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ABSTRACT

In this paper, the natural frequencies of the axial-loaded Timoshenko multiple-step beam carrying multiple
elastic-supported rigid bars are calculated. At first, the coefficient matrices for the elastic-supported rigid
bars, the step change in cross-section, left-end support and right-end support of the multiple-step beam are
derived. Next, the numerical assembly technique is used to establish the overall coefficient matrix for the whole
vibrating system. Finally, equating the overall coefficient matrix to zero one determines the natural frequencies
of the system. The natural frequencies of the beams by using secant method for the different values of axial
force are presented in tables.

Keywords: Axial force effect, Free vibration, Multiple elastic-supported rigid bars, Numerical

assembly technique, Timoshenko multiple-step beam.

OZET

Bu ¢alismada, ¢ok sayida elastik mesnetli rijit cubuk tasiyan, eksenel yiike maruz, cok kademeli Timoshenko
kirisinin dogal frekanslar1 hesaplanmustir. {1k olarak, elastik mesnetli rijit cubuklarin, kiris en kesitinin degistigi
noktalarin, sol u¢ mesnetin ve sag u¢ mesnetin kat sayilar matrisi elde edilmistir. Sonra, niimerik toplama teknigi
kullanilarak titresen sistemin bilesik katsayilar matrisi kurulmustur. Son olarak, bilesik katsayilar matrisinin
determinanti sifira esitlenerek sistemin dogal frekanslar1 hesaplanmistir. Farkli eksenel kuvvet degerleri i¢in

secant metodu kullanilarak hesaplanan kiris dogal frekans degerleri tablolar halinde sunulmustur.

Anahtar Kelimeler: Eksenel kuvvet etkisi, Serbest titresim, Cok sayidaki elastik mesnetli rijit cubuklar, Niimerik
toplama teknigi, Cok kademeli Timoshenko kirisi.

1. INTRODUCTION

Beams with step changes in cross-section occur
in civil and mechanical engineering structural
elements. The free vibration characteristics of a
uniform or non-uniform beam carrying various
concentrated elements (such as intermediate
point masses, rotary inertias, linear springs,
rotational springs, etc.) is an important problem
in engineering. Thus, a lot of studies have been
published in this area.

The normal mode summation technique to
determine the fundamental frequency of the

cantilever beams carrying masses and springs
was used by Giirgoze, (1984;1985). Hamdan
and Jubran investigated the free and forced
vibrations of a restrained uniform beam carrying
an intermediate lumped mass and a rotary inertia
(Hamdan and Jubran, 1991). Zhou investigated
the free vibration analysis of a cantilever beam
carrying a heavy tip mass by a translational
spring and a rotational spring (Zhou, 1997).
Giirgoze et al. solved the eigenfrequencies
of a cantilever beam with attached tip mass
and a spring-mass system and studied the
effect of an attached spring-mass system on
the frequency spectrum of a cantilever beam
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(Giirgdze, 1996; Giirgoze and Batan, 1996;
Gilirgoze, 1998). Moreover, they studied on
two alternative formulations of the frequency
equation of a Bernoulli-Euler beam to which
several spring-mass systems being attached in-
span and then solved for the eigenfrequencies.
Liu et al. formulated the frequency equation
for beams carrying intermediate concentrated
masses by using the Laplace Transformation
Technique (Liu et al., 1998). Wu and Chou
obtained the exact solution of the natural
frequency values and mode shapes for a beam
carrying any number of spring masses (Wu and
Chou, 1999). The free vibration analysis of a
uniform Timoshenko beam carrying multiple
spring-mass systems was studied by Wu and
Chen (2001). Glirgdze and Erol investigated the
forced vibration responses of a cantilever beam
with single intermediate support (Giirgéze and
Erol, 2001; 2002). Naguleswaran investigated
the natural frequencies and mode shapes of a
Bernoulli-Euler beam with one-step change in
cross-section and with ends on classical supports
by equating the second order determinant to
zero (Naguleswaran, 2002a). In the other study,
Naguleswaran obtained the natural frequencies
and mode shapes of a Bernoulli-Euler beam on
elastic end supports and with up to three-step
changes in cross-sections by equating the fourth
order determinant to zero (Naguleswaran,
2002b). Chen and Wu obtained the exact natural
frequencies and mode shapes of the non-uniform
beams with multiple spring-mass systems
(Chen and Wu, 2002). Naguleswaran obtained
the natural frequency values of the beams on
up to five resilient supports including ends and
carrying several particles by using Bernoulli-
Euler Beam Theory (BET) and a fourth-order
determinant equated to zero (Naguleswaran,
2002c, 2003a). Chen investigated the natural
frequencies and mode shapes of the non-uniform
beams carrying multiple various concentrated
elements (Chen, 2003). The vibration and
stability of an axial-loaded Bernoulli-Euler
beam with step changes in cross-sections was
investigated by Naguleswaran (2003b; 2004a).
In the other study, Naguleswaran investigated
the vibration of an axial-loaded Bernoulli-Euler
beam carrying a non-symmetrical rigid body
at the step (Naguleswaran, 2004b). Lin and
Chang studied the free vibration analysis of a
multi-span Timoshenko beam with an arbitrary
number of flexible constraints by considering the

