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Abstract  Öz 

Multi-Criteria Decision Making (MCDM) methods provide systematic 
approaches for evaluating alternatives under multiple criteria. 
Determining the relative importance of criteria is a critical step that 
directly affects the reliability of the obtained results. In this study, the 
Extended Standard Deviation (ESD) method is proposed to overcome 
the limitations of the classical Standard Deviation (SD) method. The 
proposed method offers a more comprehensive weighting process by 
considering not only the internal variations of individual criteria but 
also their effect with comprehensive value of all criteria. Unlike 
conventional SD, the ESD method calculates weights based on both the 
individual distributions of criteria and their effects on other criteria. 
This approach enables a more holistic evaluation of the degree of 
contrast among criteria and the overall structure of the dataset. The 
primary objective of this study is to conduct a comparative analysis of 
the proposed method against the classical SD method and other widely 
used objective weighting techniques, thereby identifying their 
respective advantages and limitations. To assess the applicability of the 
proposed method, sensitivity, comparative, and simulation analyses 
were performed, and the method was statistically evaluated by applying 
it to different decision matrices. The findings indicate that the proposed 
method provides a robust and reliable alternative in objective 
weighting processes. 

 Çok Kriterli Karar Verme (MCDM) yöntemleri, birden fazla kriter 
altında alternatifleri değerlendirmek için sistematik yaklaşımlar sunar. 
Kriterlerin göreli öneminin belirlenmesi, elde edilen sonuçların 
güvenilirliğini doğrudan etkileyen kritik bir adımdır. Bu çalışmada, 
klasik Standart Sapma (SD) yönteminin sınırlamalarını aşmak 
amacıyla Genişletilmiş Standart Sapma (ESD) yöntemi önerilmektedir. 
Önerilen yöntem, yalnızca bireysel kriterlerin içsel varyasyonlarını 
değil, aynı zamanda diğer kriterlerle olan karşılıklı ilişkilerini de 
dikkate alarak daha kapsamlı bir ağırlıklandırma süreci sunmaktadır. 
Geleneksel SD'nin aksine, ESD yöntemi, kriterlerin bireysel dağılımlarını 
ve bunların bütünsel olarak diğer kriterler üzerindeki etkilerini dikkate 
alarak ağırlıkları hesaplamaktadır. Bu yaklaşım, kriterler arasındaki 
karşıtlık derecesinin ve veri kümesinin genel yapısının daha bütünsel bir 
değerlendirilmesini sağlar. Bu çalışmanın temel amacı, önerilen 
yöntemi klasik SD yöntemi ve diğer yaygın kullanılan objektif 
ağırlıklandırma teknikleri ile karşılaştırmalı bir analiz yaparak her 
birinin avantajlarını ve sınırlamalarını belirlemektir. Önerilen 
yöntemin uygulanabilirliğini değerlendirmek için duyarlılık, 
karşılaştırmalı ve simülasyon analizleri yapılmış ve yöntem, farklı karar 
matrislerine uygulanarak istatistiksel olarak değerlendirilmiştir. Elde 
edilen bulgular, önerilen yönteminin objektif ağırlıklandırma 
süreçlerinde güçlü ve güvenilir bir alternatif sunduğunu 
göstermektedir. 

Key words: Standard deviation (SD), Extended standard deviation 
(ESD), Intrinsic distinction, External distinction 

 Anahtar kelimeler: Standard sapma (SD), genişletilmiş standart 
sapma, içsel dağılım, dışsal dağılım 

1 Introduction 

Multi-Criteria Decision Making (MCDM) methods are among the 
systematic approaches that enable the evaluation of alternatives 
under different criteria [1]. Determining the relative importance 
of criteria is a crucial phase that without any intermediary steps 
influences the reliability of obtained results in decision-making 
processes [2]. In the weighting process of criteria, two 
fundamental approaches are employed: subjective and 
objective methods [3]. Subjective approaches rely on the 
personal experience and expertise of decision-makers, whereas 
objective techniques calculate weights directly from the dataset 
using mathematical models [4]. In this context, objective 
weighting methods reduce dependence on the decision-maker, 
providing a more impartial and data-driven evaluation [5]. 

Among objective weighting methods, approaches such as 
Standard Deviation (SD) [6], ENTROPY [7], CRITIC (Criteria  
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Importance Through Inter-Criteria Correlation) [8], SVP 
(Statistical Variance Procedure) [9], MEREC (Method Based on 
Removal Effects of Criteria) [10], and LOPCOW (Logarithmic 
Percentage Change-driven Objective Weighting) [11] stand out. 
The SD is a statistical approach that determines weights based 
on the level of variation in criteria. The fundamental assumption 
of this method is that a criterion carries more information in the 
decision-making process if its data exhibit greater variability 
[11]. However, the classical SD method only considers the 
internal variations of the criteria and disregards the variances 
of other criteria. This limitation prevents the method from fully 
reflecting the holistic structure of the decision matrix and 
restricts the analysis of differences among alternatives to a 
limited perspective. 

In this study, the Extended Standard Deviation (ESD) method is 
proposed to overcome the limitations of the classical SD 
method. The proposed method offers a more comprehensive 
weighting process by not only considering the internal 
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variations of the criteria but also taking into account the values 
of other criteria in a holistic sense. Accordingly, the ESD method 
calculates weights based on both the individual distributions of 
criteria and the influence of other criteria. As a result, the degree 
of contrast among criteria and the overall structure of the 
dataset are evaluated from a more holistic perspective. 

The primary motivation of this study is to conduct a 
comparative analysis of the proposed method with the classical 
SD and other widely used objective weighting methods, thereby 
identifying their strengths and constraints. Sensitivity, 
comparative, and simulation analyses were conducted to 
examine the proposed approach, demonstrating that it is 
sensitive, reliable, and robust. The findings suggest that the 
presented methodology offers considerable promise for 
practical use by those in decision-making roles.  The paper 
commences with an extensive survey of diverse objective 
weighting methodologies documented in existing research.  
Subsequently, it provides a thorough exposition of the 
mathematical principles underpinning the proposed technique.  
The efficacy of this method is then evaluated through the 
implementation of several assessment strategies, with its 
performance benchmarked against both the traditional SD 
method and other frequently utilized objective weighting 
approaches.  The study culminates in a discussion of the results 
obtained and proposes avenues for subsequent scholarly 
investigation. 

2 Material and method 

2.1 Different objective criteria weighting methods and 
their properties 

Selecting from a range of options is a fundamental aim of 
decision process.  In these circumstances, the performance of 
alternatives often varies across different criteria [13].  
Consequently, accurately identifying the relative importance of 
these factors is crucial for a robust evaluation of alternatives 
and optimal decision-making [14].  This stems from the fact that, 
in conventional MCDM problems, the importance of each 
criterion is typically expressed through assigned weight 
coefficients [15]. 

Subjective approach usually stems from the individual 
assessments and experiences of specialists, rendering them 
intrinsically susceptible to personnel biases.  As a result, these 
weights can vary considerably between individuals [3]. While 
expert opinions are frequently employed to establish these 
coefficients, a reliance solely on subjective evaluations can 
introduce inconsistencies and biases into the decision-making 
process [4]. In contrast, objective weighting methods mitigate 
such subjectivity and uncertainty by utilizing mathematical 
models and data from the decision matrix to measure criterion 
weights. Essentially, objective approaches integrate the 
inherent structural characteristics of the data into the weighting 
procedure, promoting a more consistent and dependable 
evaluation [5]. 

