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Abstract

Hospital admission necessity of a patient who is under care for the
possibility of arbovirus infection is a critical decision for healthcare
practitioners. Medical staff may experience stress when making this
decision due to the potential risks it poses to the broader community.
Current capacities for diagnosis can be confusing. For this reason, data
mining approaches have been proven to be highly effective in the
diagnosis of diseases as well as in many other fields. As many research
studies suggest, they can also be used to decide whether a patient with
arbovirus infection should be hospitalized or not. For this purpose, this
study uses Severity Index for Suspected Arbovirus (SISA) dataset and
implements various machine learning classification techniques with the
aim of binary classification to detect the hospitalization status of a
specific patient. Several neural networks, single classifiers, and
ensemble supervised learning methods are selected as classifiers during
the experiments. The best classification accuracy value is obtained by
Random Forest (RF) model with 0.9908. This model has been shown to,
outperform many data mining techniques previously applifd J
prominent studies. This improved result leads to additional experimen
with a different number of estimators when implementigg RF.

outcome also improves the maximum classification per; oPmaheeup to
&eks

0.9926 using 25 estimators. The study reveals the{effecti of
, for

ensemble models, especially bagging and boosting

Arbovirus suspected case analysis. ° c
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hastaneye yatis gerekliligi, syonelleri igin kritik bir karardir.
Tibbi personel, bu kararin | ler lizerindeki potansiyel riskleri

Arbovirtis enfeksiyonu sﬁphesiy% Itinda tutulan bir hastanin
j f

nedeniyle baski altinda lir. cut teshis olanaklart zaman zaman
kafa karistirict olabjlil nle, veri madenciligi yaklasimlarinin
hastaliklarin teshis¥gde reok farkli alanda oldukga etkili oldugu

kanitlanmigtir. ¥ arastirmalar, veri madenciligi yéntemlerinin

eri kiimesini kullanarak, bir hastanin hastaneye yatis
elirlemek icin ikili siniflandirma gergeklestiren cesitli
in dgrenmesi  tekniklerini  uygulamaktadir.  Deneylerde

’ﬂm dirict olarak cesitli yapay sinir aglari, tekil siniflandiricilar ve

topluluk destekli ogrenme yéntemleri kullanilmistir. En yiiksek
siniflandirma dogrulugu, %99,08 ile Rastgele Orman (Random Forest-
RF) modeli tarafindan elde edilmistir. Bu modelin, literatiirdeki 6nemli
arastirmalarda uygulanan bircok veri madenciligi tekniginden daha
etkili oldugu kanitlanmistir. Bu olumlu sonuglar, RF modelinin farkl
sayida tahmin edici (estimators) ile ek deneyler yapilmasini tesvik
etmistir. Calisma sonucunda, en yliksek siniflandirma performansi 25
tahmin edici kullanilarak 9%99,26'ya yiikseltilmistir. Elde edilen
bulgular, arboviriis siipheli vaka analizinde ozellikle torbalama
(bagging) ve giiclendirme (boosting) yaklasimlarina dayali topluluk
modellerinin etkinligini ortaya koymaktadir.

Anahtar kelimeler: Makine 0grenimi, Arboviriis Enfeksiyonu,
Rastgele Orman, Hastane yatis durumu
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1 Introduction

In recent years, the number of visits to hospital emergency
departments (ED) has risen substantially [1]. Making clinical
decisions in the context of arboviral infections is especially
complex in settings with limited resources. This situation
causes emergency department overcrowding, increasing
morbidity and mortality and disrupting clinical workflows.
Severe crowding in EDs has resulted in increased mortality due
to delays in care and heightened risks for critically ill patients
[2]. Infrastructural constraints create a demanding clinical
environment, particularly as healthcare providers must decide
whether hospitalization is necessary for patients suspected of
having arboviral infections. Managing a surge of cases within a
short timeframe has significantly strained the functioning of
healthcare systems, making their operation increasingly
challenging [2]. All these circumstances necessitate the
implementation of an effective and efficient triage system to
prioritize care and optimize resource utilization.

Triage is a common method used to determine which patients
should be hospitalized. Triage improves decision performance
by healthcare providers, adjusts the timing, and queue position
of patients [3]. This decision should be taken before starting the
treatment process. Efficient use of the resources of a clinic
depends on this decision. The right decision leads to a decrease
in treatment expenditure [4]. Triage, while conceptually
straightforward, becomes challenging due to factors such as
time constraints, limited patient information, diverse medical
conditions, and a heavy dependence on clinicians' intuition.
Current triage systems often struggle to assess critical illnesses
because too few physicians are available for too many patients,

limiting the time spent on each case. [5]. Innovative
computational algorithms present a promising solutign @

support decision-making in optimizing triage processes®

Machine learning combines principles of stagisti
computer science to analyze and derive insights S i

datasets effectively. Unlike traditional statistical m ike
regression models, machine learning approaches imppse fewer
assumptions about data distributfon n variable
relationships, allowing for greater 1bjlity)) in handling
complex and non-linear patterns [6 not similar to
statistical learning modelling. eNearning approach
provides a wide range of ass jions about the data
distribution and is capa scovering interesting
relationships between fe increase in the number of
features and instance rally improves prediction

performance for h% ing models.

