0142 0.0105 

LightGBM 0.0051 0.0108 0.0125 0.0091 

 

Figure 3. Confusion matrix of Ridge classifier. 

 

Figure 4. Confusion matrix of Linear-SVM classifier. 

 

Figure 5. Confusion matrix of RF classifier. 

To further evaluate the classification performance of the 
selected models, ROC curves were generated for Ridge 
Classifier, Linear-SVM, and RF. The corresponding ROC curves, 
are presented in Figure 6, Figure 7, and Figure 8, respectively. 
A higher AUC indicates a stronger discriminatory capability of 
the model. 
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Figure 6. ROC curve of Ridge classifier. 

 

Figure 7. ROC curve of Linear-SVM classifier. 

 

Figure 8. ROC curve of RF classifier. 

The initial experiments revealed that the Random Forest (RF) 
algorithm outperformed other models in terms of classification 
performance, achieving the highest accuracy and robustness 
across multiple evaluation metrics. Given its superior 
performance, additional experiments were conducted to 
optimize the RF model through hyperparameter tuning. 

One of the most critical hyperparameters in RF is the number 
of estimators, which determines the number of decision trees 
in the ensemble. To investigate its impact on classification 
performance, we systematically varied the number of 
estimators from 1 to 100. For each configuration, the model was 
trained using k-fold cross-validation (k=10) to ensure 
generalizability and mitigate overfitting. The results were 
analyzed to determine the optimal number of estimators that 
maximized predictive performance while maintaining 
computational efficiency. The findings from this parameter 
tuning experiment provide valuable insights into the optimal 
configuration of RF for medical triage applications, reinforcing 
the role of ensemble learning in healthcare decision-making.  

We evaluated RF performance across varying numbers of 
estimators ranging from 1 to 100 to better understand the 
influence of hyperparameters in this model. The results 
revealed a clear trend where increasing the number of trees 
improved accuracy, particularly up to 25 estimators, after 
which the performance plateaued. This analysis was conducted 

separately for male and female patients, and the results are 
summarized in Table 6. 

 

Figure 9. Classification accuracy values for different number of 
estimators in RF applied to SISA dataset with 10-folds cross 

validation. 

The data presented in Figure 9 illustrates the classification 
accuracy of  RF model as a function of the number of estimators. 
As the number of estimators increases from 1 to 100, we 
observe a general improvement in accuracy. The model 
achieves its highest classification accuracy of 0.9926 at 25 
estimators, which is a notable peak compared to the other 
values. However, after reaching this maximum at 25 estimators, 
the accuracy stabilizes, with values ranging from 0.9833 to 
0.9908 for estimator counts of 50 or higher. This suggests that 
after a certain threshold (around 25 estimators), adding more 
estimators does not substantially improve the model's 
performance, though there is slight variation. 

The initial increase in accuracy with the addition of more 
estimators is consistent with the typical behavior of Random 
Forests, where more estimators tend to reduce variance and 
improve model stability. However, the plateau observed 
beyond 25 estimators indicates that the model might be 
reaching a point of diminishing returns. This finding suggests 
that while increasing the number of estimators can improve the 
performance, an optimal number exists, beyond which 
additional estimators may provide minimal additional benefits, 
while also increasing computational cost. A Random Forest 
model with 25 estimators seems to offer the best balance 
between classification accuracy and computational efficiency in 
this dataset. 

Additionally, gender-based experiments were also 
implemented in these experimental studies. Among the 543 
total records, 299 (55.1%) correspond to female patients and 
244 (44.9%) to male patients. This slight predominance of 
female subjects has been taken into account during subgroup 
analyses to ensure balanced evaluation across genders. The 
gender distribution is illustrated in Figure 10. 
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Figure 10. Gender distribution 

We evaluated the effect of varying the number of estimators in 
the RF classifier separately for male and female patients. As 
shown in Table 6, both subgroups demonstrated a similar 
upward trend in accuracy as the number of estimators 
increased. While initial accuracy levels were relatively close 
(e.g., 0.9609 for males and 0.9584 for females at 1 estimator), 
the performance steadily improved with more trees. Peak 
performance was observed around 25 estimators, with 
accuracies of 0.9958 for males and 0.9933 for females, after 
which marginal fluctuations occurred. These results suggest 
that the model generalizes well across genders and benefits 
equally from ensemble depth, with only minimal differences in 
predictive power between male and female subgroups. 

Table 6.  Classification accuracy values for different number of 
estimators in RF for each gender. 

