

Urtica dioica can regulate autophagy pathway in the rat hippocampal tissue after STZ-induced neurodegeneration

- Sule Ayla,¹ Halil Ibrahim Saygi,¹ Merve Sahin,¹ Ebru Ciftkaya,² Aysu Kilic,³
 Sadrettin Pence,⁴ Fatemeh Bahadori,⁵ Elif Gelenli Dolanbay,¹ Birsen Elibol⁶
- ¹Department of Histology and Embryology, Istanbul Medeniyet University Faculty of Medicine, Istanbul, Turkiye
- ²Department of Internal Medicine, Marmara University, Pendik Training and Research Hospital, Istanbul, Turkiye
- ³Department of Physiology, Bezmialem Vakif University Faculty of Medicine, Istanbul, Turkiye
- ⁴Department of Physiology, Istanbul Medeniyet University Faculty of Medicine, Istanbul, Turkiye
- ⁵Department of Basic Pharmaceutical Sciences, Istanbul University-Cerrahpasa, Faculty of Pharmacy, Istanbul, Turkiye

ABSTRACT

OBJECTIVE: Autophagy plays a crucial role in neuroprotection by helping to clear toxic substances, like misfolded proteins. In neurodegeneration, autophagy is impaired leading to the accumulation of harmful proteins that disrupt neuronal function, promote inflammation, and contribute to the degeneration of brain cells. Therefore, because of its anti-inflammatory and anti-oxidative actions, the effects of Urtica dioica (UD) on the proteins of autophagy signaling pathways was studied in the hippocampus of rats with streptozotocin-(STZ) induced neurodegeneration.

METHODS: Neurodegeneration model of rats was induced by intracerebroventricular injection of STZ (3 mg/kg) to observe both cognitive deficits and autophagic dysfunction. Then, the rats in the treatment group were consumed UD at the dose of 50 mg/kg/day for 4 weeks. At the end of 4 weeks, passive avoidance test was applied for cognitive functions and hippocampal tissue of rats were investigated to determine the changes in the proteins related to autophagy by western blotting and immunofluoresecence.

RESULTS: UD treatment slightly attenuated the STZ-induced memory deficiencies in the rats. In addition, an increase in the autophagy was noted by increasing the expression of Beclin, ATG5, and LC3 β proteins in the STZ-UD group compared to the STZ group.

CONCLUSION: In summary, UD may be a candidate molecule as a therapeutic strategy to protect neurons in neurodegeneration through increasing autophagy to reduce toxic protein accumulation.

Keywords: Alzheimer's disease: autophagy: rat; streptozotocin; urtica dioica.

Cite this article as: Ayla S, Saygi HI, Sahin M, Ciftkaya E, Kilic A, Pence S, et al. Urtica dioica can regulate autophagy pathway in the rat hippocampal tissue after STZ-induced neurodegeneration. North Clin Istanb 2025;12(5):1–9.

A lzheimer's Disease (AD) represents a gradual and persistent neurodegenerative illness that leads to serious cognitive decline, memory disturbances, and

noticeable behavioral changes [1]. Being a multifactorial disease, AD is mainly affected by genetic risk factors, aging, and oxidative stress [2]. The disease is

Received: May 27, 2025 Revised: June 17, 2025 Accepted: July 03, 2025 Online: September 24, 2025

Correspondence: Birsen ELIBOL, PhD. Istanbul Medeniyet Universitesi Tip Fakultesi, Tibbi Biyoloji Anabilim Dali, Istanbul, Turkiye.

Tel: +90 533 231 07 23 e-mail: birsen.elibol@medeniyet.edu.tr

⁶Department of Medical Biology, Istanbul Medeniyet University Faculty of Medicine, Istanbul, Turkiye

2 North Clin Istanb

thought to begin with neuronal degeneration in layer II of the entorhinal cortex, progressively extending to the hippocampus, temporal and frontoparietal cortices, and ultimately reaching the subcortical nuclei [3]. It is thought that oxidative stress has been strongly linked to cognitive decline and the progression of AD. Increased oxidative stress contributes to the accumulation of senile plaques and synaptic loss, ultimately leading to neurodegeneration [2].

Autophagy is a tightly regulated process that adapts to oxidative stress by breaking down cytoplasmic macromolecules and damaged organelles within lysosomes, thereby promoting cellular growth, development, and homeostasis. In addition to oxidative stress, autophagy can be triggered by cellular stress factors such as nutrient deprivation, energy shortages, hypoxia, toxins, radiation, DNA damage, and intracellular pathogens. This makes it a promising research target for preventing the progression of neurodegenerative diseases like AD [4]. Previous studies have shown that neuronal cell autophagy is markedly reduced in the onset of AD, and that sustaining autophagy in neuronal cells may help mitigate the progression of AD [5, 6]. Moreover, impaired autophagic flux has been associated with the accumulation of amyloid-beta (Aβ) peptides and hyperphosphorylated tau, which are hallmark pathological features of AD [7, 8]. Dysfunctional autophagy leads to the formation of autophagic vesicles that fail to mature and fuse with lysosomes, resulting in intracellular build-up of toxic protein aggregates [9]. Several key regulators of autophagy, including Beclin-1 and the mTOR signaling pathway, have been found to be dysregulated in AD brains, further implicating autophagic failure in the disease pathology [5, 10]. As such, enhancing autophagy through pharmacological or genetic approaches is being actively investigated as a potential therapeutic strategy in AD.