The MCDM literature includes a diverse array of objective 
weighting methods, such as CRITIC [16], ENTROPY [17], SVP   
[18], SD [19], MEREC [20], and LOPCOW [21]. The CRITIC 
method is primarily founded on the principle of extracting 
meaningful information from a given system [22]. It suggests 
that the more distinctive or variable a criterion is relative to 
others, the more influential it becomes [23]. In this context, the 
CRITIC method emphasizes the relationships between criteria. 
By examining the correlations between criteria, the method 
seeks to identify potential inconsistencies or contradictions. 

These discrepancies are then addressed by weighting the 
criteria according to their standard deviations, enabling the 
systematic calculation of weight coefficients [8]. The procedure 
begins with constructing a decision matrix, which is then 
subjected to normalization. Following this step, the correlations 
among criteria are analyzed to compute their respective weight 
values [24]. 

The ENTROPY method is a valuable technique in decision-
making, providing a structured framework for determining the 
relative significance of criteria. This approach begins with the 
construction of a decision matrix, followed by the computation 
of standardized values. Subsequently, the ENTROPY measure is 
applied to assess the level of uncertainty or disorder associated 
with each criterion, thereby capturing the amount of 
information it conveys [25]. By leveraging these standardized 
values along with the computed ENTROPY measure, the method 
assigns weights to criteria based on the extent of variability in 
the data. Criteria exhibiting greater variability are assigned 
higher weights [26].  This systematic process ensures a more 
objective and data-driven weight allocation, enabling decision-
makers to make more informed and well-balanced evaluations 
[27]. The SD method determines criterion weights by assessing 
how much each criterion's values deviate from their arithmetic 
mean. The procedure starts by standardizing the data through 
the normalization process. Once normalization is complete, the 
SD for each criterion is computed, and these values are then 
used to assign weights accordingly [28]. The SVP method, on the 
other hand, calculates criterion weights based on the variances 
derived from the decision matrix data [12]. Since a higher 
variance indicates greater importance in the decision-making 
process, the weight assigned to a criterion increases as its 
variance grows. This approach ensures that criteria with higher 
variability exert a stronger influence on the overall evaluation 
[29]. The LOPCOW method adopts a multidimensional 
framework to identify the most suitable criterion weights, while 
simultaneously aiming to minimize the gap between the highest 
and lowest priority criteria [30]. Furthermore, the method takes 
into account the interdependencies among criteria. The process 
begins with the construction of the decision matrix, followed by 
the normalization of its values. Next, the method calculates 
average squared score as a proportion of each criterion’s SD 
metric, thereby mitigating the effects of differences in data scale. 
This structured methodology ultimately results in the 
determination of weight coefficients for each criterion [11]. The 
MEREC method, consistent with other weighting 
methodologies, initiates with the development and subsequent 
normalization of the decision matrix.  Subsequently, the overall 
performance scores for the decision alternatives are 
determined using a framework that integrates natural 
logarithms [31]. These performance scores are then refined by 
considering the contribution of each decision alternative, with 
further calculations employing the natural logarithm function. 
In the final stage, the weight coefficients for the criteria are 
established by assessing the removal impact of each criterion, 
expressed as the sum of absolute deviations. Furthermore, a 
criterion's weight coefficient increases proportionally with its 
influence on the decision alternatives [10]. 

2.2 SD method 

SD is a statistical parameter that measures how observations in 
a dataset are distributed around the mean [32]. In other words, 
it is a measure of dispersion that indicates how far each data 
point deviates from the arithmetic mean [33]. Thus, SD uses the 
mean as a reference point and quantifies variability by 
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considering the distance between each value and the mean [34]. 
Consequently, researchers can determine whether values 
cluster closely around the mean or are widely dispersed using 
SD [35]. In other words, if all observations in a dataset are close 
to the arithmetic mean, the SD is low; if the observations are 
spread over a wide range, the SD is high [36]. 

SD is defined as the square root of variance [37]. Variance is 
calculated as the mean of the squared deviations of all 
observations in a dataset from the arithmetic mean [38–40]. 
Accordingly, SD can be computed in two ways: as the population 
SD and as the sample SD. The SD is calculated using Equation 1 
when the sample size is greater than 30 (n > 30), whereas the 
sample SD is determined using Equation 2 when the sample size 
is less than 30 (n < 30) [41,42]. 

𝜎: Standard deviation 

𝑛: sample size 

𝑋: Each observation in the dataset 

𝑋̅:  Sample mean 

𝜎 = √
∑(𝑋 − 𝑋̅)2

𝑛
         (1) 

𝜎 = √
∑(𝑋 − 𝑋̅)2

𝑛 − 1
           (2) 

SD has several universally accepted properties. First, since SD is 
the square root of variance, it cannot assume negative values. 
The minimum value of SD can be zero, which indicates that all 
observations are identical and, therefore, no variability exists 
[43]. Second, SD is expressed in the same unit as the dataset 
from which it is measured [39]. Third, as it is calculated by 
considering all units in a dataset, SD is one of the most widely 
used and reliable measures of dispersion in practice [44]. 
Fourth, SD is evaluated in relation to the mean. A small SD 
indicates that the data points are clustered close to the mean, 
whereas a large SD suggests that the data are widely dispersed 
[45]. Fifth, SD is sensitive to outliers. Consequently, if a dataset 
contains extreme values (outliers), the SD may be significantly 
affected. Therefore, it is recommended to conduct an outlier 
analysis before calculating SD [46]. Sixth, in relation to normal 
distribution, SD represents the probabilistic distribution of 
values around the mean. In a normally distributed dataset, 
approximately 68% of the values fall within ±1 SD of the mean, 
95% within ±2 SD, and 99.7% within ±3 SD’s [47–48]. Seventh, 
SD is sensitive to changes in scale. If all data points in a dataset 
are multiplied by the same factor, the SD will also be multiplied 
by the same factor [49]. 

2.3 SD method in criterion weighting 

SD represents the square root of variance value, which explains 
the mean of the squared differences between data values and 
their arithmetic mean. However, within the SD method, the scale 
differences of the data are crucial when calculating the 
significance levels or weight coefficients of criteria. Therefore, it 
is necessary to normalize the scores of criteria [29]. In the SD 
method, the significance levels of the criteria are objectively 
determined based on their respective SD values [8]. The weight 
coefficients of the criteria are calculated by dividing each 
criterion’s SD by the total SD of all criteria. Thus, the 
fundamental principle of this approach is grounded in the 
deviation of the criteria values from their arithmetic mean [50]. 

The calculation of weights scores in the SD method relies on 
fundamental mathematical phases and is not subject to any 
criterion constraints [51]. Moreover, the SD method mitigates 
the influence of decision-makers' subjectivity, thereby enabling 
more effective utilization of decision-related information [12]. 
In this regard, some studies in the literature that have applied 
the SD method for assigning weights to criteria is outlined in 
Table 1. 

Table 1. SD studies 

Author 
(s) 

Technique(s) Theme 

[52] SD (weighting) 
Proposal for a novel 
methodology in MCDA 
analysis. 

[53] 

SD and Modified 
Integrated 
Weighting 

based COPRAS 

Achieving sustainable 
development through a 
modified integrated 
weighting MCDM model 
for the ranking of 
agrarian datasets. 

