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Abstract  Öz 

Serious environmental challenges such as global warming and climate 
change have captured a growing amount of public awareness in the last 
decade. Besides monetary incentives, the drive for environmental 
preservation and the pursuit of a sustainable energy source have 
contributed to an increased recognition of energy usage within the 
industrial sector. Meanwhile, the challenge of energy efficiency stands 
out as a major focal point for researchers and manufacturers alike. 
Efficient assembly line balancing plays a vital role in enhancing 
production effectiveness. The robotic two-sided assembly line balancing 
problem (RTALBP) commonly arises in manufacturing facilities that 
produce large-sized products in high volumes. In this scenario, multiple 
robots are placed at each assembly line station to manufacture the 
product. The utilization of robots is extensive within two-sided assembly 
lines, primarily driven by elevated labour expenses. However, this 
adoption has resulted in the challenge of increasing energy 
consumption. Therefore, in this study, a new hybrid genetic algorithm is 
introduced, incorporating an adaptive local search mechanism. for the 
mixed-model robotic two-sided assembly line balancing problems with 
sequence-dependent setup times. This algorithm has two main 
objectives: minimizing cycle time (time-based approach) and overall 
energy consumption (energy-based approach). Depending on 
managerial priorities, either the time-based or energy-based model can 
be chosen for different production timeframes.  

 Son on yılda küresel ısınma ve iklim değişikliği gibi çevresel sorunlar, 
kamuoyunun giderek dikkatini çekmiştir. Parasal teşviklerin yanısıra, 
çevresel koruma ve sürdürülebilir enerji kaynağı arayışı nedeniyle 
endüstride enerji kullanımı daha da önem arz etmiştir. Aynı zamanda, 
enerji verimliliği sorunu, araştırmacılar ve üreticiler için de önemli bir 
odak noktası olarak öne çıkmaktadır. Verimli montaj hattı dengeleme, 
üretim etkinliğini artırmada önemli bir rol oynamaktadır. Robotik çift 
taraflı montaj hattı dengeleme problemi (RÇMHDP), yüksek hacimde 
büyük ürünler üreten üretim tesislerinde yaygın olarak karşılaşılan bir 
problemdir. Bu montaj hattında, ürünü üretmek için her montaj hattı 
istasyonunda birden fazla robot bulunur. İki taraflı montaj hatlarında 
robotların kullanımı, özellikle yüksek işçilik maliyetleri nedeniyle 
yaygın bir şekilde tercih edilmektedir. Ancak, bu durumda da enerji 
maliyetleri sorunu ortaya çıkmaktadır. Bu nedenle bu çalışmada; sıra- 
bağımlı hazırlık zamanlı karışık modelli robotik çift taraflı montaj hattı 
dengeleme problemleri için, uyarlanabilir yerel arama mekanizmasını 
içeren yeni bir hibrit genetik algoritma önerilmiştir. Bu algoritmanın iki 
ana amacı vardır: çevrim süresini (zamana dayalı yaklaşım) ve toplam 
enerji tüketimini (enerjiye dayalı yaklaşım) en aza indirmek. Yönetimsel 
önceliklere bağlı olarak, farklı üretim zaman dilimleri için zamana 
dayalı veya enerjiye dayalı model seçilebilir. 

 

Keywords: Robotic Two-Sided, Assembly Line, Energy Consumption, 
Hybrid Genetic Algorithm, Setup Times 

 Anahtar Kelimeler: Robotik Çift Taraflı, Montaj Hattı, Enerji 
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1 Introduction 

Nowadays, one of the most important topic is manufacturing 
with efficient energy due to climate change. In order to reduce 
the impact of climate change, United Nations members states 
signed with defined target in the Paris Climate Agreement. The 
one of the main targets is that limitation of average global 
warming with 2 °C above preindustrial temperature [1]. A 
significant portion of greenhouse gas emissions, which is one of 
the factors causing global warming, comes directly from the 
manufacturing industry. That's why carbon emissions are 
restrictively limited for manufacturing industries in many 
countries. On the other hand, energy and energy costs for 
manufacturers are also an important key to global competition. 
The manufacturing industry has a strong focus on energy 
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reduction and the creation of an environmentally friendly 
environment as a result of the increase in energy costs. [2]. 
Therefore, when both energy saving and economic criteria are 
considered at the same time, the development of energy 
efficient manufacturing technologies is of paramount 
importance. Hence, the improvement of assembly profits and 
the reduction of energy consumption have become important 
and challenging research topics that require attention. Energy 
consumption and costs are high in the manufacturing industry, 
particularly in places like assembly lines. Companies with an 
assembly line used effectively and efficient energy can gain 
many economic advantages and it facilitates competition the 
companies with others.  

Assembly lines are a widely recognized research area in the 
production environment that has been studied under 
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numerous titles for almost 70 years. Essentially, assembly lines 
are a collection of workstations that are arranged sequentially 
where specific tasks, typically involving assembly operations, 
are performed. Assembly lines face the primary challenge of the 
assembly line balancing problem (ALBP), which involves 
assigning and organizing tasks in a specific order across 
multiple workstations, while adhering to precedence relation 
constraints and optimizing objectives such as minimizing 
workstations, cycle time, and costs. This is a well-known 
production problem, and numerous studies have been 
conducted on this subject [3]. The survey papers of Boysen et 
al. [4]  and  Sivasankaran and Shahabudeen [5] can be analyzed.  

Based on the number of products in a line, ALBP is classified 
into three different parts which are single-model (SALBP), 
mixed-model (MMALBP) and multi-model (MuMALBP). SALBP 
is core of the ALBP, and it can be defined as a single product is 
manufactured in a line. In the MMALBP, however, different 
models of product which are in the same product family are 
produced on the same line simultaneously. In other words, it is 
a complex version of the SALBP. On the other hand, MuMALBP 
problem can be described that varying model which are not 
generally allow to negligible set-up time due to similarity of 
process are manufactured with batches in same line. The key 
issue of MuMALBP is lot sizing because this problem is linked 
to balancing and batch sequencing in the multi-model line [6]. 
As far as task time is concerned, ALBP is categorized usually 
four parts which are deterministic, dynamic, stochastic and 
fuzzy task time in the literature. Deterministic task time is that 
task time is accepted static and known under all conditions. 
Dynamic task time is defined that there is a systematic variation 
in the task time due to certain factors, such as learning effects 
[7]. While task time variation is defined by a probability 
distribution, the problem is called as ALBP with stochastic task 
time. In certain cases, this variation can be represented by fuzzy 
task time. Furthermore, line design layout is another important 
classification in the ALBP literature. Two-sided assembly line 
(TSAL), straight line, U-type line and parallel line are well-
known line design.  

TSALs, or Two-Sided Assembly Lines, have gained popularity in 
recent years due to their ability to produce high volumes and 
large-sized products. They also allow workers to work on 
opposite sides of the product simultaneously, which is 
especially useful for the assembly of trucks, buses, and 
automobiles. The analysis of this line configuration was first 
presented in the literature by Bartholdi [8]. TSALs can be 
defined that it is an arranged of sequential workstations in 
which tasks can be completed at the two side of the line, left and 
right. A configuration instance of TSAL layout is shown in Fig. 1. 
It ensures opportunity performing of two workers on same 
product simultaneously. By considering this reason, balancing 
problem is differentiated from one-sided ALs, known as TSAL 
balancing problem (TALBP). 

 

Figure 1. Two-sided assembly line. 

TALBP is a new subject of concern, and the numbers of studies 
are limited when it is compared with ALBP. Li et al. [9] can be 
investigated for more detail on TSALBP and solution methods.  