Urtica dioica (UD) is a plant which could have antiinflammatory and anti-oxidative properties because it is rich in minerals and vitamins, such as pro-vitamin A and vitamin C. UD has been extensively studied as an antioxidant in protecting against hyperglycemia and diabetes [11]. Additionally, previous studies have demonstrated that this herbal extract treatment significantly improves learning and memory in an aged mouse model [2]. Furthermore, it has been shown that UD has potential therapeutic impacts against neuroinflammatory conditions due to its antioxidative effect [12]. Some of

Highlight key points

- Urtica dioica slightly attenuates memory deficiencies.
- Neurodegeneration decreases autophagy in the hippocampus of rats.
- Urtica dioica increases the levels of Beclin, ATG5, and LC3β proteins to activate autophagy in neurodegeneration model.

the constituents of UD, such as carvacrol, scopoletin, and rosiglitazone, have shown a neuroprotective effect against neurological impairments [13]. In one of the previous studies, it was shown that UD has an ameliorative effect on the midbrain dopaminergic neurons of animals with Parkinson's disease by restoring the autophagic machinery as a one of the therapeutic strategies [14]. Therefore, this study aimed to examine the effects of UD on the autophagic process in the hippocampus of rats with neurodegeneration, considering its potential therapeutic role in treating neurodegenerative diseases. In the present study, we employed an AD-like model induced by intracerebroventricular (i.c.v) injection of streptozotocin (STZ). This model closely mimics several pathological features of sporadic AD, including cognitive impairment, insulin resistance, oxidative stress, and neurodegeneration. Importantly, STZ-induced neurodegeneration models have also been shown to exhibit impaired autophagic flux, characterized by the accumulation of autophagic vesicles and altered expression of key autophagy-related proteins in the hippocampus [15, 16]. These features make it a suitable model for investigating autophagy-related mechanisms in the context of AD progression.

MATERIALS AND METHODS

Experimental Subjects

Long-Evans Hooded rats (female, 6-month-old, weighing 350–400 g) taken from Bezmialem Vakif University Animal Research Center were used in the present study. Experimental procedures were followed in line with NIH guidelines (NIH publication No. 85-23, revised 1996) and ethical principles of the Declaration of Helsinki. Rats were free to food and water with housing in 12-hour light/dark cycles at 22°C temperature and 60% humidity. All procedures were authorized by the Animal Research Ethics Committee at Bezmialem Vakif University (2019/266) and conducted in accordance with ARRIVE guidelines to minimize animal suffering.

Neurodegeneration Model by Streptozotocin (STZ) Injection and *Urtica Dioica* (UD) Treatment

At the start of the study, in a random manner, rats were divided to four experimental groups: the control group (without any experimental procedures, n=5), the Sham control group (injection of artificial cerebrospinal fluid (aCSF) via i.c.v., n=6), the STZ group (i.c.v. STZ injection, n=6), and the STZ+UD group (STZ injection via i.c.v. followed by UD treatment, n=5). The numbers of animals were determined according to a priori sample size calculation. To induce neurodegeneration, i.c.v. injections of STZ were administered following a protocol adapted from previous studies [17-19]. STZ (Sigma, St. Louis, MO) was dissolved in aCSF and injected bilaterally into the rats (coordinates: 0.8 mm anteroposterior, 1.5 mm mediolateral, 3.5 mm dorsoventral) for 48 hours apart at a total dose of 3 mg/kg per animal. For the sham control group, aCSF was injected (20 µl) similar to the STZ group.

After the second STZ injection, the rats stayed in their cages for 6-month to develop most of the AD-like phenotype as suggested in a previous study [20]. Subsequently, the STZ+UD group received UD treatment (50 mg/kg/day) via intragastric intubation for 4 weeks [21, 22]. The dose of UD used in our study (human equivalent dose was 10 mg/kg) falls within a range that could reasonably be expected to be achievable in human populations. This dose was calculated based on the literature [23] and the typical consumption levels of commercially available as herbal supplement capsules (500 mg/capsule) for humans [22].