compatibility requirements on each constraint
point and using a transfer matrix method (Lin
and Chang, 2005). Lin and Tsai determined
the exact natural frequencies together with the
associated mode shapes for Bernoulli-Euler
multi-span beam carrying multiple point masses
(Lin and Tsai, 2005). Koplow et al. studied the
closed form solutions for the dynamic analysis
of Bernoulli-Euler beams with step changes
in cross-sections (Koplow et al., 2006). In the
other study, Lin and Tsai investigated the free
vibration characteristics of Bernoulli-Euler
multiple-step beam carrying a number of
intermediate lumped masses and rotary inertias
(Lin and Tsai, 2006). The natural frequencies
and mode shapes of Bernoulli-Euler multi-span
beam carrying multiple spring-mass systems
were determined by Lin and Tsai (2007). Wang
et al. studied the natural frequencies and mode
shapes of a uniform Timoshenko beam carrying
multiple intermediate spring-mass systems with
the effects of shear deformation and rotary inertia
(Wang et al., 2007). Wu and Chen investigated
the free vibration analysis of a non-uniform
Bernoulli-Euler beam with various boundary
conditions and carrying multiple concentrated
elements by using continuous-mass transfer
matrix method (Wu and Chen, 2008). Yesilce
et al. investigated the effects of attached spring-
mass systems on the free vibration characteristics
of the 1-4 span Timoshenko beams (Yesilce
et al., 2008). In the other study, Yesilce and
Demirdag described the determination of the
natural frequencies of vibration of Timoshenko
multi-span beam carrying multiple spring-
mass systems with axial force effect (Yesilce
and Demirdag, 2008). Lin investigated the
free and forced vibration characteristics of
Bernoulli-Euler multi-span beam carrying a
number of various concentrated elements (Lin,
2008). Yesilce investigated the effect of axial
force on the free vibration of Reddy-Bickford
multi-span beam carrying multiple spring-mass
systems (Yesilce, 2010). Lin investigated the
free vibration characteristics of non-uniform
Bernoulli-Euler beam carrying multiple elastic-
supported rigid bars (Lin, 2010).

Multiple-step beams carrying multiple elastic-
supported rigid bars are widely used in
engineering applications, but in the literature
for free vibration analysis of such structural
systems;  Bernoulli-Euler ~Beam  Theory
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(BET) without axial-force effect is used. The
literature regarding the free vibration analysis
of Bernoulli-Euler single-span beams carrying
a number of spring-mass systems, Bernoulli-
Euler multiple-step and multi-span beams
carrying multiple spring-mass systems and
multiple point masses are plenty, but that of
Timoshenko multiple-step beams carrying
multiple elastic-supported rigid bars with axial
force effect is fewer. The purpose of this paper
is to utilize the numerical assembly technique to
determine the exact natural frequencies of the
axial-loaded Timoshenko multiple-step beam
carrying multiple elastic-supported rigid bars.
The model allows analyzing the influence of
the shear and axial force effects, intermediate
elastic-supported rigid bars on the free vibration
analysis of the multiple-step beams by using
Timoshenko Beam Theory (TBT). In this paper,
the exact natural frequencies of the beams are
calculated and the effects of the axial force
and the influence of the shear are investigated
by using the computer package, Matlab.
Unfortunately, a suitable example that studies
the free vibration analysis of Timoshenko
multiple-step beam carrying multiple elastic-
supported rigid bars with axial force effect has
not been investigated by any of the studies in
open literature so far.

2. THE MATHEMATICAL MODEL AND
FORMULATION

An axial-loaded Timoshenko beam supported
by s pins by including those at the two ends of
the beam with k-step changes in cross-sections
and carrying n elastic-supported rigid bars is
presented in Figurel. From Figure 1, the total
number of stations is. M =k +n +s.The kinds
of coordinates which are used in this study are
given below:

X are the position vectors for the stations,

(1sv' sM'),

I3
x, are the position vectors of the elastic-
supported rigid bars, (1 =ps n),

X, are the position vectors of the step changes
in cross-sections, (1 srs k)

x ; are the position vectors of the supports,

(lsjss).

From  Figure 1, the symbols of
1,2,...v,...M -1, M above the x-axis refer
to the numbering of stations. The symbols of
1, 2, ...,p, ...,n below the x-axis refer to the
numbering of the elastic-supported rigid
bars. The symbols of (1), (2), ..,(r), ...(k)
below the x-axis refer to the numbering of the
step changes in cross-sections. The symbols of
[1}[2] ....[/] -...[s] below the x-axis refer to the
numbering of the supports.

In Figure 1, the each elastic-supported rigid
bar is fixed on the beam and possessing its own
mass mp and rotary inertia lop and supported by
a translational spring Rp and a rotational spring
Jp.