[54] 

SD, ENTROPY, 
CRITIC, AHP 

based COCOSO, 
TOPSIS, VIKOR 

and MOORA 

Assessment of robot  

[55] 
SD, IFI and RS 

besed MARCOS 
Evaluation of Hospital 
site 

[56] 
MW, PSI, SD, 
ENTROPY, 

CRITIC, MEREC 

Prioritization of 
watersheds for 
evaluating flood risk 

[57] 
Entropy, 

CRITIC, SD 

Comperative analysis of 
SD, ENTROPY and 
MEREC 

[58] 

SD and 
ENTROPY  

based Fuzzy 
TOPSIS 

Establishing of industrial 
location 

[59] 
SD, ENTROPY, 
MEREC based 

SAW 

Analysis of electric 
vehicle  

[60] 

ENTROPY, SD 
and rho based 

TOPSIS, VIKOR, 
COPRAS, and 

PROMETHEE II 

Comparative analysis of 
MCDM methods 

[61] 

SD, CRITIC, 
ENTROPY, 

BWM, EW and 
rho based 
ORESTE, 

TOPSIS, VIKOR, 
WSM 

Analysis of sustainable 
energy 

The application steps of the SD method are based on simple 
mathematical operations. Accordingly, the implementation 
steps of the method are explained below [12,29]. 

𝐶𝑟: 𝑟 − 𝑡ℎ evaluation criterion 
𝑎𝑝𝑟: value of the 𝑝 − 𝑡ℎ alternative according to the 𝑟 − 𝑡ℎ 

evaluation criterion 
𝜎𝑟: standard deviation of the 𝑟 − 𝑡ℎ criterion (𝑟 =  1, 2,… , 𝑛) 
𝑤𝑟: weight of the 𝑟 − 𝑡ℎ evaluation criterion (𝑟 =  1, 2, … , 𝑛) 
𝑘𝑝𝑟: Normalized score of 𝑎𝑝𝑟 

Step 1: Construction of the Decision Matrix (𝐷𝑀) 
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As the initial step, the decision matrix is formulated based on 
Equation 3. 

      𝐷𝑀 =

[
 
 
 
 
𝐶1

𝑎 11

𝐶2

𝑎 12
⋯

𝐶𝑛

𝑎 1𝑛

𝑎21

⋮
𝑎𝑚1

𝑎22

⋮
𝑎𝑚2

⋯
⋮
⋯

𝑎2𝑛

⋮
𝑎𝑚𝑛 ]

 
 
 
 

       (3) 

Step 2: Normalization phase (𝐷𝑀∗) 
In the second phase, the 𝐷𝑀 values are computed using the 
vector normalization technique, as applied in Equation 4. 

      𝑘𝑝𝑟 =
𝑎𝑝𝑟

√∑ 𝑎𝑝𝑟
2𝑚

𝑝=1

   
      (4) 

Step 3: Calculation of the SD Values of the Criteria) (𝜎𝑟)  
At this stage, the SD of each criterion is calculated based on the 
normalized values using Equation 5. 

      𝜎𝑟 = √
∑ (𝑘𝑝𝑟 − 𝑘̅𝑝𝑟)

𝑚
𝑝

𝑚
           (5) 

Step 4: Calculation of Weighting Score of the Criteria (𝑤𝑟) 
In the final step of the method, the weights of the criteria, 
determined in the third step, are calculated using Equation 6 by 
normalizing them with respect to the total weight of all criteria. 

      𝑤𝑟 =
𝜎𝑟

∑ 𝜎𝑟
𝑚
𝑝=1

             (6) 

2.4 Proposed method (Expanded Standard Deviation-
ESD) 

When determining the weights of criteria, contrasts, 
uniqueness, and contradictions among them reveal their 
inherent characteristics [5]. Therefore, if a criterion is more 
contrasting or opposite compared to others within the applied 
mathematical technique, its significance or weight becomes 
greater [3]. In this regard, the proposed method shares 
similarities with the SD method in terms of its application logic. 
In the SD method, the importance of criteria is directly 
proportional to the degree of contrast within their own dataset, 
without considering the datasets of other criteria [12]. 

The proposed method enhances the distinctiveness and 
comprehensiveness of the contrast and uniqueness levels of 
criteria in the classical SD method, highlighting their 
distinguishing features more explicitly and comprehensively. 
While determining the degree of contrast among criteria, the 
proposed method strengthens the contrast in a holistic manner 
by considering the entire numerical sequence of each criterion. 
In this approach, when the numerical sequence of a criterion is 
removed, the change in the SD of the remaining criteria is 
calculated. Consequently, by measuring the change in the SD of 
the remaining criteria after removing a particular criterion, the 
impact of the removed criterion on the overall SD is assessed. 

This effect is then converted into a factor, which, when 
combined with the SD values of other criteria, determines the 
spatial distribution (position) of the criteria in a holistic sense. 
Subsequently, the intrinsic SD value of each criterion (internal 
dispersion) in the classical SD method is multiplied by this 
factor or weight (external dispersion), enriching the contrast 
position of the criteria relative to the classical SD method by 
considering both the internal distribution within each criterion 
and the distribution among other criteria. A visual 
representation illustrating the logic of the proposed model is 
presented in Appendix A. By doing so, the classical SD method is 

modified to incorporate the influence of other criteria, making it 
a more comprehensive and robust weighting approach. In this 
regard, the steps of the suggested approach are outlined as 
follows. 

𝐷𝑀: Decision matrix 

𝐷𝑀∗: Normalized decision matrix 

𝐶𝑟: 𝑟 − 𝑡ℎ evaluation criterion 

𝑎𝑝𝑟: value of the 𝑝 − 𝑡ℎ alternative according to the 𝑟 − 𝑡ℎ 

evaluation criterion 

𝜎𝑟: SD of the 𝑟 − 𝑡ℎ criterion (𝑟 =  1, 2,… , 𝑛) 

𝑤𝑗: Weight of the 𝑟 − 𝑡ℎ evaluation criterion (𝑟 =  1, 2,… , 𝑛) 

𝑏𝑝𝑟: Normalized score of 𝑎𝑝𝑟 

Step 1: Construction of the Decision Matrix (𝐷𝑀) 

The decision matrix is constructed using the formula presented 
in Equation 3. 

Step 2: Normalization of the Decision Matrix (𝐷𝑀∗) 

In the second step, the normalization of criterion values is 
performed based on Equation 7 if the criteria are benefit-
oriented and on Equation 8 if they are cost-oriented. 

For benefit oriented criteria: 

      𝑏𝑝𝑟 =
𝑎𝑝𝑟

∑ 𝑎𝑝𝑟
𝑚
𝑝=1

           (7) 

For cost oriented criteria: 

      𝑏𝑝𝑟 =

(
1

𝑎𝑝𝑟
)

∑ 𝑎𝑝𝑟
𝑚
𝑝=1

           (8) 

Normalized decision matrix: 

      𝐷𝑀∗ =

[
 
 
 
 
𝐶1

𝑏 11

𝐶2

𝑏 12

⋯
𝐶𝑚

𝑏 1𝑛

𝑏21

⋮
𝑏𝑚1

𝑏22

⋮
𝑏𝑚2

⋯
⋮
⋯

𝑏2𝑛

⋮
𝑏𝑚𝑛 ]

 
 
 
 

        (9) 

Step 3: Calculation of 𝑆𝐷 Score of Criteria (𝑆𝐷𝐶𝑟) 

At this stage, the SD value of each criterion in the dataset is 
measured using Equation 10. 

      𝑆𝐷𝐶𝑟 = √
∑(𝑏 − 𝑏̅)2

𝑚
        (10) 

Step 4: Calculation of Comprehensive SD Score (𝐶𝑆𝐷) 

At this stage, the SD of all normalized values is measured using 
Equations 11, considering the distribution of all normalized 
criterion values across all alternatives. 