UD was collected from a local Istanbul-Turkiye market and identified by Assoc. Prof. Dr. Cagla Kizilaslan Hancer, from the Department of Pharmaceutical Botany- Faculty of Pharmacy- Bezmialem Vakif University. The plants were cleaned and stripped of leaves in the laboratory to obtain healthy, uniformly colored, and sized leaves, with their stems and petioles removed. The nettle leaves were initially dried in a cool, dry, and shaded environment. Following the drying process, the leaves were manually ground into a fine powder using a pestle and mortar. For ultrasound-assisted extraction, 1 gram of the dried nettle powder was measured and placed into a screw-cap tube containing 15 mL of preboiled double-deionized water. The extraction was conducted in an ultrasonic bath at 65 °C for one hour, based on parameters established in previous studies [24, 25]. This temperature was also chosen to mimic the typical preparation method of nettle leaves, reflecting how they are usually consumed. After extraction, the mixture was filtered using Whatman No.1 filter paper to separate the solid residues from the liquid extract. The final extracts were stored in the dark at 5 °C until further analysis [26].

Passive Avoidance Test

This task was conducted at the day following the last UD treatment. The apparatus used for this task consisted of two compartments: one illuminated and the other dark. The apparatus comprised two chambers separated by a guillotine door. The test included an acquisition and a retention session. During acquisition, each rat was placed in the illuminated compartment for 20 seconds, after which the door opened automatically. Upon entry into the dark compartment, a 1 mA scrambled foot shock was delivered for 2 seconds. Animals were then returned to their cages. In the retention session, rats were reintroduced to the illuminated compartment; after 20 seconds, the door was opened, and step-through latency to the dark compartment was recorded. The maximum cutoff time for this session was 300 seconds.

Molecular Studies

Western Blotting

After the behavioral test, rats were decapitated using guillotine under anesthesia via ketamine and xylazine. Half of the brain (left) was dissected and quickly frozen for immunofluorescence studies. The right hippocampal tissue were dissected from each rat and was homogenized in RIPA lysis buffer containing metallic beads in an homogenizator after treated with 0.1 M phosphate-buffered saline (PBS). Then, homogenized tissues were centrifuged at 9000 x g for 15 min at 4 °C. After determination of protein concentration with Pierce BCA Protein Assay Kit (Thermo Fisher Scientific, Waltham), equal amounts of protein (40 µg/µl) were diluted in Laemmli sample buffer (Bio-Rad Laboratories, Inc. U.S.A), boiled for denaturation of proteins and loaded onto 4-20% gradient of sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE). At the end of the SDS-PAGE, the PVDF membranes were used to transfer proteins and the membranes were treated with blocking solution (5% milk powder in Trisbuffered saline-containing Tween 20 (TBST)). After an overnight incubation with primary antibodies including ATG5, Beclin, MAP LC3β (1:1000; Santa Cruz, USA), and NeuN (1:1000; Cell Signaling, Danvers, USA), 4 NORTH CLIN ISTANB

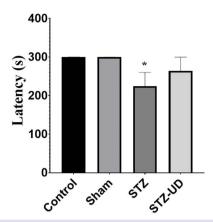


FIGURE 1. Urtica dioica (UD) treatment ameliorated the STZ-induced memory loss. The time to the entrance to the dark side of passive avoidance task for rats in the control (n=5), sham control (n=6), STZ (n=6) and STZ-UD (n=5) groups. Error bars denote SEM (standard error of mean). The degree of significance was denoted as * for $p \le 0.05$.

membranes were incubated with secondary antibodies (1:1000; Cell Signaling, Danvers, USA). Luminol substrate (Advansta, San Francisco, USA) were used for determination of signal with Azure Western Blot Imaging System (Azure Biosystems, USA) containing CCD camera. Protein loading was normalized by β -actin (1:1000; Cell Signaling, Danvers, USA). ImageJ analysis system (NIH; Washington, USA) were used to quantify the immunoreactive protein densitometrically.

Immunofluorescence Staining

Immunoflourescent analysis of rat brain tissue was done on 4 μ m fresh frozen sections. The sections were fixed by 4% paraformaldheyhde (PFA) for 10 minutes at 4 °C. The permabilization was done by 10-min incubation with Triton X-100 (0.3%) at room temperature (RT). The blocking of sections were performed with 1% BSA in TBST for 1h at RT. The antibodies against NeuN (NBP1-92716, Novus) and Beclin (AC-0276RUO, Epitomics) were applied overnight at 4 °C. Negative controls were achieved by using T-TBS instead of the primary antibodies. The secondary antibody applied was Alexa Fluor 488 (ab150077) with 2 μ g/ml concentration for 30-min at RT. The slides were covered by using Fluoroshield Mounting Medium with DAPI (ab104139, Abcam).

The sections were then examined under Zeiss Vert. A1 microscope and photographed by ZEN 2.6 application using Axiocam 503 color camera. The images taken was evaluated by QuPath [27]. In hippocampal CA1-

CA3 regions, positive cells were counted for NeuN evaluation and H-scores were calculated for Beclin evaluation. The evaluations were done over the images taken three different sites of specified regions.

Statistical Analysis

The mean values and standard error of means were calculated for behavioral and molecular data. One-way ANOVA with Fisher's Least Significant Difference (LSD) test for pairwise comparisons was applied for behavioral and western blotting data to calculate the differences between groups. For analysis of data and representing the results as a graph, the Graphpad Prism 8 (GraphPad Software, Boston, USA) was used. The statistical significance value was accepted as p≤0.05.