Each of the symbols “x” denotes the fixed point
of an elastic-supported rigid bar with the beam
and each of the symbols “.” denotes the center
of gravity of the rigid bar. In Figurel, dm,p is the
distance between the fixed point of the elastic-
supported rigid bar and its center of gravity
and dk,p is the distance between the fixed point
and the translational and the rotational springs
supporting the rigid body.

Using Hamilton’s principle, the equations
of motion for the axial-loaded Timoshenko
multiple-step beam can be written as:

EI_,azei(Xiat) GA; - GYi(Xi,t)_e,( 1)
i aXiz + K ox; i\Xi»
1.
ot
GA, ,(aZYi(Xiat) aei(xi’t))
— e
k 0X; 0xX, (1b)
_N- 32Y1(Xiat)_ m-[ . aZYi(Xi’t) -0
ox; A, it
(0=x,<L.) (i=1,2,...k+1)

Where, y;(x;,) represents transverse deflection
of the ith beam segment; (x;,¢) is the rotation
angle due to bending moment of the i beam
segment; m; is mass per unit length of the
i" beam segment; N is the axial compressive
force; A is the cross-section area of the ith beam
segment; I is moment of inertia of the i" beam
segment; L. is the length of the i beam segment;
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k is the shape factor due to cross-section is the position of the i beam segment; t is time
geometry of the beam; E, G are Young’s modulus ~ Variable.
and shear modulus of the beam, respectively; x,

Figure 1. The axial-loaded Timoshenko multiple-step beam with intermediate pinned supports and
carrying multiple elastic-supported rigid bars.
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The parameters appearing in the foregoing
expressions have the following relationships:

a . .’t
¥i (X )=6i(xi»t)+Yi<Xi»t) (2.2)
aXi
- 90, (x;,t
Mi(x;,t) = EI; 'B(TX:) (2.b)
GA,
Ti(Xi,t)=T'Yi(xi>t)
(2.c)

_GA; GYi(Xiat)_ v
= c (—axi el(xl,t))

Where, M,-(x,-,t) and T}(Xi,t) are the bending
moment function and shear force function of the
ith beam segment, respectively, and y; (xi ,its)the
associated shearing deformation of the i beam
segment.

After some manipulations by using Egs. (1)
and (2), one obtains the following uncoupled
equations of motion for the axial-loaded
Timoshenko multiple-step beam as:

-——
ax? ax?

= 0%l ) (1&N_k) 0tyi(xi. 1)

1

( N~E).EI'.a“yi(xi,t)m.azyi(xi,t)
1

+m; atz

Y
Lo k9 yilxi,t)
AZ-G ot

._ 4 . . 2 . .
LNk _EIi_a e,(il,t)+N.a 61();1,t)
X 0Xj

2 4
om0 el(;ci,t) LBk NK) @ Gzi(xi,zt) (3.b)
at G GAj) oxi-at
m? Ii-lz_a461(x1,t)=0

A?-G ot

The general solution of Eq.(3) can be obtained
by using the method of separation of variables
as:

yi(Xj,t) = ¢ (x;) - sin(w- t) (4.2)

0;(x;,t)=0,(x;) sin(w-"t)
(0sz <L,/L) (i=12 .. k+1)*b)

in which

$i(z;) = Cj.cosh(D; 1.z;) + C; 5.sinh(D; 1.Z;) .
+ Ci,3.COS(Di’2.Zi) + Ci,4.sin(Di,2 'Zi)

0;(z;) =K;3 - Cj.sinh(D;;.z;)
+ Ki,3 . Ci,Z'COSh(Di,l'Zi) + Ki,4 . Ci,3.sin(Di72.zi)‘
- K4 Cjq.c08(Dj; 7))

oy [ et}

2
1 [02 s 4.4
Dip =5 |Bi+ VBT +4-0i |,
N, -n* -El E-k N,-a? El-k) m-I
L W T _Npewm o BL oK mi ko
1? GA; GA; 17 Aj
Bi 5 =
L Neo® -El k| EL
GA, 17 12
=2 1 T4 rd
m: 'I"k'(l) .L
S
4 Ai G
. N, -7 El -k ’
-2 -EI -
e N
GA; L
N-L? . L T
N, =— (nondimensionalized multiplication
T EII

factor for the axial compressive force) ;

— 2.4
mio7.L7 (frequency factor) ;

A =4
EI

1

GA1 ° Di,l

Kiz =

E'(_Eli'Diz,l _M.wz + Gf‘i)

A K
-GA;-Dj,

m; -1, GA;\
k- Eli.Dizz_L.wz_'_ ~ 1
’ A k

Z; !

i =75 Cil, ..., Ciz are the constants of integration;
L s total length of the beam; ® is the natural circular
frequency of the vibrating system.

The bending moment and shear force functions
of the i beam segment with respect to zi are
given below:

I\_/Ii(zi,t)= % dediz(izi)~sin(w~t) (5,3)
0= S 208D sl (5
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3. DETERMINATION OF THE
NATURAL FREQUENCIES

The position is written due to the values of the
displacement, slope, bending moment and shear
force functions at the locations of zi and t for the
i segment of Timoshenko beam, as:

{si(zi,o}t{mzi) 0,z:) Milz)) Ti<zi>}-sin<w.t>(6)

Where,{s,(z;.:)}shows the position vector of the i
beam segment.