𝑪𝑺𝑫 = 

[𝑏11 𝑏21 … 𝑏𝑚1 𝑏12 𝑏22 … 𝑏𝑚2 𝑏1𝑛 𝑏2𝑛 … 𝑏𝑚𝑛]  

𝑏𝑚𝑛] = √
∑(𝑏 − 𝑏̅)2

𝑚𝑥𝑛
 

  (11) 

Step 5: Calculation of Subtractive SD (SD Effect) Score of Criteria 
(𝑆𝑆𝐷𝐶𝑟) 
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In this step, for each criteria, the SD of the normalized of the 
remaining criteria is measured after removing the respective 
criterion from the normalized dataset. This process reveals how 
the exclusion of a specific criterion affects the overall SD of the 
complete normalized dataset. In other words, if the SD of the 
remaining normalized dataset (𝑆𝑆𝐷𝐶𝑟) after the removal of a 
specific criterion is greater than (>) or less than (<) the SD of 
the complete normalized data set (CSD), it indicates whether the 
excluded criterion contributed to increasing or decreasing the 
overall SD. Specifically, if 𝐶𝑆𝐷 >  𝑆𝑆𝐷𝐶𝑟, the removed criterion 
had a net positive contribution (effect) to the overall SD, 
meaning it increased the variability in the dataset. Conversely, if 
𝑆𝑆𝐷𝐶𝑟 >  CSD, the removed criterion had a net negative 
contribution (effect), meaning it reduced the overall SD. In this 
step, the 𝑆𝑆𝐷𝐶𝑟 values for each criterion are computed by 
sequentially excluding the corresponding normalized values 
from the dataset, following Equations, 12, 13, 14, 15 and 16. 

1) 𝐶1 ∉ 𝐶; 𝐶2, 𝐶3, 𝐶4,… , 𝐶𝑛 ∈ 𝐶; 𝑺𝑺𝑫𝑪𝟏 = 

[𝑏12𝑏22 … 𝑏𝑚2𝑏13𝑏23 …𝑏𝑚3𝑏14𝑏24 …𝑏𝑚4𝑏1𝑛𝑏2𝑛 …𝑏𝑚𝑛]  

= √
∑(𝑏 − 𝑏̅)2

𝑚(𝑛 − 1)
 

  (12) 

2) 𝐶2 ∉ 𝐶; 𝐶1, 𝐶3, 𝐶4,… , 𝐶𝑛 ∈ 𝐶; 𝑺𝑺𝑫𝑪𝟐 

[𝑏11𝑏21 … 𝑏𝑚1𝑏13𝑏23 …𝑏𝑚3𝑏14𝑏24 …𝑏𝑚4𝑏1𝑛𝑏2𝑛 …𝑏𝑚𝑛]  

= √
∑(𝑏 − 𝑏̅)2

𝑚(𝑛 − 1)
 

  (13) 

3) 𝐶3 ∉ 𝐶; 𝐶1, 𝐶2, 𝐶4,… , 𝐶𝑛 ∈ 𝐶; 𝑺𝑺𝑫𝑪𝟑 = 

[𝑏11𝑏21 … 𝑏𝑚1𝑏12𝑏22 …𝑏𝑚2𝑏14𝑏24 …𝑏𝑚4𝑏1𝑛𝑏2𝑛 …𝑏𝑚𝑛] 

= √
∑(𝑏 − 𝑏̅)2

𝑚(𝑛 − 1)
 

  (14) 

4) 𝐶4 ∉ 𝐶; 𝐶1, 𝐶2, 𝐶3,… , 𝐶𝑛 ∈ 𝐶; 𝑺𝑺𝑫𝑪𝟒 = 

[𝑏11𝑏21 … 𝑏𝑚1𝑏12𝑏22 …𝑏𝑚2𝑏13𝑏23 …𝑏𝑚3𝑏1𝑛𝑏2𝑛 …𝑏𝑚𝑛] 

= √
∑(𝑏 − 𝑏̅)2

𝑚(𝑛 − 1)
 

  (15) 

… ,… ,… ,… ,… ,… ,… ,… ,… ,… ,… ,… ,… ,… ,… ,… ,… ,… ,… 

… ,… ,… ,… ,… ,… ,… ,… ,… ,… ,… ,… ,… ,… ,… ,… ,… ,… ,… 

𝑚) 𝐶𝑚 ∉ 𝐶; 𝐶1, 𝐶2, 𝐶3,… , 𝐶(𝑛 − 1)  ∈ 𝐶; 𝑺𝑺𝑫𝑪(𝒏−𝟏)= 

[𝑏11𝑏21 … 𝑏𝑚1𝑏12𝑏22 …𝑏𝑚2𝑏13𝑏23 …𝑏𝑚3𝑏1(𝑛−1)𝑏2(𝑛−1) … 

…𝑏𝑚(𝑛−1)] 

= √
∑(𝑏 − 𝑏̅)2

𝑚(𝑛 − 1)
 

(16) 

Step 6: Calculation of SD Effect Multipler Score of Criteria 
(𝑆𝐷𝐸𝑀𝐶𝑟) 

Subsequently, the SD Effect Multiplier Score (𝑆𝐷𝐸𝑀𝐶𝑟) of each 
criterion is calculated by taking the ratio of the overall SD (CSD) 
to the SD of the remaining normalized dataset after removing 
the respective criterion (SSD). Accordingly, if 𝐶𝑆𝐷 >  𝑆𝑆𝐷, the 
ratio 𝐶𝑆𝐷/𝑆𝑆𝐷 represents the amplification factor of the 
removed criterion, whereas if 𝑆𝑆𝐷 >  𝐶𝑆𝐷, the same ratio 
denotes the reduction factor of the removed criterion. Based on 

this approach, the 𝑆𝐷𝐸𝑀𝐶𝑟 value for each criterion is computed 
in accordance with Equations 17 and 18. 

 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟: 

    𝑪𝑺𝑫 > 𝑺𝑺𝑫𝑪𝒓, 𝑆𝐷𝐸𝑀𝐶𝑟 = (𝐂𝐒𝐃)\(𝑺𝑺𝑫𝑪𝒓)     
(17) 

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟: 

    𝑺𝑺𝑫𝑪𝒓 > 𝑪𝑺𝑫, 𝑆𝐷𝐸𝑀𝐶𝑟 = (𝐂𝐒𝐃)\(𝑺𝑺𝑫𝑪𝒓)     
(18) 

Step 7: Calculation of Weighted 𝑆𝐷𝐶𝑟 Score of Criteria (𝑊𝑆𝐷𝐶𝑟) 

In this step, the internal distribution state of each criterion 
(𝑆𝐷𝐶𝑟) is multiplied by its external distribution state (𝑆𝐷𝐸𝑀𝐶𝑟) 
to determine the overall spatial distribution position of each 
criterion while considering all criteria collectively. In other 
words, the internal distribution state of each criterion (𝑆𝐷𝐶𝑟) is 
weighted by the external distribution state (𝑆𝐷𝐸𝑀𝐶𝑟) which 
accounts for the overall impact of all other criteria. Accordingly, 
the weighted SD (𝑊𝑆𝐷𝐶𝑟) for each criterion is computed using 
Equation 19. 

𝑊𝑆𝐷𝐶𝑟 = 𝑆𝐷𝐸𝑀𝐶𝑟 ∗ 𝑆𝐷𝐶𝑟 (19) 

Step 8: Calculation of Weight of Criteria (𝑤𝐶𝑟) 

In the final stage, the weight of each criterion is calculated by 
determining the proportion of its (𝑊𝑆𝐷𝐶𝑟) value to the sum of 
all (𝑊𝑆𝐷𝐶𝑟) values, as expressed in Equation 20. 

