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Abstract  Öz 

Random Forests is a widely used machine learning algorithm for 
classification and regression problems from different domains. 
Although they are generally accurate, their interpretability is low 
compared to their building blocks: single decision trees. Using the fact 
that each member of a Random Forest is a decision tree, we propose 
different set partitioning formulations to extract interpretable if-then 
rules from Random Forests. Our experiments on well-known 
classification and regression datasets show that the original set 
partitioning model formulation significantly reduces the number of 
rules while keeping the accuracy at acceptable levels. We also propose 
a modification to the problem's objective function, which aims to reduce 
the number of extracted rules further. We observe a further reduction 
in the number of extracted rules while the accuracy values stay nearly 
the same. Although the set partitioning problem is 
NP-hard, we obtain optimal results for most datasets within twenty 
minutes. 

 Rastgele Ormanlar farklı alanlardaki sınıflandırma ve regresyon 
problemleri için sıklıkla kullanılan bir yapay öğrenme algoritmasıdır. 
Yüksek başarım göstermelerine rağmen, yapıtaşları olan karar 
ağaçlarına kıyasla yorumlanabilirlikleri oldukça düşüktür. Her bir 
üyesinin bir karar ağacı olduğu gerçeğinden yola çıkarak, Rastgele 
Ormanlardan yorumlanabilir eğer-ise tipinde kurallar çıkarmak için 
farklı küme bölüntüleme formülasyonları öneriyoruz. Literatürde 
sıklıkla kullanılan sınıflandırma ve regresyon veri setleri üzerinde 
yaptığımız deneylerin sonuçları göstermektedir ki orijinal küme 
bölüntüleme model formülasyonu, başarımı kabul edilebilir seviyelerde 
tutarak kural sayısını önemli ölçüde düşürebilmektedir. Çıkarılan kural 
sayısını daha da düşürebilmek için problemin amaç fonksiyonuna bir 
değişiklik öneriyoruz. Bu değişiklikle birlikte, çıkarılan kural sayısında 
daha da düşüş gözlemlerken başarımın aynı seviyelerde kaldığını 
gözlemliyoruz. Küme bölüntüleme problemi 
NP-zor olmasına rağmen, çoğu veri seti için yirmi dakika içinde en iyi 
çözümü buluyoruz. 

Keywords: Random forests, Rule extraction, Set partitioning, 
Classification, Regression, Interpretability. 

 Anahtar kelimeler: Rastgele ormanlar, Kural çıkarma, Küme 
bölüntüleme, Sınıflandırma, Regresyon, Yorumlanabilirlik. 

 

1 Introduction 

Random Forests (RFs) have been extensively used to solve 
classification and regression problems in a broad range of 
domains such as bioinformatics [1], medicine [2],[3] remote 
sensing [4], and time series modeling [5]. Basically, an RF is an 
ensemble of many decision trees. Each tree in the forest returns 
a prediction, which is a categorical value in classification and a 
numerical value in regression, and the final prediction is 
obtained by combining these individual predictions (i.e., 
majority voting in classification and taking the mean in 
regression). The power of RFs stems from incorporating two 
different training mechanisms; bagging (bootstrap 
aggregation) and random feature selection during split 
generation. These mechanisms allow for growing uncorrelated 
trees, yielding more stable and accurate predictions compared 
to individual decision trees [6]. 

Although growing many decision trees and combining their 
predictions increase prediction accuracy significantly, the 
interpretability of RFs is quite low compared to individual 
decision trees. While visualization and rule extraction (in the 
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form of if-then rules) are two possible ways of interpreting 
decision trees, it is not beneficial to use these tools directly for 
RF interpretation. The main reason behind this is that each 
individual tree in an RF is trained on a bootstrapped version of 
the training data. As a result, each tree in an RF only covers a 
part of the training data, giving an idea about how inputs relate 
the outputs for only those data points. In addition, an RF 
potentially contains hundreds of trees and, thus, thousands of 
decision rules. As a result, directly visualizing or listing excess 
number of rules will not contribute to the interpretability of RF 
models. Therefore, techniques extracting these rules in a more 
distilled way to enhance understanding are needed. However, 
extracting rules from an RF is challenging due to two main 
reasons. First, as previously mentioned, an RF contains a large 
number of rules, which makes the rule extraction process time-
consuming. Second, extracted rules should be as accurate as 
possible and collectively give an idea about how inputs relate 
to outputs for the whole domain of the problem at hand. In 
other words, the union of extracted rules should cover all of the 
training set instances. 