This study foc eating a machine learning (ML)

application to ict Whether patients should be hospitalized

during Ehe%%ﬂ se. The goal is to enhance the decision-
céss

making providing physicians with more data in a
sh i oving accuracy, and optimizing resource use.
Th ocuses on patients with suspected arboviral

, which are common in tropical areas and cause fever,
fatigue, and joint pain. These infections, transmitted by
mosquitoes and flies, include diseases like malaria, river
blindness, and yellow fever, which account for millions of
deaths globally. For instance, malaria caused an estimated
435,000 deaths in 2017.

Emerging arboviruses, such as the Zika virus, dengue virus
(DENV), chikungunya virus (CHIKV), and Zika virus (ZIKV),
present significant public health challenges, particularly under
changing climatic conditions [7]. While most infected patients

recover with mild symptoms, a small percentage develop
severe conditions that can result in death [8]. The study
addresses the critical need for improved tools to manage the
clinical challenges associated with these infections effectively.

In the rapidly evolving landscape of healthcare, the integration
of advanced computational techniques has become essential for
optimizing patient outcomes and resource allocation [9].
Among these techniques, data mining and ML have emerged as
pivotal tools in the early detection and prediction of a patient's
hospitalization status [10]. These methods use large hcare
datasets to reveal patterns that traditional statisti %\iss
[11].

°

Data mining approaches are strategies t valuable
knowledge from vast and unorganize ‘g{a: ata mining
involves extracting meaningful Tafi t from large
datasets, often by identifying hid nd relationships
[12]. In the context of health®are, thi§yprocess can analyze
electronic health records (EHR ], clinical test results [14],
and demographic informati o predict hospitalization
risks. For instance, 0 ch as age, comorbidities,
medication adherencef and\previous hospital visits can be
correlated to anti patient's likelihood of requiring
hospital care. Byf{a ting the analysis of these complex
variables, dataNinining not only enhances diagnostic accuracy
but also ai@ rioritizing at-risk patients for preventive
. )

n

mining insights to build predictive models that
over time. These models use algorithms to learn from
torical data, enabling them to forecast hospitalization

'out es with remarkable precision. Techniques such as

supervised learning, unsupervised learning, and deep learning
can identify subtle trends in patient data that may indicate
worsening health conditions. For example, supervised learning
algorithms can classify patients based on hospitalization risk
levels by analyzing labeled datasets with known outcomes.
Similarly, unsupervised learning can cluster patients into
groups with similar risk factors, aiding in personalized care
planning [17]. Deep learning methods, particularly neural
networks, have demonstrated efficacy in processing
unstructured data such as medical imaging or physician notes,
further expanding the scope of hospitalization prediction.

The application of data mining and machine learning in
hospitalization prediction offers several advantages, which are
early detection and prevention, resource optimization, cost
reduction, and improved patient outcomes. Identifying high-
risk patients allows healthcare providers to intervene early,
potentially preventing hospital admissions [18]. Hospitals can
allocate beds, staff, and medical equipment more efficiently by
predicting patient inflows [19]. By reducing unnecessary
admissions and optimizing care pathways, these technologies
help decrease healthcare costs for both providers and patients.
Finally, proactive management of health risks enhances the
overall quality of care, leading to better health outcomes.

Despite their transformative potential, the adoption of data
mining and ML in healthcare is not without challenges. Issues
such as data privacy, algorithm bias, and the need for high-
quality datasets remain significant hurdles. Additionally,
integrating these technologies into existing healthcare
workflows requires collaboration between data scientists,
clinicians, and policymakers.

Future research should focus on developing interpretable ML
models that provide actionable insights to healthcare



professionals. Moreover, ensuring the ethical use of patient
data and addressing disparities in algorithmic predictions will
be critical for maximizing the impact of these technologies.

2 Related work

Several important studies in the literature have used the SISA
dataset and made predictions about the hospitalization status
of a patient with arbovirus infection using machine learning
methods. Lee et al. [20] conducted a retrospective case-control
study involving 117 patients diagnosed with chikungunya
infection, confirmed via reverse transcription-polymerase
chain reaction (RT-PCR). These cases were identified during
the August 2008 outbreak and involved individuals who were
hospitalized at Tan Tock Seng Hospital in Singapore, the
designated national outbreak response center. Predictive tools
were developed using classification and regression trees
(CART) to differentiate between dengue fever (DF), dengue
hemorrhagic fever (DHF), and chikungunya at the time of
presentation. These tools aim to support clinical decision-
making by identifying patterns and key features associated
with each condition, enhancing diagnostic accuracy in the early
stages of illness.

Sippy etal. [3] analyzed data retrospectively from a prospective
arbovirus surveillance study conducted in Machala, Ecuador.
The study spanned November 2013 to September 2017 and
included participants aged six months and older who were
recruited from clinical sites of the Ecuadorian Ministry of
Health (MoH). This analysis aimed to investigate patterns and
outcomes related to arboviral infections in the region. In the
Surveillance for Arboviral Infections in Southern Ecuador
(SISA) study, several machine learning algorithms were
employed to predict outcomes using only symptom and
demographic data. Among these methods, generalized boesti

models, elastic net, neural networks, and logistic regress

demonstrated strong performance on the test se§ aehieWi

accuracies ranging from 89.8% to 96.2%. The Cohe pa
values varied from 0.00 to 0.77, while the AUC range een
0.50 and 0.91. The generalized boosting model ( emerged
as the top performer, achieving the highé&st of @91 on the

test dataset. It also ranked as the secon X orithm when
evaluated on the training set, indic obustness and
predictive strength in this context. %