If the left-end support of the beam is pinned (as
shown in Figure 1), the boundary conditions for
the left-end support are written as:

¢, (z=0)=0 (7.2)

Mi(z=0)=0 (7.b)

From Egs. (4.a) and (5.a), the boundary
conditions for the left-end pinned support can
be written in matrix equation form as:

(4] {0

I 2 3 4

C
Kl,l 0 _K1,2 0[2 C. 0
C

(8.2)

13
1,4
Where Kll = m’
’ L
_ EL"Ky4-Dyp
e

In the formula of K1,1 and Ki,2, 1 denotes the 1%
beam segment.

If the left-end support of the beam is clamped,
the boundary conditions are written as:

(9.a)
(9.b)
From Egs.(4.a) and (4.b), the boundary

conditions for the left-end clamped support can
be written in matrix equation form as:

1 2 3 4

Cl
1 0 1 0 71 .
[0 Ki3 0 —KLJz' C
C

.
' 0
13 0
1.4

If the left-end support of the beam is free, the
boundary conditions are written as:

M (z=0)=0 (1)

T (2=0)=0

From Egs. (5.a) and (5.b), the boundary
conditions for the free left-end can be written in
matrix equation form as:

(11.b)

o2 3 4 .
Kip 00 =Kpp 091 (st (0] (12
0 K1,5 0 _K1,6 2 C1'3 0
Cl’,4
GA D
Where, K5 ==Ltk 4 |;
9 k L 9
GA; ( Dip
Ko =—ol. (212 g
6= % ( L 14)

The boundary conditions for the p™ elastic-
supported rigid bar with rotary inertia in the i
beam segment are written by using continuity
of deformations, slopes and equilibrium of
bending moments and shear forces, as (the
station numbering corresponding to the p®
elastic-supported rigid bar is represented by pr):

() l)
)05 ()

_L
' 2 2. 42 2 L
Mp (zp‘)—(lo)p 07 =Jp+my et dy L, -R, ‘dk‘p)-ﬂpv(zpv)
_R
g0t =Ry i bl (2, ) =¥ 2,

(13.a)

(13.b)

(13.c)

L 2 L
T '(Zp' )—(Rp dyp-my o 'dm’p)'ﬁp.(zp‘)

by b))

(13.d)

Where, L and R refer to the left side and right
side of the p" elastic-supported rigid bar,
respectively.
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In Section Appendix, the boundary conditions
for the p™ elastic-supported rigid bar with rotary
inertia in the i™ beam segment are presented in
matrix equation form.

The boundary conditions for the ' step change
in cross-section are written by using continuity
of deformations, slopes and equilibrium of

In Section Appendix, the boundary conditions
for the r'" intermediate support are presented in
matrix equation form.

If the right-end support of the beam is
pinned, the boundary conditions for the
right-end support are Written as:

bending moments, as (the station numbering 0 (z _ 1) _0
corresponding to the r™ step change in cross- MY (15.2)
section is represented ~
' MM (z=1)=0 (15.b)
by7” ):
L R
d)r, (Zr' ) - d)r, (Zr' ) (14.2) From Egs. (2) and (3), the boundary condi-
eL,(z ')= OB(Z ) (14.b) ]toions.for ‘Fhe right—end Pinned support can
ror ror e written in matrix equation form as:
L R
- - l4.c {c }
M, - wie e, ) 4o o] -0} (16)
L R
Tr' (Zr' )= Tr' (Zr') (14.d) Where,
T
{CM‘} ={ CM‘.l CM',z CM',3 CM‘,4 } (17)
AM; +1 4M; +2 4M; +3 4AM; +4
[B e COSh(Dk,‘_],l ) sinh(DkH,] ) COS(Dk+1 2 ) Sil’l(Dk+1 2) q- 1 (1 8)
M4 1 Ky cosh Dk+1,1) Kyyppsinh(Dyyyy ) = Kyyyp -cos\Dyyin) =Ko 'Sin(Dk+1,2 q
If the right-end support of the beam is clamped, M ( 1 ) _0 (20.a)
the boundary conditions for the right-end Miz=1=
support are written as: T (z=1)=0 (20.b)
M

(19.2)
(19.b)

If the right-end support of the beam is free, the
boundary conditions are written as:

The boundary coefficient matrixes for the right-
end support and free right-end are presented in
Egs. (21) and (22), respectively.