𝒘𝑪𝒓 =
𝑊𝑆𝐷𝐶𝑟

∑ 𝑊𝑆𝐷𝐶𝑟
𝒏
𝒋=𝟏

 (20) 

The proposed method offers several advantages over the 
classical SD method. The first advantage is that, while the 
classical SD method calculates criterion weights solely based on 
the distribution of observations within each criterion’s dataset 
[12], the proposed method also incorporates external factors. 
This inclusion enhances the comprehensiveness of the method, 
allowing it to account for inter-criterion contrasts more 
effectively. Furthermore, by incorporating factors such as 
impact multipliers, the influence of each criterion on the 
decision-making process is computed in greater detail, 
contributing to a more informative and accurate decision-
making process. The second advantage is that the distributions 
of criteria within the dataset can be understood more effectively 
compared to the classical SD method. While the classical SD 
method merely reflects deviations from the mean, the proposed 
method evaluates the distribution within each criterion and, by 
considering the normalized values of other criteria, assesses the 
opposition of one criterion relative to another (external 
distribution) in a more detailed manner. Third, the proposed 
method enables a more in-depth analysis of the characteristics 
of criteria than the classical SD method. While the classical SD 
method measures individual deviations from the mean [29], the 
proposed method assesses the impact of each criterion on the 
decision outcome separately. This allows for a clearer 
understanding of how much a particular criterion influences the 
final decision. In the classical SD method, outliers are identified 
solely by comparing a criterion’s own values, whereas the 
proposed method identifies outliers holistically by considering 
both the intrinsic values of the criterion and the values of other 
criteria. In conclusion, the proposed method offers a more 
detailed, flexible, and realistic approach compared to the 
classical SD method. By incorporating weighting, external 
factors, and adaptability to different criteria, it enhances the 
reliability and significance of decision-making outcomes. 
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The proposed method also offers several advantages over other 
objective weighting methods. One key advantage is its 
insensitivity to zero and negative values. For instance, the 
ENTROPY and MEREC methods are sensitive to zero and 
negative values, which can lead to undefined values in the 
decision matrix due to logarithmic calculations [10,62]. When 
analyzing the ENTROPY method, the characteristics of the 
criteria are determined using entropy without taking into 
account the values of other criteria. As a result, in the ENTROPY 
method, the weights of the criteria are assigned solely based on 
their individual entropy distributions (internal distribution) 
[62]. In contrast, the proposed method determines the 
characteristics of the criteria by incorporating both their 
intrinsic values and the values of other criteria, thereby 
capturing both internal and external distributions.  

In the MEREC method, the evaluation of each criterion 
corresponding to an alternative’s cell is conducted using a 
nonlinear logarithmic function. Subsequently, once a criterion is 
removed, the performance of the alternatives is recalculated. 
The impact of each criterion is determined by examining the 
difference between the performance of its corresponding cell 
and the recalculated performance of the alternatives after its 
exclusion [10]. As a result, the MEREC method considers both 
the internal distribution of each criterion and its overall 
influence on the dataset (external distribution), which aligns 
with the conceptual foundation of the proposed method. The 
fundamental distinction between these approaches lies in their 
methodological focus: while the MEREC method assesses the 
performance of decision alternatives after criteria are removed, 
the proposed method evaluates the performance of the criteria 
themselves following their exclusion. 

When compared to the CRITIC method, the proposed method 
exhibits technical similarities. In the CRITIC method, criterion 
weights are determined using both the intrinsic distribution of 
each criterion (internal differentiation—each criterion’s 
individual SD value) and by considering the values of other 
criteria, it takes into account the contribution or impact of the 
holistic data (data from all criteria) within the entire dataset to 
the SD, while also considering external differentiation [8]. The 
proposed method follows a similar approach by computing SSD 
and SDEM values, where the intrinsic differentiation is based on 
each criterion's individual SD, while the external differentiation 
considers the values of other criteria. However, the proposed 
method provides more accurate results compared to the CRITIC 
method. The primary reason for this is that the CRITIC method 
relies on Pearson’s correlation coefficient, which assumes 
normal distribution [5]. In datasets that do not follow a normal 
distribution, Pearson’s correlation coefficient may produce 
unreliable results [44]. In contrast, the proposed method does 
not make such an assumption, allowing for a more flexible and 
robust evaluation. 

Variance is calculated as the square of the SD. Therefore, similar 
to the classical SD method, the SVP method determines the 
contrasts among criteria solely based on their intrinsic 
distributions or variance values [12]. However, the proposed 
method adopts a more comprehensive weighting approach 
compared to the SVP method. The LOPCOW method, on the 
other hand, is a robust approach designed to eliminate gaps 
arising from the scale of data [11]. Nevertheless, in the LOPCOW 
method, this gap is addressed only based on the intrinsic values 
of the criteria, without considering the influence of other 
criteria. In contrast, the proposed method incorporates the 
values of other criteria in the weighting process. As a result, a 

more relational structure is established in determining the 
contrasts among criteria, making their mutual effects more 
explicit. In conclusion, the proposed method surpasses the 
classical SD method by offering a more comprehensive, flexible, 
and reliable weighting approach. Compared to other objective 
weighting methods, it provides several advantages, particularly 
in facilitating more informed and effective decision-making 
processes. The only drawback of the method is that, compared 
to other objective weighting methods, the weighting process is 
more complex and time-consuming. This limitation becomes 
more pronounced as the number of criteria and alternatives 
increases. 

2.5 Data set  

The proposed weighting method utilizes the 2024 Global 
Environmental Health Index (GEHI) data for G7 nations, 
selected for their absence of extreme outliers, thereby enabling 
a clearer evaluation of the method’s discriminative capacity. 
Abbreviations of the GEHI criteria are listed in Table 2. 

Table 2. Data set 

GEHI Criteria Abbreviations 
Air Quality C1 

Anthropogenic PM2.5 exposure C2 
Household solid fuels C3 

Ozone exposure C4 
SO2 exposure C5 
CO exposure C6 

VOC exposure C7 
Countries Abbreviations 

Canada A1 
France A2 

Germany A3 
Italy A4 

Japan A5 
UK A6 

USA A7 

 

3 Results 

3.1 Computational analysis 

In the study, the decision matrix was initially constructed using 
Equation 3. In the second step of the technique, normalization 
of values of 𝐷𝑀 were derived using Equations 7 and 9. The 
decision matrix and the normalized decision matrix are 
presented in Table 3. 

Table 3. Decision and normalized decision matrix 

Decision Matrix 
C. C1 C2 C3 C4 C5 C6 C7 
A1 72.4 67 96.7 51.9 41.7 61 57.3 
A2 65.2 49 91.5 57.5 62 60.6 57.4 
A3 66.9 50 96.7 43.5 62.1 61.3 60.4 
A4 57.2 31.7 79.3 38.6 50.8 54.7 44.8 
A5 59.9 42.2 86.7 62.9 33.9 58.9 43.9 
A6 69.9 52.1 98.8 66.5 51.6 66.8 71.7 
A7 65.8 61.5 91.6 33.8 35.7 60.3 35.5 

Sum 457.3 353.5 641.3 354.7 337.8 423.6 371 
Normalized Decision Matrix 

C. C1 C2 C3 C4 C5 C6 C7 
A1 0.418 0.49 0.398 0.377 0.319 0.38 0.4 
A2 0.376 0.359 0.377 0.418 0.474 0.378 0.4 
A3 0.386 0.366 0.398 0.316 0.475 0.382 0.421 
A4 0.33 0.232 0.326 0.281 0.388 0.341 0.312 
A5 0.346 0.309 0.357 0.457 0.259 0.367 0.306 
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A6 0.403 0.381 0.407 0.484 0.395 0.417 0.5 
A7 0.38 0.45 0.377 0.246 0.273 0.376 0.248 

In the third step of the study, the SD value for each criterion 
(𝑆𝐷𝑟) was measured using Equation 10 based on the normalized 
values. In the fourth step, the comprehensive SD (𝐶𝑆𝐷𝑟) value of 
the matrix was determined by considering all the criterion 
values together using Equation 11. In the fifth step, the 
Subtractive SD (𝑆𝑆𝐷𝑟) values for each criterion were calculated 
using Equations 12, 13, 14, 15, and 16, taking into account the 
normalized values and the CSD value. In the sixth step, the SD 
Effect Multiplier (𝑆𝐷𝐸𝑀𝑟) values for each criterion were 
determined using Equations 17 and 18. In the seventh step of 
the method, the Weighted 𝑆𝑆𝐷𝑟 (𝑊𝑆𝐷𝑟) values were calculated 
using Equation 19. Then, in the final step, the weight coefficients 
of the criteria were determined based on Equation 20. The 
calculated values for each step are summarized and detailed in 
Table 4. 