Huang et al. [21] developed a
utilizing an artificial neural
outcomes, leveraging pati

learning (ML) model

(ANN) to predict dengue
raphic data and laboratory
test results. Upon eva prognostic performance, our
ANN-based ML m e%) rformed established models in
predicting sever ses. This indicates its potential as a
superior tool y'and accurate prognosis, aiding in clinical

esource allocation.

decisiorz—m i
&{lassified individuals as either hospitalized or
dtieng b plying shallow machine learning algorithms to
and SISAL (Severity Index for Suspected Arbovirus
i aboratory) datasets. The algorithms included Feed
Forward Neural Network (FFNN), Probabilistic Neural
Network (PNN), and Decision Tree (DecT) with three splitting
criteria. The classification results demonstrated significant
improvements in performance, achieving an area under the
curve (AUC) score of 0.973 and accuracy rates up to 98.73%
with FFNN. These outcomes surpassed the performance
metrics reported in prior studies related to machine learning
and arbovirus prediction, highlighting the effectiveness of our
approach.

Fathima et al. [23] compared the performance of Support
Vector Machine and Naive Bayes for the same dataset. They
differentiated dengue from other febrile illnesses in primary
care and forecasted the likelihood of severe arboviral disease
within populations, and obtained 90.43% accuracy at most.
Likely, Akhtar et al. [24] introduced a dynamic neural network
model for real-time prediction of the geographic spread of
outbreaks. They forecasted the geographic spread of Zika
across the Americas with an average accuracy exceeding 85%,

even for prediction horizons extending up to 12 weeks.
Additionally, Salim et al. [25] analyzed to determin&ghéymost
effective machine learning model for predi ngue
outbreaks of five districts in Selangor, M ith the
highest dengue fever incidence from 20 17. They
obtained the best prediction perfor; k ith 70.12%
accuracy using Support Vector Machine.

Apart from SISA dataset, therenare a ifferent studies using
deep learning models with t im of arbovirus infection

detection and hospital admissi iction. For instance, Neto
et al. [26] provided o%s of current research on
automated classificati f

oviral diseases, aimed at
supporting clinical osis through Machine Learning (ML)
and Deep Learni proaches. Additionally, Neto et al.
[27] evaluate % methods for converting tabular data
into image ' the most effective approach, optimize a
CNN using dom search, and compare its performance
i ized machine learning algorithm, XGBoost.
28] intended to inform clinicians about the

lassitication performances on hospitalization status datasets,
particularly in resource-limited settings where arboviral
infection data are often scarce. Similarly, Sciannameo et al. [29]
employed a deep learning approach to forecast the spatio-
temporal spread of COVID-19, predicting new cases and
hospital admissions in Reggio Emilia, Northern Italy.

3 Material and method
3.1 Dataset description

The dataset, part of an ongoing surveillance study in Machala,
Ecuador, includes comprehensive data for individuals with
suspected arboviral infections. The information consists of
demographic details, past medical histories, symptom records,
and laboratory results. Outputs from the analysis focus on
determining individuals' hospitalization status and recognizing
gender distinctions. The dataset is composed of 543 instances
and 28 attributes. These attributes provide information on
symptoms, demographics, and medical history of patients. For
example, Table 1 shows binary symptom values for some
attributes. The value 1 indicates existence and the value 0
indicates absence of the related symptom. Table 2 reveals the
data distribution of SISA dataset with respect to hospitalization
status.

Table 1. A snapshot of five instances of the dataset with values
of some symptomatic attributes.

Symp
Fever Symp | Symp Symp | Symp | Symp
7Days Head | Nausea | Muscle | Rash | Bleed
1 1 1 1 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 0 0
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Table 2. Data distribution for all classes in SISA Dataset.
Classes of Data # of instances %
Hospitalized 59 11.05
Outpatient 475 88.95
Total 534 100

Several preprocessing steps were applied to ensure data
consistency and model compatibility. First, missing or empty
values were replaced with zeros, as the machine learning
models employed cannot process null entries. Second, comma-
based decimal separators were converted to periods to
standardize numeric formats across the dataset. All numerical
features were then cast from string to float. Additionally,
categorical variables such as gender were encoded into integer
format (e.g., female = 0, male = 1). These preprocessing steps
were essential for enabling effective model training and
ensuring reproducible results.

In medical datasets, class imbalance is a common challenge,
particularly when the positive class represents a rare but
clinically significant condition. In the SISA dataset used in this
study, only approximately 11% of the instances correspond to
hospitalized patients, while the remaining 89% represent
outpatient cases. This substantial imbalance can mislead
evaluation metrics such as overall accuracy, as a model may
achieve high accuracy simply by predicting the majority class.