AM; +1 AM; +2 4AM; +3 4M; +4
[B _ cosh(Dy.; ) sinh(Dy,1,) cos(Di,12) sin(Dy1.2) q-1 (2D
M= 1K gy137sinh\Dy gy ) Koy 3-cosh Dk+1,1) K14 -sinDyyn) —Kiypgq cosiDyyin )| g
4AM; +1 4M; +2 4M; +3 4M; +4
Ki17coshiDyp g

b -

Ky1,5°sinh\Dyyp Kk+1,5‘005h(Dk+1,1

Ko sinh(Dypny) = Kiearz -e08Dinz) ~Kic -sin(Diyi J]g -1 (22)
Ky ~sin{Dicy

- Ky,6 cos\Disin )| q
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Where, M , is the total number of the intermediate
stations and is given by:

M; =M -2 (23.2)
With,
M =k+n+s (23.b)

In Eq. (23.b), M 'is the total number of the
stations. In Egs. (18), (21) and (22), q denotes
the total number of equations for integration
constants given by

q=2+4-(M'—2)+2 (24)

From Eq. (24), it can be seen that; the left-
end support of the beam has two equations,
each intermediate station of the beam has four
equations and the right-end support of the beam
has two equations.

In this study, the coefficient matrices for left-
end support, each elastic-supported rigid bar
and right-end support of the axial-loaded
Timoshenko multiple-step beam are derived,
respectively. In the next step, the numerical
assembly technique is used to establish the
overall coefficient matrix for the whole vibrating
system as is given in Eq. (25). In the last step,
for non-trivial solution, equating the last overall
coefficient matrix to zero one determines the
natural frequencies of the vibrating system as is
given in Eq. (26).

[B]-{c}= 10} 25)

B[ =0 (26)

4. NUMERICAL ANALYSIS AND
DISCUSSIONS

In this study, two numerical examples are
considered. For the first numerical example,
the first four natural frequencies, wa (o = 1,
..., 4) and for the second numerical example,
the first five natural frequencies, oo (0 =1, ...,
5) are calculated by using a computer program
prepared by the author. In this program, the
secant method is used in which determinant
values are evaluated for a range (w,) values.
The (®,) value causing a sign change between
the successive determinant values is a root of

frequency equation and means a frequency for
the system.

Natural frequencies are found by determining
values for which the determinant of the
coefficient matrix is equal to zero. There are
various methods for calculating the roots of
the frequency equation. One common used
and simple technique is the secant method
in which a linear interpolation is employed.
The eigenvalues, the natural frequencies, are
determined by a trial and error method based
on interpolation and the bisection approach.
One such procedure consists of evaluating the
determinant for a range of frequency values,
®,. When there is a change of sign between
successive evaluations, there must be aroot lying
in this interval. The iterative computations are
determined when the value of the determinant
changed sign due to a change of 10 in the value
of ® ..

4.1. Free Vibration Analysis of the
Axial-Loaded and Two-Span Uniform
Timoshenko Beam with an Intermediate
Pinned Support and Carrying Single
Elastic-Supported Rigid Bar

In the first numerical example (see Figure 2),
the pinned-pinned and the clamped-free, the
uniform two-span Timoshenko beams with
circular cross-section and an intermediate
pinned support, and carrying single elastic-
supported rigid bar (mi1) with its rotary inertia
(Io,1) are considered.

In this numerical example, the magnitudes and
locations of the elastic-supported rigid bar are

taken as: m =(0.80-m -L) and 7, = (0,04-%1 -L3)
located at zik =0.60, the location of the
intermediate pinned support is at z; = 0.40 and
those for the linear spring is: R} = 50+ (EII / I J .
In this numerical example, four different cases
are studied. For the first case, d,,; =d;; =0; for
the second case, d,,, = (0_10-L) and d;; =0;
for the third case,d, =0 and d;, = (0.15-L);
for the fourth case, 4, =(0.10-2) and
diy=(015-1).

Pamukkale University, Journal of Engineering Sciences, Vol. 18, No. 3, 2012

190



Free Vibration Analysis of the Axial-Loaded Timoshenko Multiple-Step Beam Carrying Multiple Elastic-
Supported Rigid Bars

In this numerical example, the mass density
of the beam is taken as p =7.850x10> kg/m?;
diameter is taken as 4 = 0.03m; the length of the
beam is taken as L =2.0 m; Young’s modulus
of the beam is taken as g —2.069x10'' N/m?;
the shear modulus of the beam is taken as
G =7.95769x10'"  N/m? the shape factor
of the beam is taken as f =4/3 and the
nondimensionalized multiplication factors for
the axial compressive force are taken as Nr
0.0, 0.10 and 0.20, respectively.

The frequency values obtained for the first four
modes of the pinned-pinned Timoshenko beam
are presented in Table 1, for the first four modes
of the clamped-free Timoshenko beam are
presented in Table 2 being compared with the
frequency values obtained for Nr= 0.0, 0.10 and
0.20.

Ay
mi, o1
N N
_> _________________________________ _%_._ ...................... <—._._x>
0 AN
T dm,l Rl FEEE
7 A
] dp
%, =0.80m |
|
x; =1.20m
X3 =L=2.00m
(a) Pinned-pinned beam.
4
; my, 1o,
N i N
_>E _________________________________ B 4_._._)?
04 AN
S dp R,
7 ey
] dp
%, =0.80m |
|
x; =1.20m
%, =L=200m

(b) Clamped-free beam.