Table 4. SD, CSD, SSD, SDEM, WSD and w scores of criteria 

Criteria SD CSD SSD SDEM 
C1 0.028 

0.025 

0.0261 0.939 
C2 0.079 0.0233 1.05 
C3 0.026 0.0262 0.937 
C4 0.084 0.023 1.07 
C5 0.082 0.0231 1.062 
C6 0.021 0.0263 0.933 
C7 0.079 0.0234 1.049 

Criteria WSD w Rank 
C1 0.0266 0.064 5 
C2 0.0832 0.201 3 
C3 0.0243 0.059 6 
C4 0.0897 0.217 1 
C5 0.087 0.211 2 
C6 0.0193 0.047 7 
C7 0.0829 0.201 4 

Sum 0.4131 --- --- 

Upon examining Table 4, the criteria weights are ranked as C4, 
C5, C2, C7, C1, C3, and C6. In the context of the findings, an 
example calculation for determining weight of C1 is presented 
below. 

Normalized Value: 𝐶𝑎𝑛𝑎𝑑𝑎 → 𝐶1 ∶ 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2 ≔
72.4

457.3
= 0.418 

𝐶𝑆𝐷 =

[
 
 
 
 
 
 
 
 
 
 
0.418
0.376
0.386…

…
…

0.490
0.359…

…
…

0.500
0.248]

 
 
 
 
 
 
 
 
 
 

= 0,025; 𝑆𝑆𝐷𝐶1 (𝐶1 ∉ 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎) =

[
 
 
 
 
 
 
 
 
 
 
0.490
0.359
0.366…

…
…

0.398
0.377…

…
…

0.500
0.248]

 
 
 
 
 
 
 
 
 
 

= 0,026 

𝑆𝐷𝐸𝑀𝐶1 =
0.025

0.026
= 0.939;𝑊𝑆𝑆𝐷𝐶1 = 0.939 ∗ 0.028 = 0.0266 

 

; 𝑤𝐶1 =
0.0266

0.4131
= 0.064 

3.2 Sensitivity analysis 

An effective approach to evaluating the sensitivity of MCDM 
methods involves adding new alternatives to the original 

dataset or eliminating less favorable ones. In such cases, the 
MCDM method should demonstrate stability by ensuring that 
the ranking of alternatives remains consistent or does not 
undergo significant shifts [63]. Since the removal of each 
alternative alters the criterion values, the scores assigned to the 
remaining alternatives are also likely to be affected. To address 
this concern, a sensitivity analysis was performed, starting with 
the criteria identified as the weakest by the proposed method. 
The outcomes of this analysis, including the updated criteria 
rankings, are presented in Table 5, with a visual depiction 
provided in Figure 1. 

Table 5. Rank reversal 

Criteria  SO S1 S2 

C6 7   

C3 6 6  

C1 5 5 5 
C7 4 4 4 
C2 3 3 3 
C5 2 2 2 
C4 1 1 1 

Criteria  S3 S4 S5 

C6    

C3    

C1    

C7 3   

C2 4 3  

C5 2 2 2 
C4 1 1 1 

 

 

Figure 1. Rank reversal graph 

An examination of Table 5 and Figure 1 reveals that the country 
rankings based on performance remain largely stable across the 
different scenarios evaluated through the rank reversal method 
applied for sensitivity analysis. According to Table 5 and Figure 
1, the rankings of criteria C2 and C7 shifted by only one position 
in the third and fourth scenarios. Based on this result, since the 
weight distributions of the criteria did not exhibit significant 
changes following the exclusion process (from the lowest to the 
highest weight), the proposed method can be considered to have 
an optimal sensitivity level within the scope of rank reversal 
analysis. 

3.3 Comparative analysis 

This analysis examines the interconnections and relative 
standings of the suggested methodology in comparison to other 
method(s) utilized for deriving weighting outcomes. The 
proposed method aims to validate its reliability, consistency, 
and alignment with established techniques, while also 
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exhibiting a robust and statistically significant correlation with 
various weighting method(s) [10]. In the initial phase of the 
comparative analysis, the criterion weights were determined 
using ENTROPY, CRITIC, SD, SVP, LOPCOW, and MEREC 
methods, which are widely applied in MCDM research. 
Consequently, the weight values of the GEHI criteria and their 
corresponding rankings, derived from these weighting 
methods, are displayed in Table 6 and Figure 2. 

Table 6. Weight scores in scope of methods 

Methods 
CRITIC SVP LOPCOW 

Score Rank Score Rank Score Rank 

C1 0.076 6 0.043 6 0.145 4 
C2 0.081 5 0.206 3 0.153 3 
C3 0.069 7 0.07 5 0.173 1 
C4 0.203 2 0.234 1 0.126 6 
C5 0.358 1 0.202 4 0.113 7 
C6 0.083 4 0.019 7 0.155 2 
C7 0.131 3 0.226 2 0.134 5 

Methods 
SD ENTROPY MEREC 

Score Rank Score Rank Score Rank 

C1 0.071 5 0.027 5 0.105 5 
C2 0.199 3 0.226 3 0.403 1 
C3 0.065 6 0.023 6 0.116 4 
C4 0.21 1 0.251 1 0.201 2 
C5 0.205 2 0.238 2 0.135 3 
C6 0.052 7 0.014 7 0.014 7 
C7 0.198 4 0.22 4 0.026 6 

 

Figure 2. Position of methods 

An analysis of Table 6 demonstrates that the rank positions of 
the criteria derived through the ESD method align perfectly with 
those obtained from both the SD and ENTROPY methods. 
Furthermore, when Table 6 and Figure 2 are analyzed together, 
it is observed that the ESD method exhibits a strong alignment 
with the SVP, SD, and ENTROPY methods, particularly in terms 
of the increasing and decreasing trends in criterion weights. 
Accordingly, the proposed method can be considered to 
establish a high correlation, especially with the ENTROPY, SD, 
and SVP methods. The correlation values between the proposed 
method and other objective weighting methods are presented in 
Table 7. 

Table 7. Correlation scores 

ESD CRITIC SVP LOPCOW 

Score 0.623** 0.986** -0.723** 

ESD SD ENTROPY MEREC 

Score 0.999** 0.999** 0.464* 

p**<.01. p*<.05 

An analysis of Table 7 indicates that the ESD method exhibits 
significant, positive, and very high correlation values, 
particularly with the SVP, SD, and ENTROPY methods. 
Therefore, considering the quantitative findings within the 
scope of the comparative analysis, the ESD method is evaluated 
as both credible and reliable. 