https://orcid.org/0000-0002-6464-2163
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The accuracy vs. interpretability tradeoff arising in RF models 
leads to some attempts in the literature to increase the 
interpretability of RFs by extracting an accurate set of 
if-then rules. Mashayekhi and Gras [7] propose a hill-climbing 
algorithm for rule extraction from RF classification models. 
They assign a score to each rule of an RF model by considering 
the number of correctly and incorrectly classified instances in 
the training set. They propose another rule score formulation 
which also considers rule length. Their experimental results 
show that hill-climbing coupled with both rule scoring 
formulations is capable of extracting rules from RF models with 
fewer rules and minimal loss of accuracy. Rule scoring 
formulation which incorporates rule length further reduces the 
number of extracted rules. However, their algorithm does not 
guarantee the coverage of all training set instances, and rules 
covering the same training set instances might be selected. In 
an extension to their study [8], the authors propose new 
algorithms based on sparse group Lasso methods for both 
regression and classification problems. They conclude that the 
multiclass sparse group Lasso method achieves the least 
number of extracted rules for most datasets with a lower 
accuracy loss. However, they also note that this specific method 
is not applicable to regression problems. It is also important to 
note that the authors limit the initial number of rules to be at 
most 1000 prior to the rule extraction step. Liu et al. [9] 
propose a combined rule extraction and feature selection 
method (CRF) based on a linear programming model utilizing a 
1-norm regularization. They only focus on classification 
problems for several biological datasets. Experimental results 
show that CRF significantly reduces the number of rules 
compared to the original RF model's rules while preserving 
classification accuracy. Adnan and Islam [10] develop an 
algorithm, ForEx++, which extracts rules based on their 
accuracy, coverage, and length. For each class, the algorithm 
first selects rules that have the accuracy and coverage values 
greater than the average accuracy and coverage values 
calculated by considering all the rules in the RF. In addition, for 
each class, they also select rules having the length less that the 
average length calculated over all of the rules. At the final step, 
the intersection of the rules selected by considering these three 
criteria is presented as the extracted rules. They run ForEx++ 
on two different medical classification problems. Although the 
results are satisfactory in terms of accuracy, they conclude that 
the rules extracted with ForEx++ may not cover all instances in 
the training set. Besides, their algorithm may not guarantee the 
diversity of rules, i.e., a set of extracted rules that might be 
similar. Phung et al. [11] establish a two-step greedy algorithm, 
ExtractingRuleRF, to extract rules from RFs dealing with 
classification problems. In the first step, rule refinement, rules 
obtained from an RF are first ranked according to some criteria 
such as accuracy and coverage. Then, the rules are processed to 
remove redundant conditions in a rule, duplicate rules, rules 
that are covered by other rules. At the end of this step, rules 
preserve their accuracy while having higher interpretability. In 
the second step, rule extraction, the authors use two different 
rule extraction policies, top-town or bottom-up, according to 
the weights of rules calculated in the first step. While the former 
extracts a rule set with high coverage but with lower accuracy, 
the latter returns compact but accurate rule sets having lower 
coverage. They perform experiments with a single dataset. 
Meinshausen [12] proposes a quadratic programming-based 
rule extraction scheme from tree ensembles. While the 
objective function of the quadratic optimization model 
minimizes the prediction error, constraints ensure that each 