Number of Estimators 
Accuracy for 
Male Patients 

Accuracy for 
Female 
Patients 

1 0.9609 0.9584 

2 0.9445 0.942 

3 0.9718 0.9693 

5 0.9737 0.9712 

10 0.9866 0.9841 

15 0.9903 0.9878 

20 0.9847 0.9822 

25 0.9958 0.9933 

30 0.9921 0.9896 

40 0.9903 0.9878 

50 0.9865 0.984 

60 0.994 0.9915 

70 0.9884 0.9859 

80 0.9921 0.9896 

90 0.994 0.9915 

100 0.994 0.9915 

Selection of different number of estimators affects highly the 
classification performance as can be seen in the experiments, 
but the implementation of parameter tuning of RF method for 
another dataset is required in order to generalize these effects. 
Therefore, same approach was applied to SISAL dataset which 
is related to hospitalization status of patients from the same 
source of data. Figure 11 demonstrates the classification 
accuracies of RF with different number of estimators for SISAL 
dataset.  

 

Figure 11. Classification accuracy values for different number 
of estimators in RF applied to SISAL dataset with 10-folds 

cross validation. 
 
SISAL dataset contains similar features to SISA but incorporates 
laboratory test results. We evaluated the Random Forest 
classifier with varying numbers of estimators (from 1 to 100) 
and recorded the classification accuracy for each configuration. 
As shown in Figure 9, model performance improved notably 
with an increasing number of estimators, reaching a peak 
accuracy of 0.9700 at 40 estimators. Beyond this point, the 
accuracy plateaued or slightly declined, indicating diminishing 
returns. These findings demonstrate that the ensemble method 
maintains robust performance on a related but distinct dataset, 
thereby supporting the model's generalizability across 
different data contexts. 

5 Discussion 

This study highlights the potential of machine learning (ML) 
approaches to enhance clinical decision-making during the 
triage process, particularly for patients with suspected 
arboviral infections. By employing the SISA dataset, our 
research underscores the importance of advanced 
computational techniques in addressing the resource and 
decision-making challenges faced by emergency departments 
(EDs). 

The results of the experimental studies demonstrate the 
effectiveness of ML models, particularly Random Forest (RF), in 
accurately predicting hospitalization status with high precision, 
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recall, and F1-score values. The RF model consistently 
outperformed other algorithms, achieving robust classification 
metrics, which is consistent with findings in prior studies [22]. 
This performance is attributed to the ensemble nature of RF, 
which combines multiple decision trees to reduce overfitting 
and enhance generalizability. 

This study confirms the suitability of ML methods such as RF, 
Gradient Boosting, and neural networks for handling complex, 
non-linear relationships in healthcare data. Notably, the strong 
predictive power of these models, with accuracy rates 
exceeding 90%, aligns with previous research utilizing the 
same dataset, such as Sippy et al.'s GBM study and Gorur et al.'s 
FFNN results [3, 22]. These findings suggest that integrating ML 
models into triage workflows can significantly optimize 
resource allocation, improve patient outcomes, and reduce ED 
overcrowding. 

Several recent studies have explored the SISA dataset using 
deep learning or ensemble-based methods. For instance, Sippy 
et al. [2] employed neural networks alongside other algorithms 
and reported test accuracies ranging from 0.8980 to 0.9620, 
with the best-performing model (GBM) achieving an AUC of 
0.91. Similarly, Gorur et al. [1] applied feedforward neural 
networks and reported up to 0.9873 accuracy and an AUC of 
0.973. Huang et al. [21] also reported improved prognosis in 
dengue prediction using an ANN-based model. While these 
studies confirm the utility of deep models, our findings 
demonstrate that a properly tuned RF model with 25 
estimators can outperform or match these results, achieving a 
peak accuracy of 0.9926 on the same dataset. This suggests that 
traditional ensemble models, when carefully optimized, can 
offer competitive performance with lower computational 
complexity and greater interpretability. Such models are 
particularly advantageous in clinical settings, where 
transparency and efficiency are often critical considerations. 

Although the classification models achieved notably high 
accuracy values, up to 99% in some cases, such results must be 
interpreted with caution. One possible explanation is that the 
SISA dataset contains features that strongly differentiate 
between hospitalized and non-hospitalized cases, making 
certain patterns easier to learn. However, we also recognize the 
potential risk of overfitting, especially given the class 
imbalance, where only approximately 11% of instances belong 
to the positive class. To mitigate this, we applied stratified 10-
fold cross-validation and emphasized performance metrics 
such as F1-score, precision, and recall rather than relying solely 
on overall accuracy. Furthermore, we report standard 
deviations across folds to assess stability, and we acknowledge 
that external validation with independent datasets will be 
necessary to fully evaluate generalizability. 