The rapid advancement of technology has resulted in the 
widespread usage of robots in various fields, including 
assembly line systems. In assembly lines, robots provide 
several manufacturing flexibility and safety, less reliance on 
specialized personnel, and lower energy consumption [10], 
[11]. There are many studies on the Robotic Assembly Line 
Balancing Problem (RALBP) in the literature. Rubinovitz et al. 
[12] were the first to introduce RALBP in the literature, 
proposing a branch and bound algorithm for solving and 
designing the problem. Then, Aghajani et al. [13] proposed a 
mixed-integer programming (MIP) model and simulated 
annealing algorithm (SA) for minimizing mixed-model RALBP’s 
cycle time. In their study, Çil et al. [14] then set out a 
mathematical model and beam search algorithm as a means to 
decrease the overall cycle time for RALBP. A recent paper by 
Chutima [15] presents an extensive literature review on 
RALBP. However, few studies address energy consumption in 
the literature. Nilakantan et al. [16] published the first paper in 
the literature that examined energy consumption on RALBP.  
Simultaneous proposals were made for nonlinear mathematical 
models aimed at reducing cycle time and energy usage. Li et al. 
[17] developed an MIP model aimed at reducing both cycle time 
and energy consumption in two-sided RALBP. A restarted 
simulated annealing algorithm is proposed, specifically 
designed to address the challenges posed by large-scale 
problems. In their study, Nilakantan et al. [18] proposed a 
model aiming to enhancing the operational efficiency of robotic 
assembly line systems, while concurrently reducing their 
carbon footprint. A multi-objective co-operative 
coevolutionary (MOCC) method was designed to address this 
problem. Zhang et al. [19] proposed an innovative non-linear 
model for U-type RALBP with the aim of mitigating noise 
emission, reducing cycle time as well as minimizing emissions 
of carbon. Zhang et al. [20] also developed a mathematical 
model that incorporates several objectives and utilized a 
Pareto-based Artificial Bee Colony algorithm (PBABC) to 
optimize the U-type RALBP process, with the aim of 
simultaneously reducing cycle time and energy consumption. 
In their study, Zhou and Wu, [11] consider productivity-related 
targets (total working load) and green manufacturing 
objectives (total energy usage) for RALBP. Baş et al. [21] 
suggested a novel integer programming model in order to 
minimize cycle time of a Dishwasher Factory consisting mixed-
model U-type robotic assembly line.  In RALBP literature, the 
studies that consider energy consumption are summarized and 
given in Table 1. 

In addition to the literature given above, Aslan [22] proposed a 
mathematical model and a variable neighborhood search 
algorithm for  type II mixed-model robotic two-sided assembly 
line balanbing problems with sequence dependent setup times 
(MRTALBPS-II). However, it is determined that there is not any 
published paper that minimize both cycle time and total energy 
consumption for MRTALBPS in the literature. In order to close 
this gap, this paper aims to develop two models with dual focus 
for MRTALBPS, which are time-based model and energy-based 
model. The primary objective of time based model is to 
minimize cycle time and secondary objective is to minimize 
total energy consumption of MRTALBPS. On the other hand, the 
primary objective of energy based model is to minimize total 
energy consumption and secondary objective to minimize cycle 
time of MRTALBPS. The main contribution of this paper can be 
given as follows: 
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1. In this paper, a new objective function is added to mixed 
integer programming (MIP) model of Aslan [22] in order 
to calculate total energy consumption of MRTALBPS-II,  

2. An effective hybrid genetic algorithm (hGA) with adaptive 
local search scheme is proposed in order to solve large 
instances in reasonable CPU time. Adaptive local search 
scheme prevents premature convergence by inserting new 
individuals with certain high fitness values into current 
hGA loop.  

3. This paper represents a significant contribution to the 
existing body of literature, as most prior studies in the field 
of robotic assembly line balancing have primarily 
concentrated on minimizing cycle time and reducing costs, 
with little attention paid to optimizing energy 
consumption. The primary objective of this research is to 

create a hGA for simultaneously minimizing cycle time and 
the total energy usage within a robotic assembly line. 

4. A comparative analysis is conducted to evaluate the 
performance of the hGA and VNS algorithm proposed in 
Aslan [22]. Statistical analysis reveals that the hGA 
proposed in this study outperforms VNS algorithm in 
terms of overall performance.  

The rest of the paper organized as follows: In section 2, mixed-
model robotic two-sided assembly line balancing problems 
with sequence-dependent setup times are defined. Proposed 
hybrid genetic algorithm is explained in section 3. 
Computational results are analyzed detail in section 4. Finally, 
section 5 concludes the study and provide suggestions for 
future research. 

 

 

Table 1. Summary of RALBP literature considering energy consumption 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Papers 
Number of 
Models 

Line 
Type 

Objectives Solution Technique 

Nilakantan et al. [16] Single Straight 
Min. cycle time and total 
energy consumption 

Particle Swarm Optimization 

Li et al. [17] Single 
Two-
Sided 

Min. cycle time and energy 
consumption 

Restarted Simulated Annealing  

Nilakantan 
et al. [18] 

Single Straight 
Min. the carbon footprint, 
and max. of line efficiency 

Multi-objective co-operative co 
evolutionary algorithm 
 

Zhang et al. 
[19] 

Single 
U-
shaped  

Min. carbon emission, noise 
emission and cycle time 

Hybrid Pareto Grey Wolf 
Optimization 

Zhang et al. 
[20] 

Single 
U-
shaped  

Min. of cycle time and 
energy consumption  

Pareto artificial bee colony 
algorithm 

Zhou and Wu 
[11] 

Single Straight 
Min. the number of 
workstations and total 
energy consumption 

Decomposition-based multi-
objective algorithm 

Sun et al. [2] Single  Straight 
Min. cycle time and total 
energy consumption 

Bound-guided hybrid estimation of 
distribution algorithm 

Soysal-Kurt and 
İşleyen [10] 

Single Parallel 
Min. cycle time and total 
energy consumption 

A Pareto hybrid discrete firefly 
algorithm 

Proposed Study Mixed 
Two-
Sided  

Min. cycle time and total 
energy consumption 

Hybrid Genetic Algorithm 
 



 
 
 
 

Pamukkale Univ Muh Bilim Derg, XX(X), XX-XX, 20XX 
F. Author, S. Author, T. Author, F. Author 

 

4 
 

 

2 Problem definition and formulation 

1.1 Problem definition 

In order to minimize cycle time while meeting mated station 
number, direction, and precedence constraints, the MRTALBPS-
II assigns one of the R available robots to each station and 
distributes a set of I jobs to a set of J mated-stations. In 
MRTALBPS-II, robots at a specific mated station must assemble 
similar product models simultaneously. Although each model's 
tasks have a set of precedence relationships, the models' 
common characteristics make it possible to combine all tasks 
into a single precedence diagram with I tasks. Tasks are 
classified into three categories under direction constraints: L-
type tasks, which must be allocated to the left side; R-type tasks, 
which must be allocated to the right side; and E-type tasks, 
which can be assigned to either side. This study takes the 
following assumptions into account [23]:  

 Energy consumption is computed using the power 
consumption of each robot, which is a presumption.  

 According to the type of robot processing them, the 
operation times of tasks and the sequence-dependent 
setup times between two tasks only forward setup 
times in Scholl et al. [24] are taken into account in this 
paper—depend on the robots and are known and 
deterministic.  

 Various models do similar tasks. Each model's 
processing time could be different or even zero. 

 The number of available robots equals the number of 
workstations, and each robot is assigned to one of 
them.  

 The times for material handling, loading, and 
unloading are not considered or already factored into 
the operating time of jobs.  

 Work-in-process inventories and parallel 
workstations are not considered.  