training set instance is covered by only one rule. The approach 
is capable of dealing with both regression and classification 
problems. In the experiments, the author keeps only 1000 rules 
from RFs prior to solving the optimization problem. Friedman 
and Popescu [13] develop RuleFit, which uses a linear model 
with Lasso penalty to extract rules from rule-based ensembles 
such as RFs. However, in the linear model, the authors use both 
rules of the ensemble and original input variables in the 
training set as independent variables. Although the Lasso 
penalty minimizes the number of selected rules and input 
variables, the resulting model can return a mixture of rules and 
original model input variables. Therefore, RuleFit may not be 
regarded as a direct rule extraction method. Deng [14] presents 
a framework called inTrees (interpretable trees) for 
interpreting tree-based ensembles. The framework 
incorporates a set of tools such as rule listing, rule pruning, and 
rule selection. The framework is also capable of generating a 
Simplified Tree Ensemble Learner (STEL), which is obtained by 
a greedy and iterative selection of rules based on their accuracy, 
length, and coverage. The STEL serves as a new classifier where 
the rules are distilled from an RF model. For breast cancer 
diagnosis, Wang et al. [15] develop Improved Random Forest-
Based Rule Extraction (IRFRE) method which considers both 
accuracy and interpretability of rules in a multi-objective 
optimization scheme. The authors use a multi-objective 
evolutionary algorithm to solve the optimization problem. 
Although their approach shows promising results, it is assessed 
only on three different datasets and tailored to classification 
problems. Besides, evolutionary algorithm dictates the 
selection of some parameters such as population size, 
crossover probability, and mutation probability. 

Although the literature review reveals a multitude of rule 
extraction approaches from RFs and tree ensembles, most of 
them also have some disadvantages. For example, most of the 
studies only deal with classification problems (e.g., [7], 
[9]-[11],[15]). Besides, some of them are developed for specific 
problems (e.g., [11],[15]) or tested on specific datasets (e.g., 
[10]). Therefore, the extent of their generalizability to problems 
from other domains is unproven. We also observe that, for the 
methods utilizing Lasso penalty and evolutionary methods (e.g., 
[8],[9],[13],[15]), a parameter selection step is needed, which 
emerges as a disadvantage because these parameters must be 
optimized for each dataset separately. Finally, we also see that 
most of the methods do not guarantee the coverage of all 
training instances (e.g., [7],[8],[10]). 

In this study, we propose a collection of set partitioning 
formulations to extract rules from RF models. Our approach is 
capable of handling both classification and regression 
problems. Furthermore, the proposed approach does not 
require any preprocessing step, meaning that the rules 
obtained from an RF can be directly fed to the rule extraction 
problem. The most beneficial characteristic of our approach is 
that it is fully parameter-free. We also guarantee the coverage 
of each training instance to give a comprehensive view about 
the relationship between input variables (features) and 
outputs. In addition, the set partitioning formulation enables us 
to prevent the intersection of rules as much as possible. 

The remainder of the article is organized as follows: Section 2 
gives preliminary background information about RFs and the 
set partitioning problem formulation. Section 3 presents the 
experimental design and the results. Section 4 concludes the 
study. 
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2 Preliminaries and proposed method 

In this section we provide the formal definitions of Random 
Forests and set partitioning problem formulations. 

2.1 Random Forests 

Let 𝐷 = {(𝒙𝑖 , 𝑦𝑖): 𝑖 = 1, ⋯ , 𝑛} be a dataset used to train an RF. 

Here, 𝒙𝑖 = (𝑥𝑖1, ⋯ , 𝑥𝑖𝑝) is the input (feature) vector with 𝑝 

features, and 𝑦𝑖  is the corresponding output. When the output 
is continuous, the problem is considered a regression problem. 
In contrast, if 𝑦𝑖  is categorical, the problem is called a 
classification problem. 𝑛 is the number of rows in 𝐷, and is 
generally called the size of the dataset. 

An RF is an ensemble of 𝑇 decision trees {𝑔𝑡, 𝑡 = 1, ⋯ , 𝑇}. Each 
tree in the forest is trained on a dataset selected from 𝐷 by 
using bootstrapping (random sampling with replacement). In 
addition, at each split generation in the tree fitting process, only 
a random subset of inputs is used. These two techniques enable 
to generate a diverse set of trees. In classification, the output of 
an input vector is predicted by applying the majority voting rule 
over all the predictions returned from trees. In regression, the 
mean of the predictions returned by each tree is assigned as the 
prediction [6]. 

Since it is possible to express a decision tree as a set of if-then 
rules, an RF can also be considered as a large set of rules. Each 
tree in an RF can be converted to a rule set by tracing the path 
from the root to each leaf node. Figure 1 shows a decision tree 
arbitrarily selected from an RF trained on a dataset with two 
input variables (i.e., 𝑥1 and 𝑥2) and two categorical outputs (i.e., 
𝐴 and 𝐵). 

