
Exploring Zipf’s Law and population density patterns in metropolitan 
İstanbul's neighborhoods: A spatial insight

Megaron, Vol. 19, No. 3, pp. 362–374, September 2024

Megaron
https://megaron.yildiz.edu.tr - https://megaronjournal.com

DOI: https://doi.org/10.14744/megaron.2024.76735

Article

*Corresponding author
*E-mail adres: suhedakose@iyte.edu.tr

Published by Yıldız Technical University, İstanbul, Türkiye
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Şüheda KÖSE* , Damla ERENLER

Department of City and Regional Planning, IZTECH, Izmir, Türkiye

ABSTRACT

Most studies on size distributions focus on examining rank-size distributions at urban 
or regional scale, but they often overlook their spatial dependencies, distributions, and 
neighboring relationships. This study aims to test Zipf 's Law at the neighborhood scale 
of Metropolitan Istanbul, analyze its spatial dependencies, and investigate their spatial 
behavioral patterns in urban areas over the past decade. Initially, we found that Zipf 's Law 
is not valid at the neighborhood scale of Istanbul. Secondly, we identified significant spatial 
dependencies in neighborhood population densities, observed clustering of high- and low-
density neighborhoods in different locations, and detected their influences from adjacent 
neighborhood densities. Thirdly, we observed that population dynamics are directly affected by 
urban policies. Based on these findings, when spatial dependencies are considered as essential 
factors and analyzed in detail at lower scales, population density can provide preliminary 
insight into the social, economic, and political processes occurring in the city.
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INTRODUCTION

With the faster spread of neoliberal urban policies due 
to globalization, production outputs, capital, labor, and 
assets can move more easily and quickly. As a result, with 
the removal of physical boundaries between different 
geographies, social and economic interactions have 
developed, leading to faster and more intense urban 
development. Therefore, capital-oriented policies have 
affected spatial distribution in urban systems. In the face of 
all these factors, urban systems, as noted by Dicken & Lloyd 
(1990), may exhibit regular distributions in terms of density 
and size. One of the theories concerned with the regular 

distribution of population sizes in settlements is Zipf 's Law, 
also known as the rank-size rule (Gabaix, 1999).

Zipf 's Law was developed by linguist George Kingsley Zipf 
in 1949 (Zipf, 1949). The law posits an inverse relationship 
between the frequency of values subjected to ranking and 
their rankings (Nitsch, 2005; Zipf, 1949). Although Zipf 
developed his theory in the field of linguistics, it has been 
tested in various fields, from economics to the arts, such 
as company sizes, income distribution, industrial sectors, 
web pages, book analyses, and song lyrics. It has also been 
applied and tested in the field of urban planning to analyze 
the population distributions of cities. According to urban 
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researchers (Arshad et al., 2018), a city's optimal distribution 
should adhere to Zipf 's Law. In other words, the hierarchy 
between cities should exhibit an inverse proportionality 
between their population rankings and frequencies.

In the 1950s, Zipf 's Law began to be discussed in the field 
of urban and regional planning. Academic studies testing 
the law between cities and regions showed its validity 
(Corominas-Murtra & Solé, 2010; Dicken & Lloyd, 1990) 
and provided some preliminary insights into analyzing 
the socio-economic levels of cities (Córdoba, 2008). The 
impact of globalization, which began in the 1970s, has led 
to differences in studies on Zipf 's Law. Studies conducted 
by urban scholars such as Akseki et al. (2014), Behrens et 
al. (2014), Black & Henderson (2003), and Casetti (1972) 
found the loss of validity of Zipf 's Law in cities and regions 
with rapid urbanization rates.

With metropolitan cities becoming the central hubs of 
knowledge flow in the 2000s (Mukherji & Silberman, 
2018), Zipf 's Law started to vary according to cities and 
regions. Hackmann & Klarl (2020) found that the relevant 
law is more valid among medium-sized cities than mega-
cities, while Giesen & Südekum (2011) analyzed its validity 
among cities in developed regions. Sun et al. (2021) 
observed a more unequal population distribution in cities 
with advanced industrial structures, whereas Luckstead & 
Devadoss (2014) found the law to be invalid even among 
the world's largest cities. A study testing Zipf 's Law at 
the neighborhood scale of 12 global cities found that 
neighborhood sizes conform to the law (Sahasranaman & 
Jensen, 2020). Therefore, although population distributions 
vary according to scale, there is a direct relationship 
between the urbanization rate of cities and the consistency 
of the law (Kundak & Dökmeci, 2018).

