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Legionella pneumophila (Lp) is a Gram-negative, 
aerobic bacteria, which are colonizing in water 

habitats, such as pools and man-made aquatic envi-
ronments [1, 2]. Thanks to their survivability in bio-
film, Lp can colonize man-made water systems, from 
households, hospitals, and hotels to tap water [1]. 
Currently, the Legionella genus comprises 59 species 
(spp.) and more than 70 serotypes (ST) [3]. Among 

Legionella spp., Lp ST1 bacteria are responsible for 
the majority (80%) of all reported cases of legionello-
sis [4]. Lp most commonly causes Legionnaires’ dis-
ease, which can result in lung damage or death [5–7]. 
The ability of Lp to grow intracellularly within pul-
monary macrophages is important for becoming in-
fection. Therefore, macrolides that can reach suitable 
therapeutic levels in eukaryotic cells are used in treat-

ABSTRACT
OBJECTIVE: Legionella pneumophila (Lp) is aerobic, non-spore forming Gram-negative bacteria, which is ubiquitous in 
freshwater habitats, such as rivers and hot springs, as well as colonizing artificial aquatic environments. The ability of Lp to 
grow intracellularly within pulmonary macrophages is a prerequisite for the development of infection. Therefore, macrolides 
can achieve appropriate therapeutic concentrations in eukaryotic cells, such as azithromycin. This study aimed to investigate 
the macrolides susceptibility of Lp.

METHODS: Pre-flash water samples (n=143) were collected from the public buildings (hospitals and hotels) water system in 
Istanbul. Colonies were confirmed as Lp ST1, ST2-14, and non-pneumophila Lp using latex agglutination kit.

RESULTS: 30 Lp were detected in hospital (n=23) and hotel (n=7) water systems using latex agglutination. Regardless 
of serotype and excluding strains without zone formation (≥256 mg/L), the main MIC values of azithromycin, erythromycin 
and clarithromycin were 0.61 mg/L (range 0.047–1 mg/L), 0.47 mg/L (range 0.047–1 mg/L) and 0.44 mg/L (range 0.047–1 
mg/L), respectively. The MIC50 and MIC90 values for macrolides were 0.5 and 3 mg/L for azithromycin, respectively; 0.38 and 
1 mg/L for erythromycin, respectively; and 0.5 and 1 mg/L for clarithromycin, respectively. We compared the MIC values of 
the strains for all antimicrobial agents tested without serotype discrimination. We did not find a significant difference between 
the MIC values of the antibiotics (p=0.16).

CONCLUSION: Although the data obtained from our study do not fully reflect the breakpoints, further epidemiological stud-
ies are needed to standardize MIC values.
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ment [8]. Due to the difficulty of isolating bacteria 
from the patient sample and the lack of antibiotic sus-
ceptibility screening methods, susceptibility testing 
is not performed [9]. The purpose of this study was 
to study the macrolide sensitivity of Lp isolated from 
hospitals and hotels in Istanbul.

MATERIALS AND METHODS

Sample collection and bacterial strains
Pre-flash water samples (n=143) were collected from 
the public buildings’ (hospitals and hotels) water sys-
tems (16 cooling towers, 27 water tanks, 69 tap water, 
21 shower heads) in January-July 2019 in Istanbul. All 
samples were taken into sterile thiosulfate-free bot-
tles. 1 L of water sample was filtered (Sartorius, Ger-
many), and the filters were placed on GVPC (Glycine 
Vancomycin Polymyxin Cyclohexmide Agar) agar 
(Liofilchem, Italy) containing L-cysteine and Fe3+ 
and incubated at 36±1°C for seven days. The colonies 
thought to be Lp were passaged on BCYE (Buffered 
Charcoal Yeast Extract) agar (Liofilchem, Italy) and 
Columbia Blood Agar (Liofilchem, Italy). After an-
other 48-hour incubation period at 36±1°C, colonies 
that grew on BCYE agar were included in our study. 
Gray to white, frosted-glass colonies with a diameter 
of 3–4 mm were confirmed as Lp ST1, ST2-14, and 
non-pneumophila Lp using a latex agglutination kit 
(Microgen, UK).