 

Figure 1. A tree of an RF (left) and the corresponding partition 
in the input space (right). 

Table 1 lists all the rules obtained from the tree given in  
Figure 1. 

Table 1. Rules listed from the tree given in Figure 1. 

Rule 
Number 

Rule 

1 IF 𝑥1 ≤ 2.125 THEN 𝑦 = 𝐵 
2 IF 𝑥1 > 2.125 AND 𝑥2 ≤ 2.625 THEN 𝑦 = 𝐵 
3 IF 𝑥1 > 2.125 AND 𝑥2 > 2.625 THEN 𝑦 = 𝐴 

As mentioned in the Introduction, one will obtain a large 
number of rules from an RF. This excess number of rules does 
not improve the interpretability of an RF. Therefore, we 
propose a set partitioning formulation to extract rules, whose 
details are given in the following subsection. 

2.2 The set partitioning problem 

The set partitioning problem has a long history in the 
optimization literature. It has been extensively used to model 

some problems such as crew scheduling [16] and vehicle 
routing [17]. In the problem, the objective is to select a set of 
columns of a binary matrix so that the row sums of the selected 
columns are exactly equal to 1. Since each column is associated 
with a cost value, the aim is to select those columns while 
minimizing the total cost. The problem can be formally defined 
as follows [18]: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑐𝑗𝑥𝑗

𝑚

𝑗=1

 (1) 

∑ 𝑎𝑖𝑗𝑥𝑗

𝑚

𝑗=1

= 1      𝑖 = 1, ⋯ , 𝑛 (2) 

𝑥𝑗 ∈ {0,1}           𝑗 = 1, ⋯ , 𝑚 (3) 

Assume that 𝐴 is an 𝑛 × 𝑚 binary matrix such that 𝑎𝑖𝑗 ∈ {0,1}, 

𝑖 ∈ {1, ⋯ , 𝑛} and 𝑗 ∈ {1, ⋯ , 𝑚}. In the objective function (1), 𝑐𝑗 

is the cost of selecting column 𝑗 of 𝐴, and 𝑥𝑗  is the decision 

variable which is equal to 1 if column 𝑗 is selected and 0 
otherwise. Equation (2) shows the constraint set of the 
problem, which ensures that row sums of the selected set of 
columns are equal to 1. Equation (3) ensures that each decision 
variable must be binary (i.e., either 0 or 1). 

2.3 Proposed approach 

In order to formulate the rule extraction problem as a set 
partitioning problem, we first need to define the components of 
Equations (1)-(3) in the context of rule extraction. 

The first step in the proposed rule extraction scheme is to 
generate matrix 𝐴 and cost vector 𝑐. Each column 𝑗 of 𝐴 
corresponds to a rule of the RF. In addition, each row 𝑖 of 𝐴 
corresponds to each instance of 𝐷. Here, we use the binary 
encoding approach presented in Liu et al. [9]. The algorithm is 
presented in detail in Figure 2. The inputs for the algorithm are 
a random forest 𝐹 and a training set 𝐷. There are two outputs 
of the algorithm, namely 𝐴 and 𝑐. In the first step, all the rules 
contained in 𝐹 are transformed to a list of rules (𝑅𝐿). As 
mentioned before, this can simply be achieved by tracing the 
path from the root to each leaf node for all trees in 𝐹. 𝑛 is the 
number of instances in 𝐷, and 𝑚 is the number of rules 
contained in 𝐹 (and thus in 𝑅𝐿). 

 

Figure 2. Algorithm for generating 𝐴 and 𝑐 for an RF 𝐹. 

The algorithm generates 𝐴 column by column. At each iteration 
of the outer for loop, a new column is added to 𝐴. In the inner 
for loop, for each row 𝑖 of column 𝑗, we set 𝑎𝑖𝑗 = 1, if rule 𝑗 
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covers training instance 𝑖 (i.e., 𝒙𝑖), and we set 𝑎𝑖𝑗 = 0 otherwise. 

After setting column values, we also calculate the error of rule 
𝑗, which corresponds to the “cost” of incorporating that rule in 
the extracted rule set. In classification, 𝑒𝑟𝑟𝑜𝑟(∙) function can be 
any appropriate error measure such as misclassification rate. In 
regression problems, it may be one of the error measures such 
as Root Mean Square Error (RMSE), Mean Square Error (MSE), 
Mean Absolute Error (MAE), etc. After obtaining 𝐴 and 𝑐, one 
can solve the rule extraction problem. 