The integration of machine learning-based arboviral case 
prediction models into clinical workflows offers significant 
potential for improving patient triage and resource allocation, 
particularly in outbreak settings. Given its strong performance 
and interpretability, the Random Forest model used in this 
study could be embedded within a clinical decision support 
system (CDSS) to assist frontline healthcare workers in 
identifying patients at higher risk of hospitalization. Such a 
system could support early intervention decisions even in 
resource-limited environments where laboratory testing is not 
immediately available. For real-world implementation, it is 
essential that the system be designed with user-friendly 
interfaces, require minimal training, and provide timely 
outputs that align with clinical workflows. These practical 

considerations are vital for ensuring adoption and effectiveness 
in public health settings. 

6 Conclusion 

In the United States alone, the cost of managing dengue illness 
is estimated to be around $9 billion. Arboviral infections 
impose significant financial and healthcare burdens on 
countries, and numerous studies have been conducted on their 
diagnosis. However, research using machine learning to predict 
the severity or hospitalization status of arboviral infections 
remains limited. Machine learning algorithms can assist 
clinicians in resource-constrained settings by providing 
accurate classification models to predict whether patients 
require hospitalization or outpatient care. 

This study compared various data mining algorithms using the 
SISA dataset, which includes symptom and demographic 
information. The models achieved notable results, including an 
accuracy score of 0.9926 with the RF algorithm, reaching 
0.9677 F1-Score in 10-folds cross validation. Additionally, 
other ensemble methods, such as Adaboost and Gradient 
Boosting, achieved accuracy scores ranging from 0.95 to 0.99. 
DT also performed well, with accuracy scores of 0.9817 to 
0.9742 among rule-based methods. These findings could 
contribute to the development of more reliable and gender-
sensitive arbovirus control programs. 

The proposed models demonstrated very high accuracy on the 
SISA dataset, but these results should be interpreted with 
caution. Dataset-specific patterns and class imbalance may 
have contributed to the performance metrics. While validation 
on the SISAL dataset provided some support for 
generalizability, external validation on independent and more 
diverse patient populations will be essential to establish the 
robustness and clinical utility of the approach. Future work 
should therefore prioritize multi-center validation studies to 
ensure the model’s reliability in real-world settings. 

Even though our study primarily focused on tuning the number 
of estimators for RF model, more advanced hyperparameter 
optimization techniques such as Grid Search, Random Search, 
or Bayesian Optimization could be employed to further 
enhance model performance. Incorporating such methods 
represents a promising avenue for future research, especially 
in clinical prediction settings where subtle parameter 
adjustments may yield significant gains in reliability and 
generalizability. 

A gender-based analysis was conducted using the RF model 
with varying numbers of estimators to assess potential 
variability in model performance across patient subgroups. 
Results indicated consistent accuracy across male and female 
patients, suggesting that the model performs robustly 
regardless of gender. However, subgroup-specific patterns 
such as age-related or comorbidity-driven variations could 
influence model outcomes in broader clinical settings. Also, we 
observed that class imbalance may contribute to a higher risk 
of false positives or false negatives. To mitigate such biases, 
future work may incorporate techniques such as class 
weighting, data augmentation (e.g., SMOTE), and calibration-
based ensembling strategies to enhance generalizability and 
fairness. 

Deploying ML models in real-world healthcare environments 
poses several practical challenges. First, integration into 
existing hospital information systems requires compatibility 
with current EHR infrastructures. In addition, clinical decision 
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support tools must align with fast-paced triage workflows, 
especially in emergency departments where time-sensitive 
decisions are critical. Data quality and heterogeneity also 
present barriers, particularly in low-resource settings where 
incomplete or inconsistent entries may affect model reliability. 
Moreover, for such systems to be adopted by healthcare 
professionals, they must provide transparent outputs, require 
minimal training, and comply with ethical and regulatory 
standards concerning data privacy and patient safety. 

The modeling framework can be generalized to other infectious 
or acute illnesses with similar clinical presentations. For 
instance, diseases such as influenza, leptospirosis, or bacterial 
sepsis often present with overlapping symptoms and could 
benefit from early hospitalization prediction models based on 
demographic and symptomatic features. Furthermore, 
adapting the model to different patient groups such as pediatric 
or geriatric populations could improve personalized care in 
diverse healthcare settings. Future studies should explore these 
extensions to assess the adaptability and robustness of 
ensemble-based classification models across varying clinical 
contexts. 
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