1.2 Problem formulation 

The mathematical model used in this paper is taken from Aslan 
[22], with the addition of an objective function for energy 
consumption. The mathematical notation used in the 
formulations is provided below: 
Indices 
i,h,p,c task 
j,g mated station 
m product model 
k,f side of the line 

k,f = {
1  indicates a left − side station

2 indicates a right − side station
  

(j,k) station of mated station j and its operation direction k 
Parameters 
I set of tasks in the combined precedence diagram; i= 
1,…, I 
J set of mated stations; j=1,…, J 
M set of product models; m=1,…, M 
R number of robot types; r=1,…, R 
𝐴𝐿       set of tasks that should be performed at a left-side station; 
𝐴𝐿 ⊂ I 
𝐴𝑅 set of tasks that should be performed at a right-side 
station; 𝐴𝑅 ⊂ I 

𝐴𝐸       set of tasks that can be performed on either side of 
a0station; 𝐴𝐸 ⊂ I  
P(i)         set of immediate predecessors of task i 
𝑃𝑎(𝑖)       set of all predecessors of task i 
S(i)          set of immediate successors of task i 
𝑆𝑎(𝑖)       set of all successors of task i 
𝑃0         set of tasks that have no immediate predecessors; 𝑝0={i 
∈I| p(i)= φ} 
𝑡𝑖𝑚𝑟 completion time of task  for model m by robot r 
𝑃𝐶𝑟 Operation power consumption of the robot r per time 
unit 
D         set of tasks and models with 0 processing times in all 
robots 
𝜑 a very large positive number 
K(i) set indicating the preferred operation directions of 
task i 

 K(i)={

1    𝑖𝑓      𝑖 ∈ 𝐴𝑅

2    𝑖𝑓      𝑖 ∈ 𝐴𝐿

1,2 𝑖𝑓      𝑖 ∈ 𝐴𝐸

} 

𝑆𝑖𝑝𝑚𝑟 setup time between two successive tasks i and p of 

model m with robot r if i and p are assigned to the same mated 
station 
Decision Variables 
𝑐𝑚       cycle time of model m  
𝑥𝑖𝑗𝑘      1 if task i is assigned to station (j, k); 0 otherwise 

𝑦𝑟𝑗𝑘     1 if robot r is assigned to station (j, k); 0 otherwise 

𝑧𝑖𝑝       1 if task i is assigned before task p in the same station; 0 

otherwise 
𝑤𝑖𝑚𝑗𝑘   number of successors of task i, model m, mated station 

j, side k 
𝜙𝑖𝑚𝑗𝑘     1 if task i, model m is the first of mated station j, side k 

𝜔𝑖𝑚𝑗𝑘     1 if task i, model m is the last of mated station j, side k 

𝑡𝑖𝑚
𝑓

         finish time of task i for model m 

 

There are two objective functions in this paper. The objective 
function of time based model (Eq. 1) aims to minimize the cycle 
time. The objective function of the energy-based model (Eq. 2) 
aims to minimize the total energy consumption. Equation (1) is 
substituted by Equation (2) in the energy-based model. The 
mathematical model is given below:                                                   

 
min    ∑ 𝑐𝑚

𝑀
𝑚=1        (1) 

 

𝑚𝑖𝑛          ∑ ∑ ∑ 𝑦𝑟𝑗𝑘
𝑅
𝑟=1 ∙ 𝑃𝐶𝑟 ∙ ∑ ∑ 𝑡𝑖𝑚𝑟 ∙𝑀

𝑚=1
𝐼
𝑖=1

2
𝑘=1

𝐽
𝑗=1

𝑥𝑖𝑗𝑘  + ∑ ∑ ∑ 0.1 ∙ 𝑦𝑟𝑗𝑘 ∙ 𝑃𝐶𝑟 ∙ (∑ 𝑐𝑚 −𝑀
𝑚=1

2
𝑘=1

𝐽
𝑗=1

𝑅
𝑟=1

∑ ∑ 𝑡𝑖𝑚𝑟 ∙ 𝑥𝑖𝑗𝑘
𝐼
𝑖=1

𝑀
𝑚=1 )                               (2) 

 
Subject to: 

∑ ∑ 𝑥𝑖𝑗𝑘 = 1𝑘∈𝐾(𝑖)
𝐽
𝑗=1             ∀𝑖 ∈ 𝐼            (3) 

 

∑ ∑ 𝑔 ∙ 𝑥ℎ𝑔𝑘𝑘∈𝐾(𝑖) −
𝐽
𝑔=1 ∑ ∑ 𝑗 ∙ 𝑥𝑖𝑗𝑘     𝑘∈𝐾(𝑖)

𝐽
𝑗=1 ≤ 0       ∀𝑖 ∈

I-P0,    h ∈ 𝑃(𝑖)              (4) 
 

𝑡𝑖𝑚
𝑓

≤ 𝑐𝑚      ∀𝑖 ∈ I ,   m ∈  M            (5) 

 

𝑡𝑖𝑚
𝑓

 -𝑡ℎ𝑚
𝑓

  +  𝜑(1 − ∑ 𝑥ℎ𝑗𝑘𝑘∈𝐾(ℎ) ) + 𝜑(1 − ∑ 𝑥𝑖𝑗𝑘𝑘∈𝐾(𝑖) ) ≥

∑ 𝑡𝑖𝑚𝑟𝑦𝑟𝑗𝑘
𝑅
𝑟=1   

∀𝑖 ∈ I-P0, h ∈ 𝑃(𝑖), j ∈ J,  m ∈ 𝑀: (𝑖, 𝑚) ∉ 𝐷            (6) 
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𝑡𝑝𝑚
𝑓

 -𝑡𝑖𝑚
𝑓

+ 𝜑(1 − 𝑥𝑝𝑗𝑘) + 𝜑(1 − 𝑥𝑖𝑗𝑘) + 𝜑(1 − 𝑧𝑖𝑝)

≥ ∑(𝑡𝑝𝑚𝑟

𝑅

𝑟=1

+ 𝑆𝑖𝑝𝑚𝑟)𝑦𝑟𝑗𝑘 

∀𝑖 ∈ 𝐼, ∀𝑝 ∈ 𝐼, i≠p, 𝑚 ∈ M,  (𝑖, 𝑚) ∉ 𝐷, (𝑝, 𝑚) ∉ 𝐷            (7) 
 

𝑡𝑖𝑚
𝑓

 -𝑡𝑝𝑚
𝑓

+ 𝜑(1 − 𝑥𝑝𝑗𝑘) + 𝜑(1 − 𝑥𝑖𝑗𝑘) + 𝜑(𝑧𝑖𝑝)

≥ ∑(𝑡𝑖𝑚𝑟

𝑅

𝑟=1

+ 𝑆𝑝𝑖𝑚𝑟)𝑦𝑟𝑗𝑘 

∀𝑖 ∈ 𝐼, ∀𝑝 ∈ 𝐼, i≠p, 𝑚 ∈ M,  (𝑖, 𝑚) ∉ 𝐷, (𝑝, 𝑚) ∉ 𝐷            (8) 

𝑡𝑖𝑚
𝑓

+ 𝜑 ∙ 𝑥𝑖𝑗𝑘 ≥ 𝑦𝑟𝑗𝑘 ∙ 𝑡𝑖𝑚𝑟      ∀𝑖 ∈ I ,   m ∈  M, j ∈ J, r ∈

R, (𝑖, 𝑚) ∉ 𝐷,k ∈ 𝐾(𝑖)                                                                 (9) 

∑ 𝑦𝑟𝑗𝑘 = 1𝑅
𝑟=1             ∀𝑗 ∈ J,     k ∈ K(𝑖)          (10) 

∑ ∑ 𝑦𝑟𝑗𝑘 = 1       r ∈ R 2
𝑘=1

𝐽
𝑗=1           (11) 

 
𝜔𝑖𝑚𝑗𝑘 ≥ 𝑥𝑖𝑗𝑘 − 𝑤𝑖𝑚𝑗𝑘     ∀𝑖 ∈ 𝐼, 𝑚 ∈ M, 𝑗 ∈ J, k ∈

𝐾(𝑖): (𝑖, 𝑚) ∉ 𝐷              (12) 

𝜙𝑖𝑚𝑗𝑘 ≥ 𝑤𝑖𝑚𝑗𝑘+1- ∑ 𝑥𝑝𝑗𝑘𝑝∈𝐼     ∀𝑖 ∈ 𝐼, 𝑚 ∈ M, 𝑗 ∈ J, k ∈

𝐾(𝑖): (𝑖, 𝑚) ∉ 𝐷                   (13) 