Figure 3 shows the rules extracted from an RF trained on the 
dataset shown in Figure 1. We see that the set partitioning 
formulation ensures the coverage of all training instances while 
avoiding that an instance is covered by more than one rule. It is 
also obvious from the figure that this may not mean that the 
rules cannot intersect. We also see that the set partitioning 
formulation does not guarantee that the extracted rules cover 
the entire input space, especially when some subspaces of the 
input space lack data instances. Therefore, the set of extracted 
rules cannot be represented as a tree. For that reason, the 
extracted rule set cannot be directly used as a classification or 
regression model. 

 

Figure 3. Visualization of the extracted rules from an RF 
trained on the dataset presented in Figure 1. 

Table 2 shows the extracted rules, which are visualized in 
Figure 3. 

Table 2. Extracted rules from an RF trained on the dataset 
presented in Figure 1. 

Rule 
Number 

Rule 

1 IF 𝑥1 ≤ 2.125 THEN 𝑦 = 𝐵 
2 IF 𝑥1 > 2 AND 𝑥2 > 2.625 THEN 𝑦 = 𝐴 
3 IF 𝑥1 > 2.25 AND 𝑥2 ≤ 2.5 THEN 𝑦 = 𝐵 

2.4 Different objective function formulations 

As mentioned in the Introduction, we aim to propose a set of set 
partitioning formulations for rule extraction from RFs. For this 
purpose, we modify the objective function (1) accordingly. For 
classification, we use the original objective function (Equation 
(1)) and also a modified version is given below for 
experimentation: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑥𝑗

𝑚

𝑗=1

+ ∑ 𝑐𝑗𝑥𝑗

𝑚

𝑗=1

= ∑(1 + 𝑐𝑗)𝑥𝑗

𝑚

𝑗=1

 (4) 

The main difference between Equation (1) and (4) is that the 
former only aims to reduce the total “cost” while the latter also 
aims to reduce the number of extracted rules. For regression, 
we use Equation (1) and a modified version is given below as 
objective functions for experimentation: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑥𝑗

𝑚

𝑗=1

+ ∑
𝑐𝑗

max
𝑗

𝑐𝑗
𝑥𝑗

𝑚

𝑗=1

= ∑ (1 +
𝑐𝑗

max
𝑗

𝑐𝑗
) 𝑥𝑗

𝑚

𝑗=1

 (5) 

As one can see, the main aim of introducing Equation (5) as the 
alternative objective function is to reduce the number of 
extracted rules. In addition, we normalize 𝑐 to prevent it from 
dominating the first term during optimization. This 
normalization is used because most of the error measures for 
regression problems have the same scale as the output 𝑦. 

3 Experimental design and results 

In this section, we provide the experimental design and the 
results of these experiments. We use a Windows 10 64-bit 
operating system with 8 GB RAM, dual-core CPU (i7-7500U 2.70 
GHz). We select five classification (Table 3) and five regression 
(Table 4) datasets frequently used in machine learning studies. 
All of the datasets are taken from UCI Machine Learning 
Repository [19], except for boston [20] and mammography [21] 
datasets. 

Table 3. Characteristics of the datasets for classification. 

Dataset 
Number of 
Features 

Number of 
Classes 

Number of 
Instances 

iris 4 3 150 
mammography 6 2 11183 

glass 10 6 214 
WDBC 30 2 569 
liver 6 2 345 

Table 4. Characteristics of the datasets for regression. 