3.4 Simulation examination 

In the simulation examination, different scenarios are 
developed by assigning various values to the decision matrices. 
To verify the robustness of the results produced by the 
proposed method, it is expected that its outcomes will 
increasingly differ from those of other methods as the number 
of scenarios grows. Finally, consistency of variances in criterion 
weights across different scenarios should be evaluated using 
ADM analysis (ANOM for variances based on Levene). 
Therefore, for the method to be considered stable, the variances 
of the proposed method are expected to be homogeneous across 
the scenarios [10]. In this context, 10 scenarios (decision 
matrices) were initially generated and divided into two distinct 
groups. Following this, the correlation coefficients between the 
ESD method and other weighting methods were computed for 
these scenarios. The resulting correlation values are shown in 
Table 8. 

Table 8. Correlation scores 

Group Scenarios ENTROPY CRITIC IVP 

First Group 

Scenario1 0.998** 0.615** 0.988** 

Scenario2 0.999** 0.628** 0.991** 

Scenario3 0.995** 0.610** 0.983** 

Second 
Group 

Scenario4 0.997** 0.605** 0.988** 

Scenario5 0.991** 0.600** 0.976** 

Scenario6 0.888** 0.597** 0.872** 

Scenario7 0.876** 0.588** 0.864** 

Scenario8 0.855**     0.571* 0.854** 

Scenario9 0.842** 0.564* 0.839** 

Scenario10 0.813** 0.555* 0.827** 

Group Scenarios SD LOPCOW MEREC 

First Group 

Scenario1 0.998** -0.788** 0.478* 

Scenario2 0.999** -0.781** 0.499* 

Scenario3 0.994** -0.767** 0.455* 

Second 
Group 

Scenario4 0.996** -0.751** 0.441* 

Scenario5 0.993** -0.746** 0.430* 

Scenario6 0.895** -0.721** 0.426* 

Scenario7 0.882** -0.702** 0.412* 

Scenario8 0.866** -0.686** 0.405 

Scenario9 0.854** -0.664** 0.389 

Scenario10 0.843** -0.651** 0.373 

p**<.01. p*<.05 
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Figure 3. Correlation Positions of Methods with ESD 

Analysis of Table 8 and Figure 3 reveals a tendency for 
correlation scores between the ESD method and other objective 
weighting methods to diminish with an increasing number of 
scenarios. Based on this finding, it can be inferred that the ESD 
method diverges more from other objective weighting methods 
with an increasing number of scenarios and may better reflect 
its distinctive characteristics. 

The concluding stage of the simulation analysis involved 
evaluating the homogeneity of variance in the criterion weights 
generated by the ESD method across the various scenarios. This 
was accomplished using Analysis of Deviance for Means 
(ANOM) based on Levene's test for variances. This technique 
provides a visual means of assessing variance consistency. The 
graphical output comprises three primary elements. The 
average mean deviance (AVG) represented by the average line, 
the higher decision limit (UDL), and the lower decision limit 
(LDL).  If the SDs of a particular category exceed these decision 
limits, it suggests a notable deviation from GMD, thus indicating 
heterogeneity of variance. Conversely, if the SDs of all groups 
remain within the UDL and LDL, it confirms homogeneity of 
variance [10]. The results of the ANOM analysis are illustrated 
graphically in Figure 4. 

 

Figure 4. ADM chart 

As shown in Figure 4, the ADM values calculated for each 
scenario remain within the range defined by the UDL and LDL. 
Thus, the variances of the determined weights across all 
scenarios explain Uniformity. This conclusion was validated 
using the Levene technique, with principal statistical outcomes 
presented in Table 9. 

Table 9. Levene test score 

Levene Statistic df1 df2 Sig. (𝒑 value) 
0.144 2 10 0.161 

As shown in Table 9, the significant score (p = 0.161) exceeds 
level of 0.05, indicating consistent variances of criterion weight 
scores in scope of the scenarios. In conclusion, the simulation 
approach results underscore the stability and robustness of ESD 
approach. 

4 Conclusions 

This study introduces a novel approach to criterion weighting 
processes based on the SD method by proposing the Extended 
Standard Deviation (ESD) method, thereby contributing to the 
existing literature. The primary contribution of this study lies in 
the development of a more comprehensive weighting approach 
that not only considers the internal distribution of individual 
criteria but also accounts for their interactions with other 
criteria. 

According to the findings, the rank reversal method was applied 
to test the proposed method's sensitivity level. Following the 
elimination of certain criteria, only minor changes were 
observed in the ranking of criterion weights, indicating that the 
proposed method maintains an optimal sensitivity level. A 
comparative evaluation, following the approach of Keshavarz-
Ghorabaee et al. (2021) [10], was conducted to validate the 
reliability of the proposed method, using widely recognized 
objective weighting techniques such as ENTROPY, CRITIC, SD, 
SVP, MEREC, and LOPCOW. The results revealed that the 
proposed method exhibited a high correlation with ENTROPY, 
SVP, and SD, whereas it diverged from especially LOPCOW. The 
strong correlation between the proposed method and 
ENTROPY, SD, and SVP can be attributed to the intrinsic 
differentiation capability of these methods, which 
independently assess the internal variation of each criterion. 
Specifically, as the SD values of each criterion diverge in the 
proposed method, the distinctiveness of the method or its 
characteristics compared to ENTROPY, SD, and SVP methods 
becomes more pronounced. Conversely, the proposed method 
accounts for the external differentiation by considering the joint 
influence of all criteria, whereas LOPCOW focus solely on the 
individual intrinsic values of criteria. Additionally, due to the 
reliance on logarithmic operations in certain processes of the 
MEREC method, it exhibits technical differences from the 
proposed method. As a result, the proposed method exhibits 
partial divergence from MEREC and significant divergence from 
LOPCOW. Although the proposed method shares conceptual 
similarities with the CRITIC method, as both accounts for the 
intrinsic values of criteria as well as their interactions with 
others, there is a fundamental distinction between them. While 
CRITIC employs Pearson correlation to measure inter-criteria 
relationships, the proposed method relies on mutual influence 
values. Since "influence" and "relationship" represent distinct 
conceptual frameworks, the proposed method differentiates 
itself from CRITIC. Overall, the comparative analysis suggests 
that the proposed method establishes meaningful associations 
with ENTROPY, CRITIC, SD, SVP, and MEREC, thereby 
demonstrating its reliability and credibility. In the simulation 
analysis, 10 different decision matrices (scenarios) were 
generated to assess the stability and robustness of the proposed 
method. To achieve this, ANOM analysis, as recommended by 
Keshavarz-Ghorabaee et al. (2021) [10], was conducted. The 
results indicated that variance remained homogeneous across 
all 10 scenarios, confirming that the proposed method is stable. 

The key strength of the proposed method lies in its holistic 
assessment of all criteria, allowing each criterion’s contribution 
to the standard deviation to be fully captured and thereby 
supporting more accurate and robust decision-making. This 



 

10 
 

characteristic makes the method particularly effective in 
analyzing criteria with significant distribution differences 
within the dataset. Sensitivity and simulation analyses further 
confirm the stability and reliability of the proposed method. 
Even when modifications are made to the decision matrix, the 
weighting values remain largely consistent, demonstrating the 
method’s robustness and reliability in decision-making 
processes. In conclusion, this study introduces and thoroughly 
evaluates the ESD method, offering a novel perspective on the 
criterion weighting process in the literature. The proposed 
method is considered a strong alternative, particularly in MCDM 
problems, due to its capability to more accurately analyze 
criterion distributions within the dataset. Consequently, it is 
expected to contribute to more meaningful decision-making 
processes and serve as a viable tool for decision-makers in 
criterion weighting. 