To mitigate this issue, we employed several strategies. First,
evaluation metrics that are more informative in imbalanced
scenarios, such as precision, recall, and F1-score, were
emphasized alongside accuracy. These metrics provide agn
nuanced understanding of the model’s ability to cotré
identify true positives (hospitalized cases) witho in
biased toward the majority class. ® L\
Second, we used stratified k-fold cross-valida %ﬂtain
the original class distribution across all training and testing
folds. This ensures that each fold reﬂe&%berent class

proportions in the dataset, allowing reliable and
generalizable performance evaluatio

Overall, these measures help enso%r the models are not
only accurate in general, but ive in identifying the
minority class, which is icald for real-world clinical
applications where unden ion of hospitalized cases could
have serious consegu

3.2 Ensemble

Ensemble me

nd Random Forest method

machine learning improve predictive
ess by combining multiple models to
ecision. These methods use strategies such
gging, boosting, and majority voting. Each
unique characteristics. The mathematical model
ensemble learning is given in Equation (1), where M
is the number of models and F is the aggregation function:

Yensempte = F1, 92, -, Im) 1)
Stacking integrates different models by training a meta-model
to synthesize their outputs, offering flexibility but requiring
higher computational resources. In stacking, a meta-model g
learns to combine the predictions of multiple base models as
shown in Equation (2):

Vensembie = 9F1, 925 r M) (2)

Bagging (e.g., Random Forest) reduces variance by averaging
predictions from independently trained models, enhancing
stability. It is the short form of bootstrap aggregation. The
mathematical model of bagging for regression is given in
Equation (3) and for classification is given in Equation (4),
which is equal to majority voting.

) 1w (3)
Yensemble = M Z Yi
i=1
Jensempie = mode(¥1,92, ., Iu) 4)
Boosting (e.g., Gradient Boosting) focuses on & rrors
by training models sequentially, improving ageuracy®but at the
s given in

cost of sensitivity to overfitting. The pqu

Equation (5). %
ud (5)

Yensembie = yiai

Majority Voting uses a forward approach of selecting
the most common outpwt; making it efficient but sometimes less

nuanced in decisio n
One of the mo ar ensemble learning classifiers is

Random Forest algorithm. It is a widely used classification
method o numerous advantages. Known for its
robustn ared to other algorithms, it is less susceptible
to oy % This resilience stems from its approach of
av %redictions across multiple decision trees, which

duces the impact of any single tree that may overfit the data.
Ad@igionally, random forest is highly flexible, capable of

#handling various input data types, including categorical and

numerical values, as well as accommodating missing data.
Furthermore, it excels at identifying outliers, as they are often
isolated within their own trees.

Random Forest (RF) classifiers are also capable of maintaining
accuracy even when a substantial portion of the data is missing.
Their ability to estimate feature importance and model
complex interactions between features with minimal
preprocessing makes them especially suitable for tasks such as
spam detection. There are N decision trees in RF model. When
they are represented as T, the final prediction is obtained as
given in Equation (6).

Yrr = majorityvote(Ty(x), T (x), ..., Ty (%)) (6)

Random Forest (RF) consists of a hierarchy of base classifiers
organized in a tree topology. Text data, often characterized by
high dimensionality, typically contains numerous irrelevant
attributes, while only a limited number of key features are
informative for the classifier model. The RF method utilizes a
straightforward and predetermined probability to identify and
select the most relevant features.

The approach, introduced by Breiman, generates multiple
decision trees by randomly sampling subspaces of features and
mapping them to subsets of the data. The process begins with
constructing individual RF trees, followed by iterative
development to enhance the model. The architecture of RF,
illustrating its hierarchical structure and feature selection
mechanism, is shown in Figure 1.
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Figure 1. Random Forest architecture.

3.3 Classification performance evaluation metrics

Evaluating the performance of classification models is critical
in determining their effectiveness for specific tasks. Various
metrics are used to measure the performance of these models,
taking into account their ability to handle imbalanced data,
trade-offs between precision and recall, and overall predictive
capability. Below, the most commonly used evaluation metrics
are discussed along with their formulas.

Accuracy measures the proportion of correctly classified

instances among all instances as shown in Equation 7.

| - TP + TN .
CCUracy = Tp ¥ TN + FN + FP

Where:
TP (True Positive): Correctly classified positive instances

positive °

FN (False Negative): Incorrectly classified positive inst
negative N

Precision measures the proportion of corrgetl ted
positive instances out of all instances predicte itive as

shown in Equation 8.

°
TP %
Precision TP+ F \ 8

Recall measures the proportion of coxre redicted positive
instances out of all actual posit ifstahces as shown in
Equation 9.

Recall % (9
N
Specificity measuges roportion of correctly predicted
negative instances out Lattual negative instances as shown

in Equation 10. Q
TN
ificity = ————— 10
eGif icity FPTTN (10)

The Fa¥%eore\is“fe harmonic mean of precision and recall,
e %

ce between them as shown in Equation 11.

Precision. Recall
1— Score = 2. — (11)
Precision + Recall

The ROC curve plots the True Positive Rate (Recall) against the
False Positive Rate (1 - Specificity) at various threshold
settings. The AUC measures the area under this curve. The AUC
provides an aggregated measure of performance across all
classification thresholds as shown in Equation 12.