Dataset 
Number of 
Features 

Number of 
Instances 

boston 13 506 
wine_white 11 4898 
auto_mpg 7 392 

airfoil 5 1503 
concrete 8 1030 

For RF training, we use randomForest package (version 
4.6-12) [22] in R (version 3.5.1) [23]. We use 10 × 5 nested and 
stratified cross-validation design for hyperparameter 
optimization. We consider the following subsets of the 
hyperparameters: 𝑛𝑡𝑟𝑒𝑒 ∈ {50, 100, 150} and 𝑚𝑎𝑥𝑛𝑜𝑑𝑒𝑠 ∈
{10, 25, 50}. Here, 𝑛𝑡𝑟𝑒𝑒 is the number of trees in the forest, and 
𝑚𝑎𝑥𝑛𝑜𝑑𝑒𝑠 is the maximum number of terminal (leaf) nodes for 
each tree in the forest [22]. Although it is known that RFs 
perform well under default hyperparameter settings, we 
perform hyperparameter tuning over both ntree and maxnodes 
since both of them directly affect the complexity of the rule 
extraction problem by determining the number of columns of 
A. Besides, these two hyperparameters also affect the structure 
of the rules: (i) the higher ntree is, the higher the chance of 
generating a diverse set of rules is, (ii) the higher maxnodes is, 
the more confined the rules in the forest are. To calculate vector 
𝑐 (i.e., cost coefficients in Equation (1)), we use 
misclassification error for classification and RMSE for 
regression. 
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To solve each set partitioning problem, we use the R 
implementation of Gurobi solver [24]. Since the set partitioning 
problem is an integer programming problem (see Equation 
(3)), Gurobi uses branch-and-bound algorithm. However, we 
also note that the set partitioning problem is 
NP-hard, implying that the problem is not solvable in 
polynomial time for large instances [25],[26]. Therefore, we set 
a limit of 1200 seconds (i.e., 20 minutes). If the optimal solution 
is not found within this time limit, Gurobi solver returns the 
incumbent solution (i.e., the best known feasible solution 
during the execution of the branch-and-bound algorithm). 

While presenting the results, we also provide the 
accuracy/error of the rules when they are used as a 
classification or regression model. Since both mammography 
and glass datasets are imbalanced, we report macro-F1 values 
for all classification datasets. Macro-F1 is calculated by taking 
the averages of F1 values obtained for each class. For regression 
datasets, we report RMSE values. While assessing the accuracy 
of rule sets, we use the following approach: If a test instance is 
covered by more than one rule, we perform majority voting 
over the classes of those rules for classification, and we take the 
mean of the outputs of those rules for regression. If no rules 
cover a test instance, we consider the fraction of the conditions 
satisfied in each rule for that test instance. Then, we follow the 
same procedure that we have followed for the case where a test 
instance is covered by more than one rule. We also report the 
fraction of the missed points for each dataset. These reported 
values provide evidence about the input space coverage 
capability of the extracted rules. As mentioned before, although 
the set partitioning model ensures the coverage of all training 
instances, there still might be some subspaces of the input 
space which are left uncovered due to the lack of training 
instances in those subspaces (see Figure 3). If the fraction of the 
missed points is low, there is a high probability that there will 
be one or more rule covering each test instance. However, if it 
is high, the rule set does not cover the input space well, leaving 
some test instances uncovered. In the latter case, extracted 
rules may perform poorly when they are used as a classification 
or regression model. In addition, one may miss the information 
about how inputs relate to outputs when the fraction of missed 
points is high. 

3.1 Results for classification problems 

We first experiment with the original set partitioning problem 
formulation (Equations (1)-(3)) for classification problems. 
The results are presented in Table 5. All the reported results are 
averages over 10 folds, and the numbers in parenthesis are 
standard deviations. We see that RF performs well on the iris, 
mammography, and WDBC datasets. However, the number of 
rules contained in RFs is very high for each dataset, which 
significantly degrades the interpretability. We observe that the 
proposed set partitioning formulation dramatically reduces the 
number of rules while keeping the macro-F1 values at 
acceptable levels for most datasets. One critical issue with the 
approach is that the macro-F1 value of the extracted rules is 
highly dependent on the macro-F1 value of the corresponding 
RF. For example, the macro-F1 value significantly deteriorates 
for glass and liver datasets, where the initial RF models do not 
perform well. However, this result is not surprising because the 
fraction of the test points missed by the extracted rules is also 
higher for these datasets. In addition, we know that the glass 
and mammography datasets are imbalanced in terms of class 
distribution. Therefore, the class imbalance problem should be 

handled carefully before the RF training and rule extraction 
processes. 

We also observe that the average runtime of the 
branch-and-bound algorithm for all datasets is quite low. The 
highest runtime is observed for the mammography dataset, 
which has 11183 instances. However, the average runtime is 
less than six minutes. We also note that all the instances are 
solved to optimality within the time limit. 