5 Discussion 

This study presents a comprehensive analysis of the SD method, 
a key technique in criterion weighting, and introduces an 
expanded version known as the ESD method. The findings of the 
study demonstrate that the proposed method offers significant 
advantages not only compared to the classical SD method but 
also in relation to other objective weighting methods. 
Specifically, it is observed that the proposed method enhances 
the weighting process by considering not only the distributions 
of criteria within their own datasets but also analyzing the 
distributions of other criteria, thereby providing a more holistic 
approach. 

Initially, it becomes evident that the proposed method offers a 
more comprehensive structure compared to the classical SD 
method. The traditional SD method utilizes the deviations of 
criteria from their mean values to calculate the weights [12]. In 
contrast, the proposed method internalizes between each 
criterion and others, evaluating their overall impact in the 
decision-making process. This approach enables a more precise 
determination of the degree of contrast among the criteria, 
leading to more accurate results In the course of decision-
making. 

The presented method exhibits various strengths and 
weaknesses when compared to other objective weighting 
techniques. In comparison to the ENTROPY method, one 
significant advantage of the proposed method is its insensitivity 
to zero and negative values. In the ENTROPY method, zero and 
negative values can create uncertainties due to logarithmic 
measurements [62]. However, the ENTROPY method can be 
more effective in information theory-based analyses [27]. In the 
ENTROPY method, criterion characteristics are determined 
solely based on their intrinsic entropy distributions, without 
considering other criteria. Thus, criterion weights are evaluated 
through internal distribution alone [5]. In contrast, the 
proposed method incorporates both intrinsic values and 
interactions with other criteria, accounting for both internal and 
external distributions.  

When compared to the CRITIC method, one of the major 
advantages of the proposed method is its ability to determine 
the relationships between criteria without requiring any 
distribution assumptions. The CRITIC method uses the Pearson 
correlation coefficient to evaluate correlations between criteria, 
which relies on the assumption of a normal distribution. This 
relationship coefficient can have limitations when applied to 
datasets that do not follow a normal distribution [64]. 
Therefore, the proposed method provides more reliable results 

regardless of the distribution type. On the other hand, the 
CRITIC method tends to perform better in datasets with strong 
correlation structures [8]. In contrast to the SVP method, the 
suggested approach provides a more thorough assessment by 
taking into account both internal and external distributions. 
While the SVP method focuses solely on the variances of the 
criteria, the proposed method provides a more detailed analysis 
by taking into account both the internal distribution and the 
contrasts between the criteria. However, since the SVP method 
involves simpler calculations, it can be applied more quickly to 
large datasets [29]. When compared to the MEREC method, the 
proposed method enhances the weighting process by 
considering both the general distribution and the contrasts of 
the criteria, making it more holistic. The MEREC method directly 
evaluates the impact of the criteria on alternative performance, 
while the proposed method offers a more independent 
weighting process based on the distribution of the criteria. The 
MEREC method evaluates criterion performance within an 
alternative's cell using a nonlinear logarithmic function.  
Subsequently, alternative performance is recalculated after 
criterion removal.  Criterion influence is determined by 
comparing the original cell performance with the recalculated 
alternative performance [30].  Thus, MEREC considers both 
internal and external criterion distribution, similar to the 
proposed method. However, their methodologies differ: MEREC 
focuses on alternative performance post-criterion exclusion, 
while the proposed method evaluates the criteria's performance 
after their removal. Nonetheless, the MEREC method may yield 
more precise results in certain cases because it measures the 
direct effect of the criteria on the decision matrix [10]. Like the 
ENTROPY method, the MEREC method is highly sensitive to zero 
and negative values [64]. As a result, calculations based on 
normalization or logarithmic processes in these methods can 
become undefined. Finally, when compared to the LOPCOW 
method, the proposed method offers a more comprehensive 
evaluation by considering not only the intrinsic values of the 
criteria but also the distributions of other criteria. While the 
LOPCOW method may reduce gaps caused by data size and 
provide advantages in specific decision problems, the holistic 
approach of the proposed method allows for a more robust 
analysis of the relationships between criteria [11]. However, the 
proposed method does have some drawbacks. Since it requires 
a more complex computation process compared to other 
objective weighting methods, the computational load increases 
when working with large datasets. Particularly in decision 
problems where the number of criteria and alternatives is high, 
the increased computation time may limit the practical 
applicability of the method. 

Future studies could focus on further developing the proposed 
method and exploring its applicability in various fields. Initially, 
the applicability of the method in large-scale datasets could be 
tested, with an emphasis on improving the efficiency of the 
computational processes. In this context, integrating artificial 
intelligence and optimization algorithms may lead to the 
creation of a faster and more automated model. Additionally, 
investigating how the method operates in uncertain decision-
making environments is crucial. By integrating fuzzy logic, grey 
system theory, or fuzzy numbers, the sensitivity of the method 
to uncertainty could be tested. Furthermore, conducting a more 
comprehensive comparison between the ESD method and other 
MCDM methods and determining its suitability for different 
problem types could clarify the method's role in decision-
making processes. Potential areas of application for the method 
include sustainability assessments, financial risk analysis, 
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supply chain management, and the healthcare sector. Testing 
the performance of the proposed method in studies within these 
fields would highlight how it can be integrated into various 
sectors. Finally, examining how the method can be adapted to 
dynamic decision-making processes is also essential. In 
environments where decision criteria may change over time, 
measuring the flexibility and stability of the ESD method could 
provide insights into its effectiveness in long-term decision-
making. These future studies would reinforce the strengths of 
the method and make more substantial contributions to the 
literature on MCDM. 
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Appendix A 

In Figure 5, the visualization on the left illustrates the classical 
SD method, where each criterion's individual SD value is 
represented. Accordingly, the criteria with the greatest SD score 
can be interpreted as the most significant or the most heavily 
weighted criterion. In the proposed method, the standard SD 
approach is extended by considering the overall contribution of 

each criterion to the dataset’s SD (CSD). As shown in Figure 5, 
when the r-th criterion is removed from the dataset, any 
increase or decrease in the SD values of the remaining criteria 
indicates the overall impact of the removed r-th criterion on the 
total SD, denoted as (𝑆𝑆𝐷)𝐶𝑟 . If (𝑆𝑆𝐷)𝐶𝑟 value of the r-th 
criterion is greater than the CSD value (i.e., the SD of the entire 
dataset), it implies that the criterion has a reducing effect on the 
overall dataset’s SD. Conversely, if the (𝑆𝑆𝐷)𝐶𝑟  value is smaller 
than the CSD value, it suggests that the criterion has an 
increasing effect on the overall SD of the dataset. Therefore, the 
weight of the r-th criterion in the overall SD is determined by 
the ratio of the CSD value to the (𝑆𝑆𝐷)𝐶𝑟 value. Ultimately, the 
proposed approach integrates both the internal distribution 
(intrinsic dispersion or individual SD of the r-th criterion) and 
the external distribution (its contribution to the overall SD 
considering all other criteria). By doing so, the classical SD 
method is modified to incorporate the influence of other 
criteria, making it a more comprehensive and robust weighting 
approach. 

 

 

 
Note: A: Alternative, m: alternative number, n: Criteria number, SD: Standard deviation, CSD: Comprehensive SD Score, (𝑆𝑆𝐷)𝐶𝑟: Subtractive SD score of r-th criteria, 
(𝑆𝐷𝐸𝑀)𝐶𝑟: SD Effect Multipler Score of r-th criteria. 

Figure 5. Basic Logic of the Proposed Method 