1
AUC = f TPR (x)dx (12)
0

K-fold cross-validation is a resampling procedure to evaluate
model performance by splitting the dataset into k subsets
(folds). The model is trained on k-1 folds and tested on the
remaining fold. This process is repeated k times, with each fold

used as a test set exactly once.
4 Experimental studies Q

This section outlines the prediction accura % , and f-
score values attained through the implement hods. The
SISA dataset was used as input f implementation of
various machine learning methags. first part of the
experiments, the dataset is diwide two parts randomly.
nd test set. Training set is

Those parts are called traininggsét a
composed of 80% of the m dataset. In contrast, the
egomes test set.

remaining 20% of the d '.'4
All model training and &on procedures were performed

on a standard lapto er running Windows 11, equipped
with an Intel Coxg i 5G7 CPU @ 2.80 GHz and 16 GB of
: ration was used during experimentation.

e Random Forest model with 25 estimators
tely 3.2 seconds using 10-fold cross-validation.
XGB oost, and LightGBM models were also trained
un g Seconds each. These results demonstrate that the
opOsed approach is computationally lightweight and can be
ex d efficiently on modest hardware, making it suitable for

TN (True Negative): Correctly classified negative instances #real-world applications in clinical environments with limited
FP (False Positive): Incorrectly classified negative instanges @

computational resources.

At this stage, 22 different machine learning methods have been
applied in order to classify arbovirus as hospitalized or
outpatient. These methods are support vector machine (SVM),
decision trees (DT), random forest (RF), logistic regression
(LR), Naive Bayes (NB), Ridge Classifier, Stochastic Gradient
Descent (SGD), Restricted Boltzmann Machine (RBM), Multi-
layer Perceptron (MLP), Gaussian Mixture, Logistic Regression
(LR), Perceptron, Passive Aggressive Classifier (PA), Linear
Support Vector Machine (LinearSVC), K-Nearest Neighborhood
(KNN), Nearest Centroid, Gaussian Process, Gaussian Naive
Bayes, Bernoulli Naive Bayes, Decision Trees (DT), Gradient
Boosting (GB), AdaBoost, XGBoost, CatBoost, and LightGBM
classifiers. RF obtained 0.9908 accuracy values. Table 3 reveals
the classification performance results with accuracy, precision,
recall, and F-score values. Figure 2 visualizes this comparison
with a bar chart.

Table 3. Classification performance results of the mentioned
machine learning algorithms applied to SISA dataset divided
into two parts: 80% training and 20% testing sets.

Accuracy | F1Score | Precision | Recall

RF 0.9908 0.9677 1.000 0.9333

RBM 0.8624 0.0000 1.000 0.000

MLP 0.8716 0.1250 1.000 0.0667
Gaussian

Mixture 0.8807 0.6977 0.5357 1.000

LR 0.9358 0.7742 0.7500 0.800




Ridge
Classifier 0.9817 0.9275 0.8824 1.000
SGD 0.9083 0.5455 0.8571 0.40
Perceptron | 0.8807 0.6977 0.5357 1.000
PA 0.8889 0.6250 0.5882 0.6667
SVM 0.8624 0.000 1.000 0.000
LinearSVM 0.9882 0.9655 0.9375 1.000
KNN 0.8899 0.6250 0.5882 0.6667
Nearest
Centroid 0.8257 0.4571 0.4000 0.5333
Gaussian
Process 0.8624 0.000 1.000 0.000
Gaussian
NB 0.9174 0.7692 0.6250 1.000
Bernoulli
NB 0.9174 0.7692 0.6250 1.000
DT 0.9817 0.9333 0.9333 0.9333
Gradient
Boosting 0.9358 0.6957 1.000 0.5333
AdaBoost 0.9577 0.9442 1.000 1.000
XGBoost 0.9713 0.9267 0.9329 0.9240
CatBoost 0.9734 0.9269 0.9197 0.9381
LightGBM 0.9771 0.9411 0.9483 0.9381

As can be seen in Table 3, RF has the highest accuracy and F-
Score values while RBM, MLP, SVM, Gaussian Process, GB, and
AdaBoost obtain the best precision values. Nearest Centroid
acquires the far worse performance values compared toeot
methods. In the second part of the experiment, all of
mentioned five models have been implemented, butthe@atase
is split into two parts using the 10-folds cro 1dation
technique. It means that the testing part is selgcte mly
as 10% of the dataset. In each of ten iterations, a différent 10%
of the data becomes testing set and thé refnaining®instances
become training set. Classification i ortned in each
iteration and finally, the average I e recorded as
classification performance values lied classifier. As a
result, Table 4 shows the outco same classifiers for
10-folds cross validation pro e observed that there
ults compared to Table 3.

is no significant difference in the
Table 4. Classifi%%nance results of machine the

mentioned learnj thms applied to apple plant leaf
dataset divided o parts using 10-folds cross validation.

.Mo P Accuracy F1 Precision | Recall
Score
0.9908 0.9510 ]0.9633 0.9437
vM 0.8914 0.000 1.000 0.000
MLP 0.9098 0.5476 [0.7196 0.6443
Gaussian
Mixture 0.8079 0.5833 [0.4408 0.9000
LR 0.9337 0.7009 ]0.6974 0.7488
Ridge Classifier | 0.9741 0.8806 |0.8652 0.9238
SGD 0.8842 0.3407 |0.6507 0.4476
Perceptron 0.7376 0.3594 |0.3704 0.60

PA 0.8931 0.4201 |0.6715 0.5444
SVM 0.8914 0.000 1.000 0.000
LinearSVM 0.9797 0.9169 |0.9198 0.9238
KNN 0.9153 0.6206 |0.6330 0.6726
Nearest
Centroid 0.8656 0.5029 |0.4189 0.6480
Gaussian
Process 0.8914 0.000 1.000 .000
Gaussian NB 0.9115 0.7029 |0.5480 0
A N
Bernoulli NB | 0.9189 0.7189 |0.571%, .0000
DT 0.9742 0.8980 \} 0.8885
Gradient
Boosting 0.9577 7 0.7095
AdaBoost 0.9889 1.000 0.9571
XGBoost 0.9752 0.9300 0.9214
CatBoost | 0.9752 09348  |0.9437
LightGBM 6.\ 0.9644 |0.9657 0.9690

d Fable 4, the most successfull classifiers
ndom Forest, Ridge, and Linear SVM. Their