Minimum inhibitory concentrations determination 
and Statistical analysis
We used the E-test (gradient strip) to determine mini-
mum inhibitory concentrations (MICs). (bioMérieux, 
France) using BCYE agar. Colonies were suspended 
in sterile water at 0.5 McFarland. Gradient strips were 
plated on BCYE agar and incubated for 48 hours at 
35±1°C, 2.5% CO2, and 70% humidity. The data sets 
were compared with the epidemiological cut-off val-
ues (ECOFF) of the studies referred to in the techni-
cal document published in 2021 [10]. For control, we 
also selected Legionella pneumophila (ATCC 33153) 
and Staphylococcus aureus (ATCC 25923). Statistical 
calculations were performed using SPSS Statistics 26 
(IBM, USA). Antimicrobial susceptibility differences 
among Lp strains were evaluated by the Kruskal-Wal-
lis test (p<0.05).

RESULTS

43 Legionella spp. were isolated in 143 water speci-
mens (30.06% of all water samples). 30 Lp were de-
tected in hospital (n=23) and hotel (n=7) water sys-
tems using latex agglutination. Taps were the primary 
isolation area of Legionella spp. (n=19), while shower 
heads were the least Legionella-isolated area (n=2). In 
addition, the area with the highest Legionella spp. iso-
lation rate according to the number of samples is the 
water tanks (18/27, 66.7%) (Table 1).

Among these isolates, 15, 15, and 13 Lp ST1, 
ST2-14, and non-pneumophila Legionella were iden-
tified, respectively. Three of the fifteen Lp ST1 strains 
showed reduced susceptibility to macrolides, and 
for ST2-14 strains, three of fifteen showed reduced 
susceptibility to macrolides. (No zone of inhibition 
around the gradient strip.) The cumulative percent-
ages for the 30 Lp isolates inhibited at different con-
centrations are shown in Table 2.

Regardless of serotype and excluding strains without 
zone formation (≥256 mg/L), the main MIC values of 
azithromycin, erythromycin and clarithromycin were 
0.61 mg/L (range 0.047–1 mg/L), 0.47 mg/L (range 

Highlight key points

• Antibiotic susceptibility tests are not routinely performed in 
the clinic for Legionella pneumophila.

• There is no MIC value that can be described as resistant 
worldwide.

• Legionella pneumophila colonizing the systems of communal 
living spaces poses a serious threat to human health.

  Lp ST1 Lp ST2-14 Legionella spp. 
  (n) (n) (n)

Hospitals (n=23)
 Cooling tower 3 0 1
 Tap water 6 3 3
 Water tank 8 3 4
Hotels (n=7)
 Shower head 0 1 1
 Tap water 2 3 2
 Water tank 1 0 2

Table 1. Distributions of isolated strains
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0.047–1 mg/L) and 0.44 mg/L (range 0.047–1 mg/L), 
respectively. Regardless of serotype and excluding strains 
without zone formation (≥256 mg/L), the MIC50 and 
MIC90 values for macrolides were 0.5 and 3 mg/L for 
azithromycin, respectively; 0.5 and 1 mg/L for ery-
thromycin, respectively; and 0.38 and 1 mg/L for clar-
ithromycin, respectively. We compared the MIC values 
of the strains for all antimicrobial agents tested without 
serotype discrimination. We did not find a significant 
difference between the inhibition values of the antibi-
otics (p=0.16). Reduced susceptibility to azithromycin 
6/30 (20%), erythromycin 10/30 (33.3%), and clar-
ithromycin 10/30 (33.3%) were observed in the present 
study in and of tested strains all belonging to the ST1 
and ST2-14, respectively.

DISCUSSION

In industrialized countries, Lp causes atypical pneumo-
nia that originates in communal living spaces such as 
hospitals, hotels, and dormitories [11]. If not treated 
for community-acquired diseases, the mortality rate can 
reach 16–30%, and the mortality rate can reach 50% with 
the wrong drug treatment [12, 13]. Treatment failure has 
been demonstrated in patients with pneumonia caused 
by Lp, which may be due to resistance in clinical Lp iso-
lates [14]. Macrolide resistance may be related to many 
factors. Although in the literature, macrolide resistance 
was associated with mutations in the L4 (rplD) and L22 
(rplV) ribosomal proteins, 23S rRNA gene (rrl), phos-
photransferase-esterase encoding genes (ereA, ereB, and 
mphA), and efflux pumps synthesis [15, 16]; the efflux 
pumps synthesis and mutations in the genes encoding 
the L4 and L22 ribosomal proteins are frequently asso-
ciated with macrolide resistance of Legionella spp. [17].