∑ 𝑧𝑖𝑝𝑝∈𝐼:𝑖≠𝑝,(𝑝,𝑚)∉𝐷 ≤ 𝑤𝑖𝑚𝑗𝑘+𝜑 ∙ 𝑥𝑖𝑗𝑘    ∀𝑖 ∈ 𝐼, 𝑚 ∈ M, 𝑗 ∈

J, k ∈ 𝐾(𝑖): (𝑖, 𝑚) ∉ 𝐷                                        (14) 
 

𝜑 ∙ 𝑥𝑖𝑗𝑘 ≥ 𝑤𝑖𝑚𝑗𝑘     ∀𝑖 ∈ 𝐼, 𝑚 ∈ M, 𝑗 ∈ J, k ∈ 𝐾(𝑖): (𝑖, 𝑚) ∉ 𝐷 

                                             (15) 

𝑡𝑖𝑚
𝑓

+ (𝜔𝑖𝑚𝑗𝑘+𝜙𝑝𝑚𝑗𝑘-1) ∙ 𝑆𝑖𝑝𝑚𝑟 ≤ 𝑐𝑚+𝜑(1-𝑥𝑖𝑗𝑘)+𝜑(1 −

𝑦𝑟𝑗𝑘)     ∀𝑖 ∈ I, 𝑝 ∈ I, r ∈ R, 𝑗 ∈ J,k ∈ 𝐾(𝑖) ∩ 𝐾(𝑝),m ∈

M: i≠p,(𝑖, 𝑚) ∉ 𝐷, (𝑝, 𝑚) ∉ 𝐷           (16) 

Constraint (3) ensures that each task is assigned to only one 
station. Constraint (4) enforces the precedence relationships 
among tasks. Constraint (5) guarantees that the finish time of 
each task for each product model in the set M does not exceed 
the cycle time. Constraint (6) ensures that a task i can only start 
once its immediate predecessor task h has finished. When tasks 
i and h are assigned to the same mated-station j, constraint (6) 

becomes 𝑡𝑖𝑚
𝑓

 -𝑡ℎ𝑚
𝑓

≥ ∑ 𝑡𝑖𝑚𝑟𝑦𝑟𝑗𝑘
𝑅
𝑟=1 . For each pair of tasks 

assigned to the same station (j, k), either constraint (7) or (8) 
becomes active. If task i is assigned earlier than task p, 

constraint (7) becomes 𝑡𝑝𝑚
𝑓

 -𝑡𝑖𝑚
𝑓

≥ ∑ (𝑡𝑝𝑚𝑟
𝑅
𝑟=1 + 𝑆𝑖𝑝𝑚𝑟)𝑦𝑟𝑗𝑘.  On 

the other hand, if task p is assigned earlier than task i, constraint 

(8) becomes becomes 𝑡𝑖𝑚
𝑓

 -𝑡𝑝𝑚
𝑓

≥ ∑ (𝑡𝑖𝑚𝑟
𝑅
𝑟=1 + 𝑆𝑝𝑖𝑚𝑟)𝑦𝑟𝑗𝑘.  

Constraint (9) guarantees that the finishing time of task i for a 
particular product model m is greater than or equal to the 
completion time of task i for all product models in the set M. 
Constraint (10) restricts the assignment of robots to stations 
such that only one robot can be assigned to a given station (j, k). 
Constraint (11) ensures that each robot can only be assigned to 
a single station. Constraint (12) verifies whether task i is the 
final task to be executed in a station, in the scenario where there 
are no successors to this task. Constraint (13) validates 
whether task i is the first task to be executed in a specific station 
when all the other assigned tasks are successors of task i. 

Constraint (14) ensures that the total number of successors 
that are executed in the same station for a given task 
corresponds to the number of tasks that are executed 
immediately after that task. Constraint (15) guarantees that a 
task has successors only if it is executed in the specified station. 
Lastly, constraint (16) verifies that the cycle time of the model 
is equivalent to the total setup time between the last task of the 
station and the first task. 

In this study, the power consumption of a robot is divided into 
two clear-cut categories: production mode and standby mode. 
Using  𝑃𝐶𝑟x 𝑡𝑖𝑚𝑟 it is possible to calculate the energy 
consumptions of robots for production mode. The energy 
consumed during the robot's active operation is referred to as 
the production mode, as explained by the first portion of 
Equation (2).  The second part of Equation (2) describes the 
energy consumed during the times between operations, which 
is interchangeable with the term "standby mode," and is 
referred to as the "standby power consumption". 10% of the 
robot's operation energy is used in standby mode each time 
unit [16]. The standby time formula (Eq. 17) is as follows: 

Standby time of the workstation= Cycle time of the assembly line 
– total process time of the workstation                                        (17) 

2 Proposed Hybrid Genetic Algorithm 

In this paper a new hybrid genetic algorithm (hGA) with 
adaptive local search scheme is proposed. The local search 
scheme is based on Yun [25]. At each generation the local 
search is applied based on the fitness value ratio, calculated as 
Equation (18): 

FVR(t) =
fnewpop(t)

fnewpop(t−1)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
                                                                           (18) 

Where fnewpop(t)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   signifies the mean fitness value of the freshly 

generated population resulting from the selection strategy that 
utilizes both the parent and offspring populations in generation 
t. The local search is applied if FVR(t) > 1, which means that 
algorithm is not converging and application of an adaptative 
local search is required. 

The key elements of proposed hGA are: 

 Initial population generation 
 Crossover 
 Mutation  
 Fitness evaluation and selection 
 Local search 

2.1 Initial population generation 

The first step of hGA is generating an initial population, that is 
a set of individuals. Each individual is a solution to the problem. 
Each one has a set of genes that form a chromosome. Solution 
representation of a MRTABLPS, which is depicted in Fig. 2, 
represented by four vectors [22]:  

“Robot assignment vector (R) shows the robots assigned to 
each station. R is number of robots, and it is a (1xR) vector. 

Task sequence vector (T) indicates task sequence according to 
precedence constraints. It is a (1xI) vector, where I is the 
number of assembly task.  

Side assignment vector (S), represents the side information of 
each task. It can be ‘l’ (for left) or ‘r’ (for right), if task i ∈ AE, it 
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is randomly assigned to the left side or right side. S vector is a 
(1xI) vector, where I is the number of assembly task.  

Breakpoint vector (B) is used to show the position in which a 
mated station stops.” (pp. 998-999). 

Figure 2. Solution representation of hGA 

The process for creating the initial population is described 
below to ensure sufficient variation. Firstly, the jobs with no 
preceding tasks are assigned. Then a task is randomly chosen 
and added to the first position of the T vector. The immediate 
successors of the selected task are added to the available task 
list. This process is repeated until there are no remaining tasks. 
It should be noted that the hGA algorithm only considers 
solutions within the defined search space, meaning that 
infeasible solutions are eliminated and that the precedence 
constraints in the T vector must be followed. If a task has a 
preferred side, it is allocated to that side; otherwise, a side is 
selected at random. The breakpoint vector and robot 
assignments are filled in a random manner. 

2.2  Crossover 

In this study several kinds of crossover operators are 
implemented. OX operator (shown in Fig. 3) which was 
proposed by Goldberg [26] is made for problems that are order 
based and it works as following: given the T vectors of each 
parent and a random selected position, first child inherits the 
left side (from start to the random chosen point) from a parent, 
and the rest is filled by the missing elements in the child in the 
order they appear in the other parent. The side vector (S) is also 
recombined accordingly. 