RESULTS

Effect of UD Treatment on Cognitive Performance in STZ-Induced Neurodegeneration

During the retention session of the passive avoidance test, a shorter step-through latency were observed in the STZ group compared to both control groups, indicating impaired memory performance. This reduction was statistically significant only relative to the sham group (p=0.042). Conversely, administration of UD to STZ-exposed animals led to a noticeable improvement in retention performance, with latency values approaching those observed in the control groups (Fig. 1).

Effect of UD Treatment on Autophagy Protein Expression of STZ-Induced Neurodegeneration

The effect of STZ-injection and UD administration on the autophagy proteins including Beclin, ATG5, and LC3ß were demonstrated in the hippocampal tissue (Fig. 2). Injection of STZ significantly declined the expressions of Beclin protein in the rats (Fig. 2A, p=0.0021), ATG5 (Fig. 2B, p=0.0078), and LC3 β (Fig. 2C, p=0.0003) compared to that of the sham control group. In addition, an increase in the expression of these autophagy markers were noted in the sham control group compared to the control group (p<0.05). On the other hand, UD administration significantly increased the concentration of Beclin (p=0.0421) and LC3 β (p=0.0038) compared to the STZ group approaching to the levels in the control groups. In contrast, the protein expression of ATG5 was not significantly changed due to UD treatment compared to the STZ group (Fig. 2B).

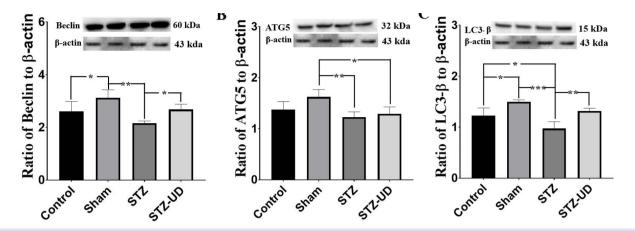


FIGURE 2. Representative pictures and relative amounts of (A) Beclin (B) ATG5, and (C) LC3 β to β -actin which were analyzed by western blotting for control (n=5), sham control (n=6), STZ (n=6) and STZ-UD (n=5) groups. Error bars indicate SEM (standard error of mean). The degree of significance was denoted as * for p≤0.05, ** for p≤0.01, *** for p≤0.001. Lines show differences between two represented groups.

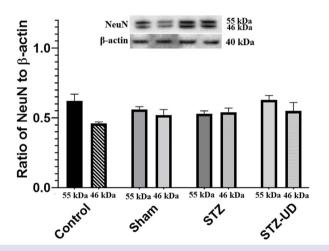


FIGURE 3. Representative pictures and relative amounts of NeuN protein to the to β -actin protein which were analyzed by western blotting for control (n=5), sham control (n=6), STZ (n=6) and STZ-UD (n=5) groups. Error bars indicate SEM (standard error of mean).

To observe effects of UD and the autophagy on the neuronal levels, we measured the expression of NeuN in the hippocampus of all studied groups (Fig. 3). Moreover, both STZ injection and UD treatment did not have any significant effect on the expression of NeuN protein compared to control animals (Fig. 3).

The Effect of UD Treatment on the Histological Parameters

To further detect and quantify NeuN positive cells over hippocampal CA1-CA3 subregions, immunoflo-

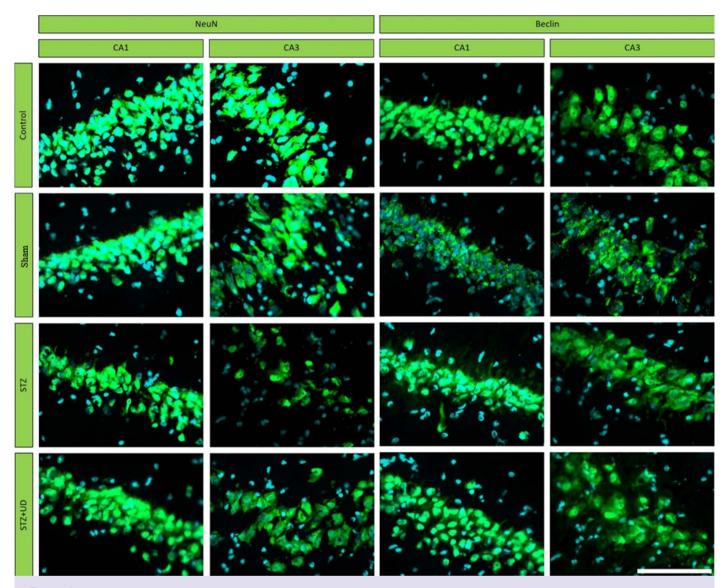
rescence labeling was done (Fig. 4). In both CA1 and CA3 regions, the number of NeuN positive cells significantly decreased in the STZ group compared to the both control groups (Fig. 5, p<0.01). The UD-treatment group showed a statistically significant increase in both regions of the hippocampus compared to that of the STZ group (p<0.05).