As shown in Tab
appear to be

prediction e status of patients in test sets when 10-
folds cr tion process was implemented are presented
in the sipn matrices given in Figure 3, Figure 4, and Figure
5. akg deviation values are also revealed in Table 5 for

ch ation metric result when 10-folds cross validation is
pe ed. Overall, models such as Random Forest, Ridge

#Classifier, Linear-SVM, Decision Tree, and AdaBoost exhibited

very low variability across folds, indicating high consistency
and robustness. In contrast, models like RBM, SVM, and
Gaussian Process showed either extreme values or zero
variance in certain metrics, suggesting unreliable or skewed
performance, often due to predicting only one class. These
findings highlight the importance of including stability metrics,
in addition to average scores, when evaluating machine
learning models for clinical applications.



Model Performance Comparison
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Figure 2. Bar chart comparing tested methods applied to SISA
dataset divided into two parts: 80% training and 20% testing

Table 5. Standart deviation values of each evaluation for 10-

LR

Ridge Classifier
SGD

Perceptron

Gaussian Mixture

racy MF1 Score

PA
SVM
LinearSVM

sets.

KNN

Nearest Centroid
Gaussian Process

Precision

Gaussian NB
Bernoulli NB

folds cross validation

DT

Gradient Boosting

AdaBoost

H Recall

Model St. Dev St. Dev St. Dev e
Accuracy | F1Score | Precision 19 ca
RF 0.0051 0.0124 0000(* 40 ﬁ
RBM 0.0143 0.0000 0.0000 00
MLP 00128 |00365s  |Bgdags, (00111
- 9
Gaussian | 0134 100221 D40~ | 0.0000
Mixture
hJ
LR 0.0083 0.0195 0222 | 0.0200
Ridge 0.0059 0.0183 | 0.0000
Classifier
SGD 0.0112 0822 00211 |0.0234
Perceptron | 0.01 0209 00178 | 0.0000
PA 0.0251 0.0203 | 0.0186
SUM o 3 0.0000 1.0000 | 0.0000
L 0044 0.0118 0.0152 | 0.0000
0.0108 0.0217 00193 |0.0165
. 0.0149 0.0301 00242 | 0.0228
Centroid
Gaussian | 134 0.0000 1.0000 | 0.0000
Process
g%““la“ 0.0092 0.0184 00175 | 0.0000
g‘;mo““‘ 0.0089 0.0179 0.0180 | 0.0000
DT 0.0058 0.0127 00127 |0.0127

ggi’i‘ti‘:; 0.0084  |0.0231 0.0000 | 0.0182
AdaBoost |0.0067 00110  |0.0000 | 0.0000
XGBoost | 0.0055  |0.0117  |0.0130 | 0.0098
CatBoost |0.0062  |0.0123  |0.0142 |0.0105
LightGBM |0.0051  |0.0108  |0.0125 |0.0091
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Figure 4. Confusion matrix of Linear-SVM classifier.
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Figure 5. Confusion matrix of RF classifier.

To further evaluate the classification performance of the

selected models,

ROC curves were generated for Ridge

Classifier, Linear-SVM, and RF. The corresponding ROC curves,
are presented in Figure 6, Figure 7, and Figure 8, respectively.
A higher AUC indicates a stronger discriminatory capability of

the model.
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Figure 6. ROC curve of Ridge classifier.
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Figure 7. ROC curve of Linear-SVM classifier.
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The initial experiments revealed that thg Random Egrest (RF)
algorithm outperformed other models in t classification
performance, achieving the highest a d robustness
across multiple evaluation metrigs. N\Given its superior
performance, additional experirfefits\were conducted to
optimize the RF model through egpdrameter tuning.

One of the most critical hype¥pa ters in RF is the number
of estimators, which det the number of decision trees
in the ensemble. €o stigate its impact on classification
performance, we tically varied the number of
estimators from Nto For each configuration, the model was
trained usin d” cross-validation (k=10) to ensure
mitigate overfitting. The results were
mine the optimal number of estimators that
redictive performance while maintaining
jional efficiency. The findings from this parameter
tuning®eXperiment provide valuable insights into the optimal
configuration of RF for medical triage applications, reinforcing
the role of ensemble learning in healthcare decision-making.

We evaluated RF performance across varying numbers of
estimators ranging from 1 to 100 to better understand the
influence of hyperparameters in this model. The results
revealed a clear trend where increasing the number of trees
improved accuracy, particularly up to 25 estimators, after
which the performance plateaued. This analysis was conducted

02 -
e L)
-
e
L —— ROC curve (AUC = 1.00)
00 »
0.0 02 4 0.6 08 10

separately for male and female patients, and the results are
summarized in Table 6.