 

Figure 3. Illustration of the OX operator 

R vector uses the Partially Mapped Crossover (PMX) [27]. as 
crossover operator  This crossover operator chooses two genes 
(known as cut points) from each parent at random first. The 
genetic material from the second parent is replaced in order to 
construct the genetic material between the two cut points in the 
first parent. Then, outside of the cut points, the inverse 
replacement is used. As an illustration, the tours of the two 
parents with a random cut point between the second and third 
string element and another random cut point between the 
fourth and fifth string element are as follows: 

Parent 1 – [2 3 │5 6 │1 4] 

Parent 2 – [6 2 │ 4 1│3 5] 

The mapping sections are the substrings that lie between the 
cut points. The mappings in our example are specified as 5 ↔ 4 
and 6 ↔ 1. The second parent's mapping part is duplicated into 
the first offspring, while the first parent's mapping section is 
copied into the second offspring in this order. 

Offspring 1 – [x x│4 1│x x] 

Offspring 2 – [x x│5 6│x x] 

The elements of the i-th parent are then copied into offspring i 
(i = 1, 2) to finish it out. If a string is found in the offspring 
already, it is replaced in accordance with the mappings. 

Offspring 1 – [2 3 │4 1│6 5] 

We similarly get 

Offspring 2 – [1 2│5 6│3 4] 

Two types of crossovers are used for the B vector. At crossover 
phase they are chosen randomly. 

 The children get all the genes related to R, T and S vector to a 
parent and B from the other parent 

 Arithmetic Recombination: the two parents are combined here 
following an arithmetic recombination scheme. Given the two 
breakpoint vectors the children genes are the average values of 
the parents, rounded to the nearest integer. For example: 

Parent 1 – [1,5,9] 

Parent 2 – [1,3,8] 

Children will be 

(1+1)/2 = 1, (5+3)/2 = 4, (9+8)/2 = 8.5 (rounds to 9). 

Child – [1,4,9] 

In hGA two parents produce two children. It is also assumed 
that all children are feasible considering the problem 
constraints. For all individuals chosen to mate, the operators 
below are used or not with 50% probability. Detail working 
procedure of the crossover operators is presented below: 

Algorithm 1. Crossover 
  
Input: crossover_prob (crossover probability) and two parents 
(parent1 and parent2) 
    r ← random(0,1) 
    if r < crossover_prob 
 r2 ← random(0,1) 

if r2 < 0.5 
 op ← random(0,1) 

if op < 0.5 
  child1, child2 ← Arithmetic 

Recombination(parent1.B_vector, parent2. B_vector) 
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 else 
   child1 ← parent2.B_vector 

child2 ← parent1.B_vector 
 r2 ← random(0,1) 

if r2 < 0.5 
  child1. T_vector, child2. T_vector ← OX 
(parent1. T_vector, parent2. T_vector) 

if r2 < 0.5 
  child1. R_vector, child2. R_vector ← PMX 
(parent1. R_vector, parent2. R_vector) 
    endif 
Output: two children 

2.3 Mutation 

The mutation is the operator that guarantees diversification in 
the population. The mutation, typically a random process, 
involves altering a solution and is directed towards moving 
away from local optima. Mutation size is a parameter of the 
mutation function. Mutation can incite in none, one, two, three 
or four structures of the solution (robot assignment, tasks 
order assignment, side assignment and mated station 
assignment). The operators that will be used is based on a 
generated uniform number inside mutation function.  

Algorithm 2. Mutation 
  
Input: mutation_prob (mutation probability) and solution 
    size_mutation1 ← random(1, mutation_prob*num_stations) 
    size_mutation2 ← random(1, mutation_prob*num_tasks) 
    size_mutation3 ← random(1, mutation_prob*num_tasks) 
    size_mutation4 ← random(1, 
mutation_prob*num_mated_stations) 
    r ← random(0,1) 
    if r < 0.5 
 r2 ← random(0,1) 

if r2 < 0.5 
  solution ← swap_robots(solution, 
size_mutation1) 
 else 
 solution ← insert_robots(solution, size_mutation1) 
 endif 
    endif 
    r ← random(0,1) 
    if r < 0.5 
 r2 ← random(0,1) 

if r2 < 0.3 
  solution ← insert_task_random(solution, 
size_mutation2) 

elseif r2 < 0.6 
  solution ← insert_task_last (solution, 
size_mutation2) 
 else 
  solution ← insert_task_first(solution, 
size_mutation2) 
 endif 
    endif 
    r ← random(0,1) 
    if r < 0.5 
 solution ← swap_side(solution, size_mutation3) 
    r ← random(0,1) 
    if r < 0.5 
 solution ← move_breakpoint_vector(solution, 
size_mutation4) 
Output: Mutation solution 

2.3.1 Robot assignment 

If robot assignment structure (R vector) is called, there are two 
types of possible mutation movements: 

 •Swap: choose two stations randomly, and swap their robot 
assignment 

•Inserts: choose two stations randomly, and insert the first 
chosen robot in the position of the second  

The number of robots swaps or insertions are based on a 
random generated number.  

2.3.2 Task order assignment 

If tasks order structure (T vector) is called, a task is selected at 
random, and its evaluation involves determining how many 
positions it can move both to the left and right without reaching 
an immediate predecessor or successor. There are three types 
of possible mutation movements.  

•choose one position among those ones and insert the task in it  

•insert the task in the last possible position  

•insert the task in the first possible position  

The number of task insertions are based on a random generated 
number.  

2.3.3 Side assignment 

If side assignment structure (S vector) is called, a task that does 
not have preferred side at random is chosen and it is assigned 
to the opposite side. The number of station reassignments are 
based on a random generated number.  

2.3.4 Mated station assignment 

If mated station assignment structure (B vector) is called, one 
position is randomly selected in the breakpoint vector. The 
assessment involves determining the number of shifts it can 
make to the left or right without reaching the adjacent or final 
station. Among these potential shift values, one is selected to 
replace the current value. The number of mated station 
reassignments are based on a random generated number. A 
general schema of mutation operator is shown below: 

2.4 Fitness evaluation and selection  

The fitness value of an individual is the value of the objective 
function that is the sum of cycle times or total energy 
consumptions for all models. Selection is the process of 
selecting parents to breed their genes to produce child for next 
generation. In this study, it is used the binary tournament 
selection where two individuals at random are chosen, and the 
one with better (lower cycle time or lower total energy 
consumption) fitness will be selected to breed.  

2.5 Local search  

As mentioned in Section 3, it is recommended to integrate a 
local search method into the genetic algorithm loop. This will 
enhance the algorithm's ability to converge towards the 
optimal solution if the average fitness value in the current 
generation is greater than that of the previous one. This 
situation indicates that generations t and t-1 are not converging 
towards the optimal solution. 

This study makes use of the local search algorithm created by 
Aslan [22] for MRTALBPS-II. All of the following will be carried 
out during the local search phase until neither of them is able to 
come up with a better solution. When a move is made, only the 
portion that was affected by the move needs to be calculated 



 
 
 
 

Pamukkale Univ Muh Bilim Derg, XX(X), XX-XX, 20XX 
F. Author, S. Author, T. Author, F. Author 

 

8 
 

from scratch because each neighbourhood only deals with one 
portion of the solution.  

2.5.1 Robot assignment  

For time-based models, the station with the longest processing 
time is chosen for each model, and all the other robots are 
allocated to this station. Afterward, the robots that can achieve 
the shortest finish time are selected. 

In the case of energy-based model, the station with maximum 
total energy consumption for each model is selected and all 
other robots are assigned to this station. Then the robots 
providing the lowest total energy consumption is selected. 
During each iteration of the local search, only the two stations 
being considered for a swap need to be re-evaluated, as the 
statuses of the other stations remain unchanged. 

2.5.2 Task assignment  

In the context of the time-based model, the approach involves 
selecting the station with the longest completion time for each 
model. Then, for each job assigned to this station, starting with 
the first job, we examine all possible insertions in subsequent 
positions that do not violate precedence constraints. We choose 
the best task and insert it in the optimal location to minimize 
the overall finish time. 