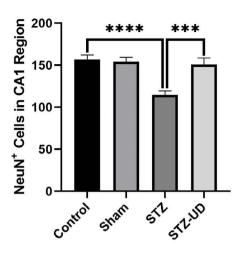
The autophagy marker Beclin was also evaluated with immunofluorescence labeling for validation of western blotting data (Fig. 4). The STZ group had a significantly low Beclin H-Score compared to the both control and sham groups in hippocampal CA1-CA3 regions (Fig. 5, p<0.001). The UD treatment group, however, showed significantly high Beclin H-Score in both regions compared to the STZ group (p<0.01).

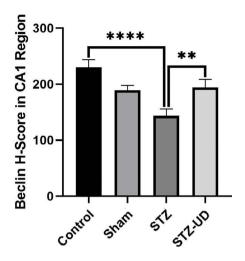
DISCUSSION

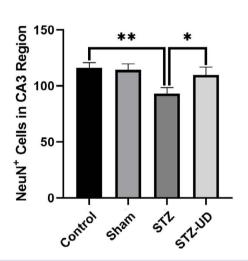
Neurodegenerative disorders are also defined as proteinopathies due to the accumulation of aggregates of insoluble proteins. Multiple risk genes related to neurodegenerative disorders, including PICALM, PSEN1, TREM2, CLU, etc. have been modulate autophagic flux [28]. Therefore, promoting autophagy to improve the removal of misfolded proteins is suggested as a potential therapeutic approach. Strategies targeting autophagy could offer a novel method for developing medications to combat neurodegenerative disorders, particularly phytotherapeutics [29]. Herbal drugs are considered as probable sources of antioxidants [30]. The most regular used forms of the herbal drugs are

6 NORTH CLIN ISTANB




FIGURE 4. Immunoflourescence images from hippocampal CA1-CA3 subregions stained with NeuN and Beclin antibodies (Scale Bar:100 μm) X63.


plant extracts [31]. UD is a plant which has anti-infammatory and anti-oxidation properties with great promises for chronic inflammatory diseases [32, 33]. In the present study, we investigated the correlation between UD's protective role on the hippocampal neurons in regards to autophagy which remains to be elucidated for ST'Z-induced neurodegeneration.


In the present study, we observed the ameliorative role of UD on the STZ-induced cognitive impairment as previously noted in the rats with diabetic neuropathy [34, 35]. In addition to memory dysfunction in the diabetic animals, the healing effects of UD on memory function was also recorded in brain lesions, aging, and experimental memory deficiency models [12, 36–38]. In

a previous study, when an herbal extract including UD was given to the rats with sporadic AD, an improvement in the spatial learning and memory was considered that this herbal extracts might have anti-dementia properties [2]. In these previous studies, the underlying molecular mechanism of this memory enhancing effect of UD might be related to the its antioxidative effects to increase some proteins that are crucial for memory formation and synaptic plasticity such as muscarinic cholinergic system, BDNF, NGF, and synaptophysin [2, 12, 36, 39].

On the other hand, the molecular parameters that activate cell survival and death in the hippocampal region are important for the alterations in the learning and memory. The two important physiological cell

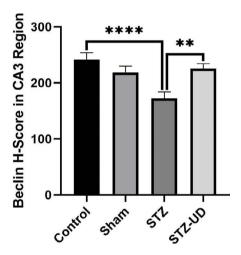


FIGURE 5. The levels of immunofluorescence of NeuN and Beclin from hippocampal CA1-CA3 subregions. The positive cells were counted for NeuN evaluation and H-scores were calculated for Beclin evaluation in the control (n=5), sham control (n=6), STZ (n=6) and STZ-UD (n=5) groups. Error bars indicate SEM (standard error of mean). The degree of significance was denoted as * for $p \le 0.05$.

death mechanisms, autophagy and apoptosis, and their crosstalk between each other influence homeostasis of the cell, the clearance of cell debris, in addition to the action of therapeutics. Depending on the context, autophagy can either inhibit apoptosis or function in concert with it [40]. In our study, we investigated the alterations in the expression of proteins related to the autophagy to understand the neuroprotective effect of the UD on the STZ-induced neurodegeneration and its memory enhancing activity. As previously mentioned, we observed a significant decrease in the autophagy parallel to memory decline in the STZ-induced neurodegeneration [1, 4, 41, 42]. Impaired autophagy

is recognized as a key contributor to cellular damage and neuronal death in neurodegenerative disorders, leading to abnormal protein aggregation, mitochondrial dysfunction, oxidative stress, and apoptosis [43, 44]. Therefore, the activation of autophagy has been suggested as a potential therapeutic approach for AD because of increasing evidence of it in maintaining neuronal function [45]. In our study, we observed a significant effect of UD on the autophagy by increasing the expression of Beclin, a crucial marker in the early stages of autophagy which is essential for autophagosome formation, and LC3 β , a marker of the later stages of autophagy which is a membrane-bound protein asso-

8 North Clin Istanb

ciated with autophagosomes, in the hippocampal tissue [46], while no variations were noted in autophagy levels of some other tissues such as ovarian cancer cells [47]. In addition, as seen in our study, ATG5 expression did not change due to UD supplementation in diabetic mice hippocampi [47]. As a validation of western blotting results, a significant increment in the immunofluorescence of Beclin protein were noted in the both CA1 and CA3 regions of hippocampus.