Classification with RF
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Figure 9. Classifieati curacy values for different number of
estimators irfNRF lied to SISA dataset with 10-folds cross

g validation.
The dat% ted in Figure 9 illustrates the classification
aecurac model as a function of the number of estimators.
s theNnuhmber of estimators increases from 1 to 100, we
obgerve a general improvement in accuracy. The model
chiéves its highest classification accuracy of 0.9926 at 25
estimators, which is a notable peak compared to the other
values. However, after reaching this maximum at 25 estimators,
the accuracy stabilizes, with values ranging from 0.9833 to
0.9908 for estimator counts of 50 or higher. This suggests that
after a certain threshold (around 25 estimators), adding more
estimators does not substantially improve the model's
performance, though there is slight variation.

The initial increase in accuracy with the addition of more
estimators is consistent with the typical behavior of Random
Forests, where more estimators tend to reduce variance and
improve model stability. However, the plateau observed
beyond 25 estimators indicates that the model might be
reaching a point of diminishing returns. This finding suggests
that while increasing the number of estimators can improve the
performance, an optimal number exists, beyond which
additional estimators may provide minimal additional benefits,
while also increasing computational cost. A Random Forest
model with 25 estimators seems to offer the best balance
between classification accuracy and computational efficiency in
this dataset.

Additionally, gender-based experiments were also
implemented in these experimental studies. Among the 543
total records, 299 (55.1%) correspond to female patients and
244 (44.9%) to male patients. This slight predominance of
female subjects has been taken into account during subgroup
analyses to ensure balanced evaluation across genders. The
gender distribution is illustrated in Figure 10.



Gender Distribution in the SISA Dataset
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Figure 10. Gender distribution

We evaluated the effect of varying the number of estimators in
the RF classifier separately for male and female patients. As
shown in Table 6, both subgroups demonstrated a similar
upward trend in accuracy as the number of estimators
increased. While initial accuracy levels were relatively close
(e.g., 0.9609 for males and 0.9584 for females at 1 estimator),
the performance steadily improved with more trees. Peak
performance was observed around 25 estimators, with
accuracies of 0.9958 for males and 0.9933 for females, after
which marginal fluctuations occurred. These results suggest
that the model generalizes well across genders and benefits
equally from ensemble depth, with only minimal differenges
predictive power between male and female subgroups. ® %

Table 6. Classification accuracy values for differegdnumbe
estimators in RF for each gender,

Accuracy for ! Female
Number of Estimators | Male Patient3 %tients
1 .9584
2 0.942
3 0.9693
5 = 0.9712
10 o f\\ 9866 0.9841
15 \‘(.I‘ 0.9903 0.9878
?ﬁ\(\‘ 0.9847 0.9822
W 0.9958 0.9933
0.9921 0.9896
40 0.9903 0.9878
v 50 0.9865 0.984
60 0.994 0.9915
70 0.9884 0.9859
80 0.9921 0.9896
90 0.994 0.9915
100 0.994 0.9915

Selection of different number of estimators affects highly the
classification performance as can be seen in the experiments,
but the implementation of parameter tuning of RF method for
another dataset is required in order to generalize these effects.
Therefore, same approach was applied to SISAL dataset which
is related to hospitalization status of patients from the same
source of data. Figure 11 demonstrates the classification
accuracies of RF with different number of estimators for SISAL
dataset.

Classification Accuracy
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Figure 11. Classification accuracy values for different number
of estimators in RF applied to SISAL dataset with 10-folds
cross validation.

SISAL dataset contains similar features to SISA but incorporates
laboratory test results. We evaluated the Random Forest
classifier with varying numbers of estimators (from 1 to 100)
and recorded the classification accuracy for each configuration.
As shown in Figure 9, model performance improved notably
with an increasing number of estimators, reaching a peak
accuracy of 0.9700 at 40 estimators. Beyond this point, the
accuracy plateaued or slightly declined, indicating diminishing
returns. These findings demonstrate that the ensemble method
maintains robust performance on a related but distinct dataset,
thereby supporting the model's generalizability across
different data contexts.

5 Discussion

This study highlights the potential of machine learning (ML)
approaches to enhance clinical decision-making during the
triage process, particularly for patients with suspected
arboviral infections. By employing the SISA dataset, our
research underscores the importance of advanced
computational techniques in addressing the resource and
decision-making challenges faced by emergency departments
(EDs).

The results of the experimental studies demonstrate the
effectiveness of ML models, particularly Random Forest (RF), in
accurately predicting hospitalization status with high precision,



recall, and F1-score values. The RF model consistently
outperformed other algorithms, achieving robust classification
metrics, which is consistent with findings in prior studies [22].
This performance is attributed to the ensemble nature of RF,
which combines multiple decision trees to reduce overfitting
and enhance generalizability.

This study confirms the suitability of ML methods such as RF,
Gradient Boosting, and neural networks for handling complex,
non-linear relationships in healthcare data. Notably, the strong
predictive power of these models, with accuracy rates
exceeding 90%, aligns with previous research utilizing the
same dataset, such as Sippy et al.'s GBM study and Gorur et al.'s
FFNN results [3, 22]. These findings suggest that integrating ML
models into triage workflows can significantly optimize
resource allocation, improve patient outcomes, and reduce ED
overcrowding.