Figure 2. The two-span uniform Timoshenko beam with an intermediate pinned support and carrying
an elastic-supported rigid bar.
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Table 1. The first four natural frequencies of the two-span uniform pinned-pinned Timoshenko beam
with an intermediate pinned support and carrying an elastic-supported rigid bar for different values of

Nr.
(BET) (TBT)
d d Ya N.=0.00

O %kl T — — _
m (rad/sec) e 2010) N.=0.00 N.=0.10 N,=0.20
d_,-0 o, 156.180% 1561181 1545329 152.0169
m, ©, 308.2504 307.3963 306.1653 304.9265
o, 804.4782 801.0462 797.4270 793.7933
dg, =0 o, 992.0426 088.0663 084.5237 980.9631
d_=010-L o; 1293295 1292773 127.9920 126.6821
; , 365.7200 364.7675 363.2020 361.6230
o, 811.9713 808.3990 804.8850 801.3580
dy; =0 o4 983.2062 979.2499 975.6421 972.0204
d_ -0 o, 169.759 169.7000 1682116 166.6957
m, o, 304.7648 303.8993 302.6698 301.4332
0 8044183 800.9870 797.3663 793.7312
dg;=0.15-L o, 9922359 988.2606 984.7201 981.1665
4 . —010-L o, 140.6334 140.5847 139.3863 138.1665

m,l .

; ©, 361.5425 360.5740 359.0008 357.4141
© R11.8422 808.2720 804.7541 R01.0042
dy; =0.15-L o, 983.1896 979.2333 975.6261 972.0050

Table 2. The first four natural frequencies of the two-span uniform clamped-free Timoshenko beam with
an intermediate pinned support and carrying an elastic-supported rigid bar for different values of Nr.

. N (BET) (TBT)
o N.=0.00

1o | - _ _
m (rad/sec) (Lin, 2010) N,=0.00 N,=0.10 N,=0.20
d_-0 o 59.8360 598112 603342 60.8634
m, ®, 282.2636 282.0901 281.9945 281.8788
o, 3214192 320.2889 319.2135 318.1559
dy, =0 oy 1162.5441 1154.8078 1151.9664 1149.1178
d_=010L o, 53.2546 530317 53.6346 54.0412
, , 260.5015 2603313 260.5849 260.8404
o 385.0601 383.7341 382.3884 381.0399
dy; =0 o4 1166.9607 1159.1421 11563321 1153.5153
d_ =0 o, 77.8948 77.8732 78.4557 79,0446
m, o, 286.1620 285.9838 285.8016 285.5888
5 317.8232 316.6821 315.62%6 314.6021
dy;=0.15-L 0, 1162.5268 1154.7907 1151.9491 1149.1002
d_=010-L o, 69.6976 69.6789 70.1167 70.5580
m, o 262,710 362.5495 3627577 362.9667
s 380.7431 379.4002 378.0458 376.6390
dy;=0.15-L o, 1166.9235 1159.1050 11562946 1153.4773

From Table 1, one can sees that increasing Nr  deformation is considered in Timoshenko Beam
causes a decrease in the first four mode frequency ~ Theory.

values of the pinned-pinned beam, as expected.

From Table 2, increasing N:r causes an increase 4.2. Free Vibration Analysis of the Axial-Loaded

in the first mode frequency values, a decrease and Three-Step Timoshenko Beam with An
in the other frequency values for the clamped- Intermediate Pinned Support And Carrying
free beam. The frequency values obtained Three Elastic-Supported Rigid Bars

for the Timoshenko beam without the axial

force effect are less than the values obtained  In the second numerical example (see Figure 3),
for the Bernoulli-Euler beam in the reference  the pinned-pinned, clamped-pinned and clamped-
(Lin, 2010), as expected, since the shear free Timoshenko beams with circular cross-
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sections and carrying three elastic-supported
rigid bars (mi1, mz, m3) with their rotary inertias
(To,1, To,2, Io,3) are considered. In this example,
the magnitudes and locations of the elastic-
supported rigid bars and rotary inertias are taken
as:

my=my =my =(1.00-7m; - L),

loy=1Iop=1o3= (0-01'% 'L3) located at z =0.10,
* * .
7z, =0.60 and z3 =085, the location of the

intermediate pinned support is at z; =0.40
and those for the three linear springs and three
rotational springs are:

R =R, = Ry =10-(E11/L3)
Jy=Jy =J3=3-(EL/L)

y
A
ds di=0.25m
d,=0.10m d,=0.15m _ l
N l N
_> ............................................................. .‘_ ..... }
0 X
X =L;=050m| L,=050m Ly =0.50m L, =0.50m
|
¥, =1.00m
L=2.00m

Figure 3. The dimensions of the axial-loaded and three-step Timoshenko beam.

From Figure 3 one sees that, the diameters of
the segments are: di = 0.10 m, d2 = 0.15 m,
d3 = 0.20 m and d4 = 0.25 m; the lengths of the
segments are: L1 =L2=L3=L4=0.50 m; the
locations for the step changes in cross-sections
are:

Z, =025, 7, =0.50 and z; = 0.75 .