The downregulation of autophagy indices in the STZ-induced neurodegeneration has been associated with increased apoptosis in hippocampus suggesting a neuronal loss and cognitive impairment [35]. In the current study, while there was a slight decline in the NeuN protein expression of the hippocampal tissue which was determined by western blotting, the decrease in the NeuN positive cells in the both CA1 and CA3 regions was significant in the STZ-induced neurodegeneration model suggesting neuronal death in these parts of the hippocampus. Furthermore, parallel to the increase in the Beclin H-score, an UD-dependent increase in the NeuN positive cells of the both regions suggest the anti-apoptotic role of the UD through upregulating autophagy pathways in the hippocampus [48].

Conclusion

In the current study, we noted that UD may improve cognitive dysfunction by altering autophagy-related indexes in STZ-induced neurodegeneration model rats. This study aligns with previous research, further supporting the critical role of autophagy in the pathology of AD. Additionally, it suggests that autophagy may serve as a potential therapeutic target for AD, providing a foundation for future treatments with phytotherapeutics, like UD, that modulate autophagy as a strategic intervention offering new perspectives for AD treatment.

Ethics Committee Approval: The Bezmialem Vakif University Animal Experiments Ethics Committee granted approval for this study (date: 06.12.2019, number: 2019/266). Conducted in accordance with ARRIVE guidelines to minimize animal suffering.

Conflict of Interest: The authors declare that they have no conflict of interest.

Financial Disclosure: The authors declared that this study has received no financial support.

Use of AI for Writing Assistance: The authors declared that artificial intelligence-supported technologies (such as Large Language Models [LLMs], chatbots or image generators, ChatGPT) were not used in the production of the study.

Authorship Contributions: Concept – SA, EC, BE; Design – SA, FB, BE; Supervision – SA, BE; Fundings – SA, SP, BE; Materials – BE, FB, EGD; Data collection and/or processing – SA, HIS, MS, AK, EGD, BE; Analysis and/or interpretation – SA, SP, BE; Literature review – SA, MS, AK, BE; Writing – SA, HIS, EC, BE; Critical review – SA, HIS, MS, AK, EC, EGD, FB, SP, BE.

Peer-review: Externally peer-reviewed.

REFERENCES

- Reddy PH, Oliver DM. Amyloid beta and phosphorylated tau-induced defective autophagy and mitophagy in Alzheimer's disease. Cells 2019;8:488. [CrossRef]
- 2. Daneshmand P, Saliminejad K, Dehghan Shasaltaneh M, Kamali K, Riazi GH, Nazari R, et al. Neuroprotective effects of herbal extract (Rosa canina, Tanacetum vulgare and Urtica dioica) on rat model of sporadic Alzheimer's disease. Avicenna J Med Biotechnol 2016;8:120-5.
- 3. Rao YL, Ganaraja B, Murlimanju BV, Joy T, Krishnamurthy A, Agrawal A. Hippocampus and its involvement in Alzheimer's disease: a review. 3 Biotech 2022;12:55. [CrossRef]
- 4. Ruan Y, Luo H, Tang J, Ji M, Yu D, Yu Q, Cao Z, et al. Curcumin inhibits oxidative stress and autophagy in C17.2 neural stem cell through ERK1/2 signaling pathways. Aging Med (Milton) 2024;7:559-70. [CrossRef]
- 5. Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest 2008;118:2190-9. [CrossRef]
- 6. Miki Y, Holton JL, Wakabayashi K. Autophagy in neurodegeneration and aging, Aging (Albany NY) 2018;10:3632-3. [CrossRef]
- Álvarez-Arellano L, Pedraza-Escalona M, Blanco-Ayala T, Camacho-Concha N, Cortés-Mendoza J, Pérez-Martínez L, et al. Autophagy impairment by caspase-1-dependent inflammation mediates memory loss in response to β-Amyloid peptide accumulation. J Neurosci Res 2018;96:234-46. [CrossRef]
- 8. Suelves N, Saleki S, Ibrahim T, Palomares D, Moonen S, Koper MJ, et al. Senescence-related impairment of autophagy induces toxic intraneuronal amyloid-β accumulation in a mouse model of amyloid pathology. Acta Neuropathol Commun 2023;11:82. [CrossRef]
- 9. Lee JH, Yu WH, Kumar A, Lee S, Mohan PS, Peterhoff CM, et al. Lysosomal proteolysis and autophagy require presentiin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 2010;141:1146-58.