Istanbul is the most rapidly urbanizing metropolitan city 
in Türkiye. Especially in the last 50 years, it has been the 
city with the highest population density due to irregular 
domestic and international migration rates (Bayartan, 
2003). However, according to the data from the Turkish 
Statistical Institute (TSI), the increasing migration rate 
started to decline after 2015 (TSI, 2024). The decline in 
migration rates has also led to a decrease in population 
size. Istanbul, the fastest-urbanizing city in Türkiye, was 
chosen as the case study to examine population changes 
over the past decade in detail. To access reliable results, 
both the spatial and numerical distributions of irregular 
population movements have been examined for annual 
changes.

Based on the aforementioned reasons, this study aims to test 
the validity of Zipf 's Law through Istanbul's neighborhood 
settlements, examine spatial dependencies, and identify 
the neighborhoods where population density varies 
locationally. In line with the stated objectives, the following 
research questions will be addressed:

•	 Is Zipf 's Law valid at the neighborhood scale in Istanbul? 
If so, how do neighborhood population densities exhibit 
spatial distribution patterns?

•	 Is there spatial dependence in the distribution of 
neighborhood population densities in Istanbul? If so, 
how strong of a factor might this be?

This research provides answers to the above questions 
through the Istanbul case, contributing to the literature 
both methodologically and theoretically. Methodologically, 
in addition to Zipf 's Law, physical distance has been 
used as an indicator. This indicator has been tested using 
spatial econometric methods, leading to the development 
of a multiple hybrid approach model. Theoretically, it has 
been demonstrated that the law can be tested through the 
distribution of population density, which is rarely used 
in the literature. It also emphasizes the need to include 
spatiality in population analysis studies.

This article is structured as follows: Section 2 covers the 
development of Zipf 's Law, its use in urban studies, and 
the findings obtained. Sections 3 and 4 provide detailed 
information on the study area, the dataset, and the methods 
used in the research. Section 5 analyzes the findings of the 
study, while Section 6 contains a general evaluation of the 
findings.

Literature Review
Studies on the size distributions of cities are based on 
two main theories: Central Place Theory and Zipf 's Law. 
Central Place Theory conceptualizes the relationships 
between settlements and focuses on the gradual 
organization of settlements. Developed by Christaller 
(Brush, 1966; Christaller, 1966) and Lösch (1954), Central 
Place Theory predicts that urban systems will develop in a 
functional hierarchical structure based on the goods and 
services they provide. According to this theory, there is 
a close relationship between the quantity of goods and 
services provided by a city at certain intervals, its spatial 
market influence, population density, and the demand rate 
of this population (LeSage, 1999). Therefore, settlements 
in a country are expected to be distributed in certain 
sizes and geographical distributions depending on these 
factors.

According to Beckmann (1999), urban systems are also 
shaped by political decisions. In this context, if cities 
are divided into size groups, the distributions of their 
numbers and the areas they cover can be predicted or 
ranked in a regular manner. Over time, researchers such 
as Lösch (1954), Beckmann (1999), and many others have 
developed the thesis that Central Place Theory and Zipf 's 
Law are compatible or shaped by the same phenomena, 
but as noted by Parr (1985), no definitive and widely 
accepted reconciliation has been reached between the two 
models.
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Unlike the hierarchical organization of central places, Zipf 's 
Law focuses on the growth of cities at national, regional, 
or urban scales (Zipf, 1949). Zipf 's Law states that there is 
an inverse relationship between the ranking of population 
sizes of settlements (regions, cities, towns, neighborhoods, 
etc.) and the populations of these settlements at defined 
time intervals (Parr & Suzuki, 1973). The rank-size rule 
is also described as a negative relationship between the 
logarithms of urban populations and the logarithms of the 
ranks of population sizes. In this case, the slope of the curve 
that represents the relationship between the logarithm of 
population size and the logarithm of rank size is equal to -1 
(Knudsen, 2001). This idea is based on the assumption of a 
regular relationship between the populations and rankings 
of settlements.

Zipf 's Law, one of the settlement hierarchy theories, was 
first proposed by Auerbach in 1913 (Auerbach, 1913). The 
law was shaped by Auerbach's Pareto coefficient (Ioannides 
& Overman, 2003; Nitsch, 2005). The Pareto coefficient 
indicates how evenly the population is distributed among 
cities. When the Pareto coefficient is greater than 1, 
small settlements have relatively high proportions of the 
population, and population distribution is concentrated 
in these areas. When it is less than 1, the population is 
more concentrated in large cities (Marin, 2007). Over 
time, changes in intercity relationships occur with the 
rapid growth of large cities and the stagnation of small 
cities. Casetti (1972), who developed the extended rank-
size rule, aimed to test changes in coefficients over time, so 
he reformulated Zipf 's model by adding a time coefficient 
(Dokmeci & Turk, 2001).