We then run experiments with the modified objective function 
(Equations (4), (2), and (3)). As mentioned before, this new 
objective function is introduced to reduce the number of 
extracted rules further. The results are summarized in Table 6. 
The first and most critical observation is that the number of 
extracted rules is significantly reduced with the modified 
objective function (i.e., Equation (4)). In contrast, the same level 
of macro-F1 value of the extracted rules is maintained 
compared to the previous formulation (i.e., Equation (1)). We 
also see an improvement in terms of coverage of the test 
instances (see the sixth column in Table 6). However, we notice 
an increase in the runtimes of the branch-and-bound algorithm. 
Some instances for mammography and liver datasets cannot be 
solved within the time limit. In addition, we observe high 
standard deviations in runtimes for these datasets. When we 
scrutinize these cases, we see that, for some replications, the 
number of rules in RFs is high, which results in a high number 
of columns of A, and thus, the high number of decision variables. 
Since the set partitioning problem is NP-hard, any increase in 
the dimension of the problem exponentially increases the 
runtime of the solution procedure. 

3.2 Results for regression problems 

We run the second set of experiments for regression datasets. 
We first use the original set partitioning problem formulation 
(Equations (1)-(3)). The numerical results are given in Table 7. 
We note that the scale of the error values depends on the scale 
of the outputs of each dataset. Therefore, these numbers are 
specific for each dataset. We first observe that RFs tend to 
generate large number of rules compared to classification 
datasets. We also see that the original set partitioning 
formulation helps us to reduce the number of rules while 
allowing a slight increase in error values. However, for boston, 
auto_mpg, and concrete datasets, we still have large number of 
extracted rules, which results in reduced interpretability. 
Except for wine_white dataset, all of the instances are solved to 
optimality. Another important result is that the coverage of the 
extracted rules is satisfactory (see the sixth column in Table 7). 

Table 8 shows the results when we use the set partitioning 
model with the modified objective function (i.e., Equations (5), 
(2), and (3)). We observe a significant reduction in the number 
of extracted rules compared to the case where we use the 
original set partitioning formulation. While reducing the 
number of rules, we also see a slight reduction in the error 
values. However, the reduction in the number of rules comes at 
a cost; we observe high runtimes for all datasets. For boston¸ 
wine_white, and concrete datasets, we detect some instances 
which cannot be solved to optimality within the given time 
limit. However, incumbent solutions still provide accurate 
results for those datasets. 
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Table 5. Results of the experiments for classification problems with Equations (1)-(3). 

Dataset 
Random Forest Extracted Rules 

Macro-F1 Number of Rules Macro-F1 Number of Rules 
Fraction of 

Missed Points 
Runtime (sec) 

iris 0.95 (0.05) 442.20 (136.14) 0.93 (0.07) 16.50 (3.41) 0.04 (0.03) 0.02 (0.02) 
mammography 0.81 (0.04) 5250.00 (2486.07) 0.77 (0.04) 80.10 (16.31) 0.00 (0.00) 346.88 (393.78) 

glass 0.70 (0.19) 3951.50 (1672.59) 0.44 (0.24) 110.20 (27.03) 0.21 (0.07) 0.08 (0.03) 
WDBC 0.96 (0.04) 1547.56 (753.17) 0.90 (0.02) 48.11 (11.14) 0.06 (0.04) 0.26 (0.21) 
liver 0.72 (0.10) 4978.36 (2596.59) 0.56 (0.16) 179.73 (94.86) 0.20 (0.12) 4.41 (12.00) 

Table 6. Results of the experiments for classification problems with Equations (4), (2), and (3). 