 [CrossRef]
- Kodali M, Madhu LN, Somayaji Y, Attaluri S, Huard C, Panda PK, et al. Residual microglia following short-term PLX5622 treatment in 5xFAD mice exhibit diminished NLRP3 inflammasome and mTOR signaling, and enhanced autophagy. Aging Cell 2025:e14398. [CrossRef]
- 11. Chehri A, Yarani R, Yousefi Z, Novin Bahador T, Shakouri SK, Ostadrahimi A, et al. Anti-diabetic potential of Urtica Dioica: current knowledge and future direction. J Diabetes Metab Disord 2022;21:931-40. [CrossRef]
- 12. Abu Almaaty AH, Mosaad RM, Hassan MK, Ali EHA, Mahmoud GA, Ahmed H, et al. Urtica dioica extracts abolish scopolamine-induced neuropathies in rats. Environ Sci Pollut Res Int 2021;28:18134-45. [CrossRef]
- 13. Patel SS, Udayabanu M. Effect of Urtica dioica on memory dysfunction and hypoalgesia in an experimental model of diabetic neuropathy. Neurosci Lett 2013;552:114-9. [CrossRef]

- 14. Albadawi E, El-Tokhy A, Albadrani M, Adel M, El-Gamal R, Zaarina W, et al. The role of stinging nettle (Urtica dioica L.) in the management of rotenone-induced Parkinson's disease in rats. Tissue Cell 2024;87:102328. [CrossRef]
- Naeem A, Waseem A, Khan MA, Robertson AA, Raza SS. Therapeutic potential of MCC950 in restoring autophagy and cognitive function in ST'Z-induced rat model of Alzheimer's disease. Mol Neurobiol 2025;62:6041-58. [CrossRef]
- El-Maraghy SA, Reda A, Essam RM, Kortam MA. The citrus flavonoid "Nobiletin" impedes STZ-induced Alzheimer's disease in a mouse model through regulating autophagy mastered by SIRT1/FoxO3a mechanism. Inflammopharmacology 2023;31:2701-17. [CrossRef]
- 17. Isik AT, Celik T, Ulusoy G, Ongoru O, Elibol B, Doruk H, et al. Curcumin ameliorates impaired insulin/IGF signalling and memory deficit in a streptozotocin-treated rat model. Age [Dordr] 2009;31:39-49. [CrossRef]
- 18. Dalli T, Beker M, Terzioglu-Usak S, Akbas F, Elibol B. Thymoquinone activates MAPK pathway in hippocampus of streptozotocin-treated rat model. Biomed Pharmacother 2018;99:391-401. [CrossRef]
- Uysal M, Celikten M, Beker M, Polat N, Huseyinbas O, Terzioglu-Usak S, et al. Kaempferol treatment ameliorates memory impairments in STZ-induced neurodegeneration by acting on reelin signaling. Acta Neurobiol Exp (Wars) 2023;83:236-45. [CrossRef]
- Knezovic A, Osmanovic-Barilar J, Curlin M, Hof PR, Simic G, Riederer P, et al. Staging of cognitive deficits and neuropathological and ultrastructural changes in streptozotocin-induced rat model of Alzheimer's disease. J Neural Transm (Vienna) 2015;122:577-92. [CrossRef]
- 21. Ali EHA, Hassan MK, Abbas OA, Elmalahy HE, Almaaty HA. Urtica dioica improves brain dysfunctions in propionic acid autistic like rat model through brain monoamines and mitochondrial energy. African J Biol Sci 202016:207-31. [CrossRef]
- 22. Mahmoud AA, Zayed Mohamed M, Hassen EZ. Protective effects of Urtica dioica on the cerebral cortex damage induced by Potassium bromate in adult male albino rats. Ultrastructu Pathol 2024;48:81-93. [CrossRef]
- 23. Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clini Pharm 2016;7:27-31. [Crossref]
- 24. Bucić-Kojić A, Planinić M, Tomas S, Jakobek L, Šeruga M. Influence of solvent and temperature on extraction of phenolic compounds from grape seed, antioxidant activity and colour of extract. Int J Food Sci Tech 2009;44:2394-401. [CrossRef]
- 25. Spigno G, Tramelli L, De Faveri DM. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J Food Engineer 2007;81:200-8. [CrossRef]
- Flórez M, Cazón P, Vázquez M. Antioxidant extracts of nettle (Urtica dioica) leaves: Evaluation of extraction techniques and solvents. Molecules 2022;27:6015. [CrossRef]
- Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG, Dunne PD, et al. QuPath: Open source software for digital pathology image analysis. Sci Rep 2017;7:16878. [CrossRef]
- 28. Andrade-Guerrero J, Santiago-Balmaseda A, Jeronimo-Aguilar P, Vargas-Rodríguez I, Cadena-Suárez AR, Sánchez-Garibay C, et al. Alzheimer's disease: An updated overview of its genetics. Int J Mol Sci 2023;24:3754. [CrossRef]
- 29. Zhang Z, Yang X, Song YQ, Tu J. Autophagy in Alzheimer's disease pathogenesis: Therapeutic potential and future perspectives. Ageing Res Rev 2021;72:101464. [CrossRef]
- Osadebe PO, Odoh EU, Uzor PF. The search for new hypoglycemic agents from plants. African J Pharmacy Pharmacol 2014;8:292-303. [CrossRef]