Several recent studies have explored the SISA dataset using
deep learning or ensemble-based methods. For instance, Sippy
etal. [2] employed neural networks alongside other algorithms
and reported test accuracies ranging from 0.8980 to 0.9620,
with the best-performing model (GBM) achieving an AUC of
0.91. Similarly, Gorur et al. [1] applied feedforward neural
networks and reported up to 0.9873 accuracy and an AUC of
0.973. Huang et al. [21] also reported improved prognosis in
dengue prediction using an ANN-based model. While these
studies confirm the utility of deep models, our findings
demonstrate that a properly tuned RF model with 25
estimators can outperform or match these results, achieving a
peak accuracy of 0.9926 on the same dataset. This suggests that
traditional ensemble models, when carefully optimized, can
offer competitive performance with lower computational
complexity and greater interpretability. Such models ar
particularly advantageous in clinical settings, (Whe
transparency and efficiency are often critical consideratiens:.

Although the classification models achieved nc?té h

accuracy values, up to 99% in some cases, suc S be
interpreted with caution. One possible explana is‘that the
SISA dataset contains features that stromgly differentiate

between hospitalized and non-hospital ses, making
certain patterns easier to learn. Howey, recognize the

potential risk of overfitting, esp&ia iven the class
imbalance, where only approxima 11 of instances belong
to the positive class. To mitig

applied stratified 10-
fold cross-validation and d performance metrics
such as F1-score, precisi

on overall accugacy,
deviations across fo
that external v: iog with independent datasets will be
necessary to f Iate generalizability.

The ir‘lm%‘?j machine learning-based arboviral case
predictionN\g Is into clinical workflows offers significant

erlimproving patient triage and resource allocation,

pretability, the Random Forest model used in this
study could be embedded within a clinical decision support
system (CDSS) to assist frontline healthcare workers in
identifying patients at higher risk of hospitalization. Such a
system could support early intervention decisions even in
resource-limited environments where laboratory testing is not
immediately available. For real-world implementation, it is
essential that the system be designed with user-friendly
interfaces, require minimal training, and provide timely
outputs that align with clinical workflows. These practical

considerations are vital for ensuring adoption and effectiveness
in public health settings.

6 Conclusion

In the United States alone, the cost of managing dengue illness
is estimated to be around $9 billion. Arboviral infections
impose significant financial and healthcare burdens on
countries, and numerous studies have been conducted on their
diagnosis. However, research using machine learning to predict

the severity or hospitalization status of arboviral a’@ons

remains limited. Machine learning algorithms sist
clinicians in resource-constrained setting® iding
accurate classification models to predict atients
require hospitalization or outpatient care.

This study compared various data mini
SISA dataset, which includes

information. The models achie%ed no
accuracy score of 0.9926 wi

ithms using the

0 d demographic
results, including an

e RF algorithm, reaching
0.9677 F1-Score in 10-fol validation. Additionally,
other ensemble metho ,%as Adaboost and Gradient
Boosting, achieved acc w es ranging from 0.95 to 0.99.
DT also performe ith accuracy scores of 0.9817 to
methods. These findings could

0.9742 among a
contribute to tfe 'development of more reliable and gender-
sensitive arp®wifus control programs.

The propose dels demonstrated very high accuracy on the
but these results should be interpreted with
taset-specific patterns and class imbalance may

ve Gontributed to the performance metrics. While validation
on e SISAL dataset provided some support for
generalizability, external validation on independent and more
diverse patient populations will be essential to establish the
robustness and clinical utility of the approach. Future work
should therefore prioritize multi-center validation studies to
ensure the model’s reliability in real-world settings.

S

Even though our study primarily focused on tuning the number
of estimators for RF model, more advanced hyperparameter
optimization techniques such as Grid Search, Random Search,
or Bayesian Optimization could be employed to further
enhance model performance. Incorporating such methods
represents a promising avenue for future research, especially
in clinical prediction settings where subtle parameter
adjustments may yield significant gains in reliability and
generalizability.

A gender-based analysis was conducted using the RF model
with varying numbers of estimators to assess potential
variability in model performance across patient subgroups.
Results indicated consistent accuracy across male and female
patients, suggesting that the model performs robustly
regardless of gender. However, subgroup-specific patterns
such as age-related or comorbidity-driven variations could
influence model outcomes in broader clinical settings. Also, we
observed that class imbalance may contribute to a higher risk
of false positives or false negatives. To mitigate such biases,
future work may incorporate techniques such as class
weighting, data augmentation (e.g., SMOTE), and calibration-
based ensembling strategies to enhance generalizability and
fairness.

Deploying ML models in real-world healthcare environments
poses several practical challenges. First, integration into
existing hospital information systems requires compatibility
with current EHR infrastructures. In addition, clinical decision
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support tools must align with fast-paced triage workflows,
especially in emergency departments where time-sensitive
decisions are critical. Data quality and heterogeneity also
present barriers, particularly in low-resource settings where
incomplete or inconsistent entries may affect model reliability.
Moreover, for such systems to be adopted by healthcare
professionals, they must provide transparent outputs, require
minimal training, and comply with ethical and regulatory
standards concerning data privacy and patient safety.

The modeling framework can be generalized to other infectious
or acute illnesses with similar clinical presentations. For
instance, diseases such as influenza, leptospirosis, or bacterial
sepsis often present with overlapping symptoms and could
benefit from early hospitalization prediction models based on
demographic and symptomatic features. Furthermore,
adapting the model to different patient groups such as pediatric
or geriatric populations could improve personalized care in
diverse healthcare settings. Future studies should explore these
extensions to assess the adaptability and robustness of
ensemble-based classification models across varying clinical
contexts.
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