In contrast, when using the energy-based model, the station 
that consumes the most energy across all models is picked. 
Similarly, for each job assigned to this station, beginning with 
the first job, we explore potential insertions in subsequent 
positions while ensuring precedence constraints are met. The 
goal is to find the best task and insert it in the optimal location 
to minimize overall energy consumption. It's important to note 
that only the worst-performing station needs to be reevaluated 
in each iteration of this local search because the others remain 
unchanged. 

2.5.3 Side assignment  

In the time-based model, the station with the longest finish time 
for each model is selected. Tasks without a favored direction 
assigned to this station are reversed, and the best assignment 
that minimizes the finish time is chosen.  

In the energy-based model, for each model, the station with the 
highest overall energy consumption is designated. Tasks 
without a favored direction assigned to this station are 
reversed as well, and the best assignment that minimizes the 
overall energy consumption is selected. Notably, only the least 
efficient station needs reevaluation in each iteration of this 
local search, as the others remain unchanged.  

2.5.4 Mated-station assignment  

In the time-based model, the station with the longest finish time 
for each model is chosen. The examination involves considering 
the option of moving the assigned matching station to both the 
left and right directions, and the breakpoint vector can be 
employed for this purpose.  

In the energy-based model, for each model, the station with the 
highest overall energy consumption is selected. The assessment 
includes exploring the possibility of relocating the assigned 
matching station in both left and right directions, with the aid 
of the breakpoint vector. 

The proposed hybrid genetic algorithm (hGA) is presented 
below in broad form: 

 

 

 

Algorithm 3. hGA algorithm 
  
Input: Algorithm parameters (population_size, 
mutation_prob, crossover_prob, local_search_prob) 
    Population ← [] 
    for k in range(0, population_size): 
 S ← Generate Initial Solution 
 Population ← Population + S 
    endfor 
    while(time_elapsed <= (num_tasks*num_tasks*60)/1000): 
        for k in range(0, population_size): 
 parent1 ← Get random solution from population 
 parent2 ← Get random solution from population 
 child1, child2 ← crossover(parent1, parent2, 
crossover_prob) 
 Population ← Population + child1 
 Population ← Population + child2 
        Endfor 
        Calculate FVR(t) 
        for k in range(0, population_size): 
 solution1 ← Get random solution from population 
 solution1’ ← mutation(solution1, mutation_prob) 
 if FVR(t) > 1 
  solution1’ ← local_search(solution1’, 
local_search_prob) 
 Population ← Population + solution1’ 
        endfor 
        Population ← Select population_size best elements from 
Population 
  endwhile 
Output: Total cycle time and total energy consumption of 
models and the detailed task and robot assignment 

 

3 Computational Experiments 

This section clarifies the methodology employed to evaluate the 
efficacy of hGA in addressing time and energy-based models. To 
evaluate the effectiveness of the hGA, a series of test problems 
were examined. These problems consisted of four small-sized 
problems (P9, P12, P16, and P24) and three large-sized 
problems (P65, P148, and P205). The issue numbers P9, P12, 
and P24 have been sourced from Kim et al. [28], while P16, P65, 
and P205 have been sourced from Lee et al. [29] Additionally, 
problem P148 has been taken from Bartholdi [8]. The study 
directions and priority diagrams utilized in the present study 
are derived directly from academic literature. 
The operation time for task i was generated randomly by Robot 
R within the range of [𝑡𝑖 × 0.8, 𝑡𝑖 × 1,2], and 𝑡𝑖 represented the 
original operation time in the study conducted by Özcan and 
Toklu [30] and Delice et. al. [31]. Sequence-dependent setup 
times’ random matrix was constructed by employing a uniform 
distribution of U[0,0.75*𝑚𝑖𝑛∀𝑖∈𝑁𝑡𝑖]. All models have the same 
overall unit number ratio (𝑞𝐴 = 𝑞𝐵  = . . . = 𝑞𝑚). The Robot R’s 
standby energy consumption was found to be 10% of its 
operational energy usage, as reported by Li et al. [17]. The 
energy consumption of robots during operation, measured in 
units of time, is provided in Appendix. 
 
Following plenty of initial experiments, the parameters for the 
hGA are established as given in Table 2: 
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Table 2. Parameters selected for the hGA 
Algorithm Parameters Range Selected 

Value 

hGA 

Population size 
Crossover probability 
Mutation probability 
Apply local search 
Local Search 
Probability 
 

50, 100, 200 
0.25, 0.5, 0.75 
0.1, 0.2, 0.3 
True, False 
0.1,0.2,0.3 

100 
0.75 
0.1 
True 
0.2 

The control parameters utilized for VNS are obtained from the 
publication of Aslan [22]. 

3.1 Comparison between hGA and MIP 

As it can be seen from Table 3, CPLEX could achieve 6 optimal 
solutions out of 9 instances of P9, P12, P16 and P24 in the case 
of time-based model. Furthermore, CPLEX gets 5 optimal 
solutions out of 9 instances of P9, P12, P16 and P24 in the case 
of energy-based model. This situation demonstrates the 
complexity of the considered problem. On the other hand, hGA 
reaches the optimal solutions for every instance of small-sized 
test problems that MIP found optimal solutions for both time 
and energy based models in short CPU times. 

 

 
Table 3. Optimal solutions for small problems obtained using CPLEX solver 

  CPLEX Solver hGA 

Problem Nm 

Time based model Energy based model 
Time based 

model 
Energy 

based model 

 

CT 
GAP 
(%) 

TEC 
CPU 

time(s) 
CT TEC 

GAP 
(%) 

CPU 
time(s) 

CT TEC CT TEC 
CPU 

time(s) 

P-9 2 8.6  8.0 1.42 10.6 7.5  2.34 8.6 8.0 10.6 7.5 0.81 

P-9 3 6.7  9.7 3.25 7.9 8.2  411.69 6.7 9.7 7.9 8.2 0.81 

P-12 2 12.7  15.5 10.84 18.2 12.9  64.59 12.7 15.5 18.2 12.9 1.44 

P-12 3 9.8  14.1 68.66 10.2 12.8  5,449.26 9.8 14.1 10.2 12.8 1.44 

P-16 2 39.6  44.5 115.97 51.6 38.7  635.44 39.6 44.5 51.6 38.7 2.56 

P-16 3 28  51.5 349.00 41.2 43.2 20 >7,200 28 51.5 40.3 44.0 2.56 

P-24 2 68.4 9.60 187.0 >7,200 111.6 179.0 18.73 >7,200 69.1 187.4 111.8 179.0 5.76 

P-24 3 46.7 23.63 174.8 >7,200 97 152.8 46.30 >7,200 48.8 174.6 86.0 151.6 5.76 

P-24 4 38.1 30.71 208.6 >7,200 60.7 164.4 70.33 >7,200 34.8 188.4 58.2 162.9 5.76 

Nm: number of mated stations; CT: cycle time; TEC: Total energy consumption; CPU: central processing unit 

3.2  Comparison between hGA and VNS 

As CPLEX is incapable of solving large-sized problems, it is 
conducted another experiment on large-sized problems (P65, 
P148, and P205) to compare the performance of hGA and 
variable neigborhood search algorithm (VNS) which was 
proposed by Aslan [22] for MRTALBPS-II. One might see that 
the time required to compute the time-based model is 
significantly lower than the time required to compute the 
energy-based model from Table 3. Therefore, the CPU time for 
large problems experiments is set to be NT × NT × 30 ms for 
time based model and NT × NT × 60 ms for energy based model. 

In the experiment, each algorithm was applied to solve the 
given cases ten times, and the outcomes were documented for 
each run. The processing times were then converted to relative 
percentage deviations (RPD) based on a formula (Eq. 19), 
which compares the cycle time or total energy consumption of 
one combination 𝐹𝑖𝑡𝑠𝑜𝑚𝑒 to the best cycle time or best total 
energy consumption of all combinations 𝐹𝑖𝑡𝑏𝑒𝑠𝑡 . 