- 31. Ademolu AB. Sulfonylureas induced hypoglycemia in diabetics. Int J Diabetic Endocrinol 2019;4:108-12. [CrossRef]
- 32. Joshi BC, Mukhija M, Kalia AN. Pharmacognostical review of Urtica dioica L. Int Green Pharmacy 2014;8:201-9. [CrossRef]
- 33. Di Sotto A, Mazzanti G, Savickiene N, Staršelskytė R, Baksenskaite V, Di Giacomo S, et al. Antimutagenic and antioxidant activity of a protein fraction from aerial parts of Urtica dioica. Pharm Biol 2015;53:935-8. [CrossRef]
- 34. Keshvari M, Rahmati M, Mirnasouri R, Chehelcheraghi F. Effects of endurance exercise and Urtica dioica on the functional, histological and molecular aspects of the hippocampus in STZ-Induced diabetic rats. J Ethnopharmacol 2020;256:112801. [CrossRef]
- 35. Patel SS, Gupta S, Udayabanu M. Urtica dioica modulates hippocampal insulin signaling and recognition memory deficit in streptozotocin induced diabetic mice. Metab Brain Dis 2016;31:601-11. [CrossRef]
- 36. Rahmati M, Keshvari M, Xie W, Yang G, Jin H, Li H, et al. Resistance training and Urtica dioica increase neurotrophin levels and improve cognitive function by increasing age in the hippocampus of rats. Biomed Pharmacother 2022;153:113306. [CrossRef]
- 37. Toldy A, Atalay M, Stadler K, Sasvári M, Jakus J, Jung KJ, et al. The beneficial effects of nettle supplementation and exercise on brain lesion and memory in rat. J Nutr Biochem 2009;20:974-81. [CrossRef]
- 38. Ghasemi S, Moradzadeh M, Hosseini M, Beheshti F, Sadeghnia HR. Beneficial effects of Urtica dioica on scopolamine-induced memory impairment in rats: protection against acetylcholinesterase activity and neuronal oxidative damage. Drug Chem Toxicol 2019;42:167-75. [CrossRef]
- 39. Patel SS, Parashar A, Udayabanu M. Urtica dioica leaves modulates muscarinic cholinergic system in the hippocampus of streptozotocin-induced diabetic mice. Metab Brain Dis 2015;30:803-11. [CrossRef]
- 40. Liu G, Pei F, Yang F, Li L, Amin AD, Liu S, et al. Role of autophagy and apoptosis in non-small-cell lung cancer. Int J Mol Sci 2017;18:367. [CrossRef]
- 41. Hu K, Wu S, Xu J, Zhang Y, Zhang Y, Wu X, et al. Pongamol alleviates neuroinflammation and promotes autophagy in Alzheimer's disease by regulating the Akt/mTOR signaling pathway. J Agric Food Chem 2024:6. [CrossRef]
- 42. Han L, Chen W, Li J, Zhao Y, Zong Y, He Z, et al. Palmatine improves cognitive dysfunction in Alzheimer's disease model rats through autophagy pathway and regulation of gut microbiota. Brain Res 2024;1835:148932. [CrossRef]
- 43. Kenney DL, Benarroch EE. The autophagy-lysosomal pathway: General concepts and clinical implications. Neurol 2015;85:634-45. [CrossRef]
- 44. Small SA, Kent K, Pierce A, Leung C, Kang MS, Okada H, et al. Model-guided microarray implicates the retromer complex in Alzheimer's disease. Ann Neurol 2005;58:909-19. [CrossRef]
- 45. Hung C, Livesey FJ. Endolysosome and autophagy dysfunction in Alzheimer disease. Autophagy 2021;17:3882-3. [CrossRef]
- Li X, He S, Ma B. Autophagy and autophagy-related proteins in cancer. Mol Cancer 2020;19:12. [CrossRef]
- 47. Abi Akl M, Hajj R, Jamati G, Karam L, Ibrahim JN, Kobeissy PH, et al. Protective effects of nettle tea on SKOV-3 ovarian cancer cells through ROS production, apoptosis induction, and motility inhibition without altering autophagy. Foods 2024;13:3336. [CrossRef]
- 48. Patel SS, Ray RS, Sharma A, Mehta V, Katyal A, Udayabanu M. et al. Antidepressant and anxiolytic like effects of Urtica dioica leaves in streptozotocin induced diabetic mice. Metab Brain Dis 2018;33:1281-92. [CrossRef]