In this numerical example, the mass density
of the beam is taken as p = 7.8368x 10> kg/m?;
the length of the beam is taken as 7=2.0 m;
Young’s modulus of the beam is taken as
E=2069x10'" N/m?; the shear modulus of the

beam is taken as G =7.95769x10'°N/m?; the
shape factor of the beam is taken as k =4/3 and

the nondimensionalized multiplication factors
for the axial compressive force are taken as Nr
=0.0,0.10 and 0.20.

In this numerical example, four different cases
are studied. For the first case, dyp=dy, =0; for
the second case,d,,, =(0.08-L) and dy, =0; for
the third case, d,,=0 andd,=(010-1); for
the fourth case, d,,,=(0.08-2) and d;, =(0.10-L)
(p=1,2,3).

The frequency values obtained for the first five
modes of the pinned-pinned Timoshenko beam
are presented in Table 3, for the first five modes
of the clamped-pinned Timoshenko beam are
presented in Table 4 and for the first five modes
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of the clamped-free Timoshenko beam are
presented in Table 5 being compared with the
frequency values obtained for Nr= 0.0, 0.10 and
0.20.

It can be seen from Tables 3-5 that, as the
axial compressive force acting to the beam is
increased, the first five natural frequency values

of the axial-loaded and three-step Timoshenko
beam with pinned-pinned, clamped-pinned
and clamped-free boundary conditions are
decreased. The frequency values obtained for
the Timoshenko beam without the axial force
effect are less than the values obtained for the
Bernoulli-Euler beam, as expected.

Table 3. The first five natural frequencies of the pinned-pinned Timoshenko beam with three changes in
cross-sections and an intermediate pinned support and carrying three elastic-supported rigid bars for
different values of Nr.

d,, d., 0, (BET) (TBT)
® ! {2 3; (rad/sec) N,=0.00 N,=0.00 N,=0.10 N,=0.20
4 4 d o, 1095601 | 1086.7313 | 1083.5236 T080.2976
mt =dmo=dp3=0 @, 16264668 | 15300965 | 15283953 1526.6953
o, 35377354 | 23740548 | 2372.6364 7371.0164
dy=d, =d ;=0 o, 4761.1678 | 4247.0006 | 4246.6767 4245.4512
: : : Y 7462.9981 | 64442095 | 6442.8569 6441.4946
o, 871.6245 853.4348 850.8828 848.2636
dp;=dy, =dy3=008-L ©, T450.9777 | 1380.6499 | 1379.6443 1378.6374
o 34400204 | 32112878 | 3208.4044 32055173
di=dis=d..=0 o 53000038 | 47378492 | 4736.5620 47352725
k1 =digo =dy3
o 6110.5663 | 5364.9210 | 5363.6468 5362.3708
o, 1112.7470 | 1089.8556 | 1086.6660 1083.4583
d,;=d, ,=d_ ;=0 o, 1628.1663 | 1531.8123 | 1530.1017 1528.3923
’ ’ ’ o, 25372420 | 2373.7865 | 2372.1705 2370.5529
dyy=dyg, =dy3=0.10-L o, 47609513 | A4247.6049 | 42463811 42451557
oy 74635397 | 6444.3882 | 6443.5343 64421708
o, §74.9100 §56.8762 §54.2824 851.6765
dpi=dys=dy3=008-L , 1451.6819 | 1381.2845 | 1380.2789 1379.2720
o, 34384654 | 3200.6212 | 3206.7367 3203.8485
dp;=dy, =d 3 =0.10-L o, 5390.6320 | 4737.7291 | 47364420 4735.1509
: : : ® 61108715 | 5365.0990 | 5363.8257 5362.5508

5. CONCLUSIONS

In this study, the frequency values for free
vibration of the axial-loaded Timoshenko
multiple-step beam carrying multiple elastic-
supported rigid beams for different values of
axial compressive force. In the two numerical
examples, the frequency values are determined
for Timoshenko beams with and without the axial
force effect and are presented in the tables. The
frequency values obtained for the Timoshenko
beam without the axial force effect are less
than the values obtained for the Bernoulli-Euler
beam, as expected, since the shear deformation
is considered in Timoshenko beam theory.

T
{Cp} _tpy—l,l Cp'—l,Z Cp'—1,3 Cp'—1,4 Cp',l Cp',Z Cp',3 Cp',4}

Generally, the increase in the values of axial
force also causes a decrease in the frequency
values for all numerical examples.