The lpeAB genes are similar to the Escherichia coli 
acrAB genes and are arranged in an operon. A tripar-
tite efflux pump of the RND (Resistance-Nodulation-
Division) family is made up of the proteins AcrA in the 

periplasm, AcrB in the inner membrane, and TolC in the 
outer membrane [18]. All ST1 bacteria had the efflux 
pump subunit lpeAB, which had decreased azithromycin 
susceptibility [19]. In addition, it has been shown that 
the presence of lpeAB genes is associated with decreased 
azithromycin sensitivity of ST1 [20].

In a previous study, mutations in the rplD and rplV 
genes, which encode the L4 and L22 ribosomal pro-
teins, respectively, were shown to cause a conformational 
change in the ribosome that prevents macrolides from 
binding to the peptide exit tunnel [21]. Similar resis-
tance levels suggested that the 2- to 32-fold increase in 
erythromycin and azithromycin MICs in Haemophilus 
influenzae isolated from clinical samples was caused by 
L4/L22 substitutions [22].

Although not documented with molecular data, we 
found a reduction in macrolide susceptibility in 6 Lp 
strains in our study. In addition, Lp thrives only in cys-
teine-containing environments such as BCYE. This me-
dium contains the charcoal necessary to neutralize the 
toxic metabolites produced during bacterial growth [23]. 
In our study, we used BCYE-α for MIC value determi-
nation. The efficacy of drugs used in the treatment of Lp 
is determined using micro-broth dilution, agar dilution, 
gradient test, and cell culture [12, 24]. However, none 
of these methods is considered a gold standard for Lp 
susceptibility testing [14].

The absence of clear guidelines for interpreting Lp 
susceptibility precludes identification as susceptible or 
resistant to each of the three drugs tested, thus increas-
ing the need to determine the ECOFF value. Working 
on this subject, Massip et al. [25] recently reported an 
erythromycin MIC of 0.25 mg/L for Lp Paris. Also, 
Xiong et al. [26] reported lower MIC50 values for azi-
thromycin and erythromycin which were 0.062 mg/L 
and 0.0125 mg/L, respectively. Our findings (MIC50 
values for azithromycin and erythromycin were 0.5 
mg/L and 0.38 mg/L, respectively) do not match those 

Drugs 0.047 0.064 0.094 0.19 0.25 0.38 0.5 0.75 1 2 3 ≥256

Azithromycin 3.33 3.33 9.99 0 16.65 13.32 13.32 9.99 13.32 3.33 3.33 9.99
Clarithromycin 6.67 0 0 13.32 6.67 16.65 23.31 19.98 3.33 0 0 9.99
Erythromycin 3.33 3.33 0 13.32 16.65 13.32 16.65 16.65 6.67 0 0 9.99

Table 2. Cumulative percentage (%) of strains inhibited at indicated antimicrobials concentrations (mg/L)
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of previous works’ results. The MIC90 values for both 
azithromycin and erythromycin are higher than the re-
ported isolates (for azithromycin MIC90: 3 mg/L and 
for erythromycin MIC90: 1 mg/L) [27, 28]. Differences 
in these results may be due to different strains of origin 
and MIC determination methods. Although our data 
differ from the studies performed, they are equivalent 
to ECOFF values [10].

Azithromycin showed lower MIC90 values against 
ST1 isolates compared to ST2-14. Of all Lp isolates 
tested, six Lp strains showed MIC values of 256 mg/L 
for macrolides, which is higher than the MIC levels re-
ported for macrolides in the literature [3, 27, 28]. Also, 
in our study, contrary to the previous report, clarithro-
mycin was not the most effective drug among macro-
lides [13]. The Azithromycin MIC50=0.5 mg/L and 
MIC90=3 mg/L values reported in our study differed 
from those reported by Vandewalle-Capo et al. [20] for 
ST1. Also, for ST2-14, Portal et al. [29] detected high-
er MIC90 values.

Conclusion
In this study, we showed that the macrolide susceptibility 
of six strains decreased compared to other isolates. Mac-
rolide resistance can develop in three ways: ribosome 
modification, efflux pump activity, and drug inactivation 
by the enzyme [30]. Further studies at the molecular lev-
el are needed to determine the mechanisms leading to re-
sistance. We have performed in vitro sensitivities of Lp to 
macrolides. There is no standard method for determin-
ing the MIC of antibiotics for Lp. Therefore, treatment is 
started directly without antimicrobial susceptibility test-
ing [11]. In this study, several drug groups could not be 
tested due to the high cost of susceptibility testing. Our 
study data can be used as epidemiological study results 
and can also be used to raise awareness about bacteria 
colonizing water systems.
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