               RPD = 100 × (𝐹𝑖𝑡𝑠𝑜𝑚𝑒 − 𝐹𝑖𝑡𝑏𝑒𝑠𝑡) / 100                        (19)                                                                         

Table 4 shows the average RPD values for large-sized instances 
in ten repetitions for two algorithms that were tested. Table 4 
demonstrates that the hGA outperformed the VNS algorithm for 
both time-based and energy-based models.  In order to assess 
the statistical significance of the observed variances, a non-
parametric Mann-Whitney U test is utilized due to the violation 
of normality in the residuals. Due to significant fluctuations in 
algorithm performance across various instances, this study 
adopts the average Relative Percentage Deviation (RPD) of all 
instances within a single run as the chosen response variable. 
Table 5 shows that the p-values in two categories are 
significantly less than 0.05, indicating the presence of 
significant differences in the solution qualities between hGA 
and the VNS. This confirms the proposed hGA's superiority 
from a statistical perspective.
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Table 4. Average RPD values of compared algorithms 

Problem Nm 
Time based model Energy based model 

VNS hGA CPU 
time(s) 

VNS hGA CPU time(s) 

P-65 4 5.31 3.35 126.75 5.79 4.51 253.5 

P-65 5 9.65 9.36 126.75 11.65 4.86 253.5 

P-65 6 8.76 2.85 126.75 11.61 10.61 253.5 

P-65 7 9 5.32 126.75 5.56 7.73 253.5 

P-65 8 2.41 4.97 126.75 6.8 7.81 253.5 

P-148 4 5.32 3.34 657.12 5.26 2.35 1,314.24 

P-148 5 4.04 2.9 657.12 8.68 6.04 1,314.24 

P-148 6 9.2 1.59 657.12 21.16 7.37 1,314.24 

P-148 7 11.74 9.43 657.12 19.99 8.28 1,314.24 

P-148 8 16.37 11.18 657.12 12.48 9.11 1,314.24 

P-148 9 15.23 19.3 657.12 27.68 15.02 1,314.24 

P-148 10 17.94 19.07 657.12 17.84 14.8 1,314.24 

P-148 11 7.86 0.5 657.12 11.45 7.79 1,314.24 

P-148 12 11 9.77 657.12 17.69 9.16 1,314.24 

P-205 4 6.12 0.48 1260.75 4.25 3.73 2521.5 

P-205 
5 4.99 2.04 1260.75 18.02 4.81 2521.5 

P-205 6 19.85 11.48 1260.75 5.01 7.64 2521.5 

P-205 
7 14.11 6.35 1260.75 9.49 1.89 2521.5 

P-205 
8 14.96 16.94 1260.75 26.63 13.18 2521.5 

P-205 
9 17.71 7.47 1260.75 32.68 11.27 2521.5 

P-205 
10 22.02 7.93 1260.75 5.94 9.18 2521.5 

P-205 
11 13.95 12.18 1260.75 16.71 8.19 2521.5 

P-205 
12 10.26 8.42 1260.75 15.02 18.99 2521.5 

P-205 
13 21.34 13.87 1260.75 15.04 19.69 2521.5 

P-205 
14 12.57 4.46 1260.75 7.63 8.71 2521.5 

Average 
RPD 

 11.67 7.78  13.60 8.91  

 

 

Table 5. Outcomes of Mann-Whitney U test between hGA and VNS 

   

 

 

 

                                  a)Time-based model outcome                      b) Energy-based model outcome 

Mann-Whitney U 188.500 

Wilcoxon W 513.500 

Z -2.406 

Asymp. Sig. (2-tailed) .016 

Mann-Whitney U 20.250 

Wilcoxon W 527.500 

Z -2.134 

Asymp. Sig. (2-tailed) .033 
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3.3 Performance of two models proposed 

The time-based and energy-based models are assessed based 
on cycle time and total energy consumption, with Tables 3 and 

6 presenting the results for small and large problems, 
respectively. Table 3 and 6 present the results produced by hGA 
those are the best cycle times and total energy consumptions 
throughout the course of 5 runs.

  
Table 6. Total energy consumption and cycle time for large datasets 

hGA 

Problem Nm 
Time based model Energy based model 

CT TEC CPU time CT TEC CPU time 

P-65 4 1024.8 2,370.4 126.75 1,541.3 2,100.0 253.5 

P-65 5 851.5 2,146.7 126.75 1,507.7 493.8 253.5 

P-65 6 729.4 2,717.6 126.75 1,530.5 703.4 253.5 

P-65 7 665.6 3,209.9 126.75 1,549.1 2,363.4 253.5 

P-65 8 584.1 4,027.2 126.75 1,537.7 2,903.1 253.5 

P-148 4 1964.1 20,003.2 657.12 2,415.2 19,529.2 1,314.24 

P-148 5 1823.8 23,757.0 657.12 1,874.7 22,980.8 1,314.24 

P-148 6 1015.0 22,515.3 657.12 1,108.2 21,274.7 1,314.24 

P-148 7 1005.8 22,007.6 657.12 1,319.9 19,618.0 1,314.24 

P-148 8 841.5 24,230.2 657.12 1,083.1 20,072.3 1,314.24 

P-148 9 850.2 24,355.2 657.12 920.5 20,401.1 1,314.24 

P-148 10 710.0 22,728.2 657.12 946.4 19,961.0 1,314.24 

P-148 11 684.7 22,943.2 657.12 766.1 20,592.0 1,314.24 

P-148 12 588.3 22,424.2 657.12 712.4 19,667.4 1,314.24 

P-205 4 11,936.0 136,593.6 1260.75 13,878.6 135,465.0 2521.5 

P-205 
5 11,034.4 151,199.7 1260.75 13,720.6 148,064.7 2521.5 

P-205 
6 6,103.8 155,496.3 1260.75 8,853.1 145,214.3 2521.5 

P-205 
7 5,282.1 156,402.5 1260.75 8,461.8 153,083.9 2521.5 

P-205 
8 4,688.2 146,052.8 1260.75 4,879.1 139,458.2 2521.5 

P-205 
9 4,198.5 171,601.5 1260.75 5,333.0 141,842.7 2521.5 

P-205 
10 4,152.3 159,528.2 1260.75 5,384.7 136,470.6 2521.5 

P-205 
11 3,620.5 153,962.5 1260.75 4,342.4 138,707.0 2521.5 

P-205 
12 3,360.9 155,317.9 1260.75 4,671.9 139,209.5 2521.5 

P-205 
13 3,062.4 153,116.7 1260.75 3,092.5 144,065.4 2521.5 

P-205 
14 2,940.7 151,940.0 1260.75 4,049.5 141,615.8 2521.5 

 

The average energy consumption of time-based model is 77 kJ 
for small problems and 76,426 kJ for large problems. On the 
other hand, average energy consumption of energy-based 
model is 69 kJ for small problems and 70,234 kJ for large 
problems. The average energy savings is found to be 8 kJ for 
small problems and 6,192 kJ for the large problems. It is 
observed from Fig. 6 and 7 that when task number increases 
energy saving also increases. Furthermore, the average cycle 

time of time-based model is 29 units for small problems and 
2,949 units for large problems, whereas the average cycle time 
of energy-based model is 44 units for small problems and 3,819 
units for large problems. The average cycle time reduction is 
found to be 15 units for small problems and 870 units for large 
problems. Fig. 8 shows the cycle time comparison between time 
based and energy based models for small and large problems. 
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                                           a                                                                                                                 b 

Fig. 6. a) Comparision of the energy usage of two models in small problems 
            b) Comparision of the energy usage of two models in large problems 

 

 
                                             a                              b 

Fig. 7.  a) The possible energy savings for the energy-based model in small problems 
             b) The possible energy savings for the energy-based model in large problems 
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 a         b 

Fig. 8. a) Comparision of the cycle time of two models in small problems 
            b) Comparision of the cycle time of two models in large problems

 

4 Conclusion 

Today’s globalized and competitive world requires 
organizations to have an ever-increasing performance to 
remain existing. Energy and energy costs for manufacturers are 
an important key to global competition. Due to the rising energy 
costs, manufacturing industries place significant emphasis on 
reducing energy consumption and promoting an 
environmentally sustainable workplace. Therefore, optimizing 
consumption of energy and cycle time is an important issue for 
manufacturing systems.  