6. APPENDIX
From Egs. (4) and (5), the boundary conditions
for the p™ elastic-supported rigid bar with rotary

inertia in the i™ beam segment are presented in
matrix equation form as:

o] e
Where,

(A.2)
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Table 4. The first five natural frequencies of the clamped-pinned Timoshenko beam with three changes
in cross-sections and an intermediate pinned support and carrying three elastic-supported rigid bars for
different values of Nr.

d, d., o, (BET) (TBT)
(b-1.2.3) (radisec) | N.=0.00 | N.=0.00 N.=0.10 N,=0.20
O, 208.4073 204.7075 204.6705 204.6323
dm’1 = d,m’2 = dm’3 =0 ®, 1549.7806 1523.0687 1520.8955 1518.7171
O 2114.2154 1991.7825 1990.7858 1989.7883
A =di s =di =0 W, 3828.2770 3026.2184 3025.1304 3024.0418
k1 ™5 k2 7P k3 T W5 5243.2249 4872.9214 4871.6616 4870.3993
O, 191.3762 188.1434 188.1173 188.0901
dm’1 = d,m’2 = dm,3 =0.08-L ®, 1121.8730 1100.2933 1098.7751 1097.2532
d d d 0 O 1828.5541 1751.8090 1750.8884 1749.9670
k1 %2 %3 = W, 5225.0743 4247.6683 4246.2539 4244.8390
W5 5792.6687 5231.3122 5229.3052 5227.2924
O, 214.2382 210.5696 210.5304 210.4901
d,;=d,,,=d, ;=0 O, 1553.6548 1526.9453 1524.7783 1522.6060
’ ' ’ (O 2115.7440 1993.3019 1992.3051 1991.3075
di =dis=d,.=0.10-L W, 3827.5292 3025.2652 3024.1769 3023.0880
k1 =02 =03 =0 . 50430952 | 4872.9677 48717081 | 4870.4462
O, 196.7482 193.5522 193.5244 193.4955
dm’1 = d,m’2 = dm,3 =0.08-L ®, 1124.9707 1103.4637 1101.9491 1100.4309
d d d 0.10-L O 1829.4408 1752.6323 1751.7123 1750.7915
k1 =dip =di 3 =0. o, 52044015 | 4246.4075 42449927 | 4243.5773
W5 5792.1167 5231.0885 5229.0816 5227.0689
4p' =3 dp -2 4p -1 4p’ 4p +1 4p +2 4p +3 4p +4
chi; shi Csi snj o -chj, —sh; -Csin -sniy | 4p -1
[B ] Kiz-ship Kizechyp Kigosnjp -Kjg-esip -Kjzeshyp -Kjzechyy -Kjgosnip Kigresin| 4p (A.3)
LR Kig Kio Kiio -Kip-chjp -Kjp-shyp  Kjpresip  Kiposnin| 4p +1
Kin Kii2 Kiis Ki4 -Kis-shiy -Kjs-chip -Kjgsnjp Kig-csin| 4p +2
Where,

chj; = cosh(Di’] -zpv) ; shy =sinh(Di,1 -zpy) 5 CSin =cos(Di,2 'Zp') ;snj o =sin(Di’2 -zp,);

2 2 .42 2.
Sit=Ipp 0" -J,+m, -dm,p—Rp-dk,p,

Ki7=Kjj-chj; -K;3-Si;-sh;; =S;5-chj;;

Kij1=Kis-shj; =S;3-chi; +K;3-Si5shi;;

Sip =m,

2 .
0Y) 'dm,p _Rp 'dk,p’ Si,3 =R

2

-—m, W,

p

Kig =Kji-shj; —Kj3-Sjj-chj;-Sj,-shj;;
Kio=-Kjy-csir—Kj4-Sij-snjp-Sjr-csin; Kijjo=-Kj snjp+Kj4-Sij-csip=Sipsnj;;
Kiip =Kjs-chj; -S;3-shi; +K;3-S;5chjy;

Kij3=Kjg snjs =Siz-csin +Kjq-Sip-snip 5 Kjjg=-Kje-csip=Sjz-snjs —Kjs-Sip-csip

From Egs.(4) and (5), the boundary conditions for the r'" step change in cross-section are presented

in matrix equation form as:
] -0
e}’ - tr'—l,l Gz

Cr' ~1,3

Cr' 1,4

(A4)

(A.5)
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4r -3 4r -2 4r -1 4r 4r +1
chr; shr;; CST; o S 5 chri,
[5,]- Kigoshriy Kisechny Kjgesorpp o -Kjgrosny - Ky zoshry)
e
Kiyprchry Kiposhyy -Kioresp =Ky osarp =Ky -chryy
Kis-shrp Kjs-chrj  Kjg-snrjy  -Kjg-osry —Kiypsshryy
Where,

4r +2 4r +3 4r +4

shijyy ) CSTi410 sty ] 4r -1 (AL6)
=Kipgrchryy -Kiggosrigy Kiggoosia | 4r
=Kigroshrggy Ky estygy Ko sarigo | 4r +1
-Kipschryyy -Kigeosnriyy Kigoostao | 4r +2

chri,l = cosh(DiJ -zrv) ; shri’l = sinh(DiJ -zr'J ; CShip = cos(Di,z zo J; snrj 5 = sin(Dijz -zrv)

chri,; = cosh(Dy, ‘Zr'J ; shryyyp =sinh(Dyyp 'Zr') ; ostiyga = cos(Diy "z ):

ST,y = Sin(Di+1,2 "z )
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