Dataset 
Random Forest Extracted Rules 

Macro-F1 Number of Rules Macro-F1 Number of Rules 
Fraction of 

Missed Points 
Runtime (sec) 

iris 0.95 (0.05) 498.20 (270.98) 0.93 (0.06) 3.30 (0.48) 0.00 (0.00) 0.02 (0.01) 
mammography 0.82 (0.04) 6000.00 (1748.01) 0.78 (0.07) 36.40 (5.08) 0.00 (0.00) 798.10 (463.41) 

glass 0.71 (0.12) 3877.20 (1466.59) 0.50 (0.23) 15.80 (2.49) 0.07 (0.08) 4.62 (4.32) 
WDBC 0.96 (0.04) 2185.00 (756.90) 0.94 (0.04) 12.20 (1.23) 0.02 (0.02) 18.87 (13.30) 
liver 0.70 (0.08) 5124.70 (2389.96) 0.58 (0.10) 35.60 (11.25) 0.10 (0.07) 989.64 (448.47) 

 

Table 7. Results of the experiments for regression problems with Equations (1)-(3). 
 

Dataset 
Random Forest Extracted Rules 

Error Number of Rules Error Number of Rules 
Fraction of 

Missed Points 
Runtime (sec) 

boston 3.27 (0.74) 6000.00 (2108.19) 5.12 (1.41) 121.70 (26.97) 0.12 (0.04) 3.87 (2.77) 
wine_white 0.71 (0.03) 5750.00 (2058.18) 0.78 (0.04) 56.50 (12.00) 0.00 (0.00) 798.07 (512.02) 
auto_mpg 2.77 (0.36) 5500.00 (2297.34) 3.74 (0.81) 89.80 (25.61) 0.10 (0.08) 0.15 (0.06) 

airfoil 4.16 (0.20) 5744.50 (2367.92) 6.68 (0.35) 7.60 (4.93) 0.00 (0.00) 0.72 (0.25) 
concrete 7.23 (0.56) 6250.00 (1767.77) 9.69 (1.24) 62.30 (14.37) 0.02 (0.01) 25.29 (23.72) 

Table 8. Results of the experiments for regression problems with Equations (5), (2), and (3). 

Dataset 
Random Forest Extracted Rules 

Error Number of Rules Error Number of Rules 
Fraction of 

Missed Points 
Runtime (sec) 

boston 3.27 (0.74) 6000.00 (2108.19) 4.73 (0.76) 24.90 (2.51) 0.04 (0.03) 943.00 (461.52) 
wine_white 0.71 (0.03) 5750.00 (2058.18) 0.77 (0.03) 37.80 (3.97) 0.00 (0.00) 841.27 (472.28) 
auto_mpg 2.77 (0.36) 5500.00 (2297.34) 3.69 (0.65) 18.40 (3.69) 0.03 (0.03) 40.10 (50.51) 

airfoil 4.16 (0.19) 4747.50 (2185.50) 6.67 (0.37) 8.90 (3.78) 0.00 (0.00) 1.22 (2.13) 
concrete 7.24 (0.66) 5500.00 (1972.03) 9.67 (0.58) 26.80 (3.74) 0.01 (0.01) 758.26 (572.62) 

 

4 Conclusion 

In this study, we propose a collection of different set 
partitioning formulations to extract rules from Random Forest 
classification and regression models. The proposed approach 
does not require a preprocessing step and is parameter-free. In 
addition, it aims to extract accurate rules whose union covers 
the input space of the problem as much as possible while 
keeping the intersections at a minimum. 

First, we use the original set partitioning formulation for 
experimentation. Although the problem is NP-hard, we obtain 
optimal solutions for most of the datasets within the given time 
limit. We observe a significant reduction in the number of rules 
with acceptable deterioration in macro-F1 values. However, for 
imbalanced classification problems, we see that the macro-F1 
value of the extracted rules is reduced when the initial Random 
Forest models does not perform well. Therefore, one might 
need to incorporate some mechanisms to handle class 
imbalance to obtain an accurate set of extracted rules. We also 
observe that the accuracy of the extracted rules is low if the 
fraction of the missed test instances is high. 

We also obtain very promising results when we modify the 
objective function to reduce the number of extracted rules 
further. The modified formulation not only reduces the number 
of rules but also increases the coverage of test instances 
without loss of accuracy. Therefore, we can conclude that the 
modified objective functions yield better accuracy, number of 
rules, and coverage. However, these improvements come at a 
cost; we observe increased runtimes when we use the modified 
objective functions within the set partitioning problem. We 
note that the runtimes are still at acceptable levels, and 
incumbent solutions can still provide satisfactory solutions. 

We also provide example R programs for classification and 
regression to enable researchers to implement the approach 
proposed in this paper [27]. 
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