This paper enhances Aslan's [22] mixed-integer programming 
model for MRTALBPS-II by introducing a new objective 
function to calculate total energy consumption. It proposes an 
effective hybrid genetic algorithm (hGA) with an adaptive local 
search to solve large instances efficiently. Unlike prior studies 
focused on cycle time and cost, this research aims to 
simultaneously minimize cycle time and total energy usage in 
robotic assembly line balancing. A comparative analysis reveals 
that the proposed hGA outperforms the VNS algorithm from 
Aslan [22]. Furthermore, this study presents models with a dual 
focus on time and energy, essential factors in manufacturing 
operations, aimed at enhancing efficiency and minimizing 
energy consumption. The emphasis between time and energy 
may shift across various time periods based on management's 
priorities. Accordingly, the suitable model can be chosen based 
on the priority established by management. 

In future works, energy efficient MRTALBPS-II studied in this 
paper can be solved by multi-objective evolutionary 
algorithms. Furthermore, the problem presented in this paper 
exclusively addresses robotic assembly lines. Nevertheless, 
there is a growing interest among manufacturing enterprises in 
human-robot collaboration. Therefore, future research 
endeavors could explore more realistic scenarios, 
incorporating aspects such as the interaction between human 
workers and robots. 
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Appendix 
 

Power consumptions of robots per time unit (kJ) 
Problem Nm R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 

P9 2 0.25 0.4 0.3 0.35 - - - - - - - - - - 
P9 3 0.3 0.35 0.3 0.4 0.25 0.4 - - - - - - - - 

P12 2 0.25 0.4 0.3 0.35 - - - - - - - - - - 
P12 3 0.25 0.4 0.3 0.35 0.3 0.4 - - - - - - - - 
P12 4 0.3 0.35 0.3 0.4 0.35 0.3 0.3 0.4 - - - - - - 
P12 5 0.3 0.35 0.3 0.4 0.35 0.3 0.3 0.4 0.3 0.4 - - - - 
P16 2 0.25 0.4 0.3 0.3 - - - - - - - - - - 
P16 3 0.3 0.4 0.4 0.3 0.3 0.35 - - - - - - - - 
P16 4 0.2 0.3 0.25 0.4 0.35 0.4 0.3 0.3 - - - - - - 
P16 5 0.3 0.2 0.3 0.25 0.25 0.35 0.4 0.4 0.3 0.25     
P24 2 0.5 0.8 0.8 0.9 - - - - - - - - - - 
P24 3 0.7 0.5 0.8 0.9 0.5 0.6 - - - - - - - - 
P24 4 0.8 0.9 0.5 0.9 0.7 0.5 0.8 0.6 - - - - - - 
P24 5 0.9 0.8 0.6 0.8 0.9 0.5 0.5 0.7 0.6 0.9 - - - - 
P65 4 1.4 1.7 1.5 1.7 1.3 1.5 1.4 1.6 - - - - - - 
P65 5 1.2 1.6 1.1 1.2 1.5 1.7 1.4 1.8 1.7 1.6 - - - - 
P65 6 1.5 1.7 1.1 1.4 1.1 1.2 1.5 1.7 1.4 1.8 1.7 1.3 - - 
P65 7 1.8 1.4 1.5 1.7 1.1 1.4 1.5 1.8 1.3 1.6 1.1 1.7 1.2 1.4 
P65 8 1.5 1.8 1.1 1.7 1.3 1.6 1.2 1.6 1.8 1.3 1.7 1.3 1.6 1.3 

P148 4 1.8 2.4 1.6 1.5 1.7 1.5 1.7 2.1 - - - - - - 
P148 5 2.1 2.2 1.8 2.4 1.6 1.5 2 2.3 2.4 2.5 - - - - 
P148 6 2.4 1.5 2.4 1.9 1.6 2 2.1 2 2.2 2.3 2.1 1.5 - - 
P148 7 2.2 2.1 2 2.4 1.9 2.4 1.7 1.5 1.7 2.1 2.2 1 1.7 2.3 
P148 8 2.4 2.2 1.8 1.5 2.1 1.9 2.4 1.9 1.6 2 2.1 2 2.2 2.4 
P148 9 2.2 1.6 1.7 2.4 1.7 1.7 2.4 2.1 2 2.2 2.3 1.9 2.1 1.8 
P148 10 2.4 1.6 1.5 2.4 1.5 2.4 1.9 1.6 2 2.1 2 2.2 2.3 2.1 
P148 11 1.6 2 2.1 2 2.2 1.7 2.1 2.1 2 2.2 2.3 1.9 2.1 1.9 
P148 12 2.3 2.2 1.6 1.7 2.4 2.3 1.6 2 2.2 1.7 2.1 1.7 1.6 1.7 
P205 4 1.8 2 2.9 1.8 2.4 2.1 2.4 2.2 - - - - - - 
P205 5 2 2.8 2 2.7 2.3 2.5 2.5 2.6 2.1 1.8 - - - - 
P205 6 2.1 2.9 2.5 2.8 1.9 1.9 2.4 2.3 2.5 2.2 2 2.5 - - 
P205 7 2.4 2 2.3 2.7 2.3 2.6 2.4 2.5 2.4 2.1 2.3 1.9 2 2.3 
P205 8 2.2 2.5 2.1 2.7 1.9 2 2.3 2.9 2.2 2.4 2.2 2.7 1.8 2.9 
P205 9 2.8 2.2 2.4 2.3 2.4 2.6 2.4 1.9 2 2.2 2.3 1.9 2.6 3 
P205 10 2 2.9 1.8 2.4 2.3 2.9 2.2 2.1 2.2 2.9 2.5 2.8 1.9 1.9 
P205 11 1.8 1.8 1.9 2.4 2.9 2.2 2.4 2.2 2.8 2 2.7 2.9 2.7 2.2 
P205 12 2.2 2.8 2.7 2.5 2.3 1.9 2 2.3 2.9 2.3 2.6 2.4 2.5 2.4 
P205 13 2.7 2.3 2.6 2.4 2.5 1.8 1.9 2.4 2.1 2.2 2 2.1 2.9 2.2 
P205 

 
14 2.3 1.9 2.3 2.1 2.2 2 2.1 2.9 2.2 2.8 2.7 2.5 2.1 2.8 

 
Problem 

 
Nm R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 

  
P65 8 1.1 1.5 - - - - - - - - - - - - 

P148 8 1.7 1.5 - - - - - - - - - - - - 
P148 9 1.8 1.5 2.1 1.9 - - - - - - - - - - 
P148 10 1.5 1.9 2.1 1.8 2.1 1.7 - - - - - - - - 
P148 11 2.4 1.9 1.6 2.2 2.3 2.1 1.5 1.6 - - - - - - 
P148 12 1.7 2.4 2.2 1.8 1.5 2.1 1.9 1.8 2.4 1.7 - - - - 
P205 8 2.2 1.9 - - - - - - - - - - - - 
P205 9 2.7 2.5 2.5 2.5 - - - - - -     
P205 10 1.9 2 2.3 2.9 2.2 2.4 - - - - - - - - 
P205 11 2.8 2.1 2.7 2.6 2.7 2.9 2.7 2.2 - - - - - - 
P205 12 1.8 1.9 2.4 2.9 2.2 2.8 2.7 2.5 2 2.9 - - - - 
P205 13 2.8 2.7 2.5 2.1 2.5 2.6 2.1 1.8 2.1 2.9 2.5 2.5 - - 
P205 14 3 2.1 2.4 2.7 2.9 2.2 2.1 2.2 2.8 2.1 2.7 2.6 2.7 2.9 

 