Research on Zipf 's Law has been reformulated and 
developed over time. However, the relationship between 
spatial dependence and the law in rank-size distribution 
studies has been discussed for the past three years (Bergs, 
2021). The theory of spatial dependence stems from the 
First Law of Geography. According to Tobler, "everything 
is related to everything else, but near things are more related 
than distant things" (Tobler, 1970:3). Building upon this 
law, spatial dependence is defined as the degree of spatial 
autocorrelation between independently measured values in 
a geographical area (Kitchin & Thrift, 2009). For example, 
it assumes that there is autocorrelation, or a relationship, 
between a measured value in a geographic unit and the 
same type of value in its neighboring unit (Anselin, 1985). 
Therefore, while Zipf 's rank-size distribution hierarchy 
is measured by population sizes, these population sizes 
are not spatially independent; they functionally exhibit 
autocorrelation. Hence, when measuring rank-size 
distributions, the level of functional relationship between 
the values' physical locations also needs to be tested.

When examining studies on the distribution of city sizes in 
Türkiye, the linearity of the city size distribution is generally 
assumed in the literature as it stands. However, there is no 
common consensus among the results obtained from these 
studies. Dokmeci (1986) applied the rank-size rule both at 
the national and regional levels in Türkiye between 1945 
and 1975. She found the rank-size rule to be invalid due 
to the shaping of the size distribution of regions in parallel 
with their economic development since 1945.

Between 1975 and 1982, the distribution of city sizes in 
Türkiye showed a better fit to the rank-size rule. Marin 
(2007) examined the population changes between cities in 
1985, 1990, and 2000 by using econometric methods. It was 
found that the Pareto coefficient was below -1, indicating a 
departure from Zipf 's Law in urban population distribution 
in Türkiye after 1985 (Marin, 2007). In a study conducted by 
Deliktaş et al. (2013), it was found that the Pareto exponent 
of 81 provinces in Türkiye varied between 0.87 and 0.97 
during the period of 1980-1997, indicating a more linear 
spread of sizes.

In the 2000s, studies revealed imbalances in rank-size 
distribution. A study in 2015 concluded that Zipf 's Law 
failed among cities in Türkiye (Duran & Özkan, 2015). In 
another detailed study, data obtained from 973 districts in 
Türkiye were used, and it was found that the sizes of districts 
were unevenly distributed in 2019, indicating the invalidity 
of the rank-size rule. (Duran & Cieślik, 2021).

In conclusion, Zipf 's Law, subjected to testing through 
examples from Türkiye and around the world, has not 
found its full counterpart in urban systems. There are three 
main reasons for this. Firstly, research has been extensively 
conducted at the national, regional, and city scales, but 
rare studies have been encountered at the district and 
neighborhood scales. Secondly, the level of development 
in many countries, regions, and cities has led to differences 
in size distribution. Thirdly, when testing Zipf ’s Law, 
the locations with high population densities have been 
neglected. Therefore, this study, which is distinct from other 
studies, evaluates Zipf 's Law at the neighborhood scale. It 
questions the validity of the law through population density 
distribution. While elucidating Zipf 's Law with a spatial 
interaction, the research also provides an opportunity to 
measure the level of spatial impact in detail through spatial 
econometrics.

MATERIALS: STUDY AREA

According to the Turkish Statistical Institute (TSI, 2021), 
Istanbul, with its approximately 16 million population, is the 
most populous city in Türkiye and the largest metropolitan 
area in the country, offering various urban services such as 
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economic, social, cultural, historical, and transportation 
services. When examined in terms of population density, 
the city receives an average of around 29% internal and 7% 
external migration annually (TSI, 2021). Despite Istanbul's 
high population density, uneven population growth 
rates and migration rates have been observed in the past 
decade. For this reason, it has been selected as the study 
area to examine the changes in density distribution at the 
neighborhood scale over the years.

As a preliminary data analysis of the study, the spatial sizes 
of districts and neighborhoods in Istanbul are shown in 
Figure 1. Istanbul, which has 39 districts, consists of 963 
neighborhoods as of the year 2020. Şile, located in the 
easternmost part of the city on the Anatolian side, has the 
highest number of neighborhoods with 62, while Adalar, 
located in the south of the city, has the lowest number of 
neighborhoods with 5 (TSI, 2021).

Figure 2 illustrates the spatial distribution of neighborhood 
population densities in Istanbul for the years 2010 and 
2020. The neighborhoods with the highest population 
density are concentrated in the southern districts of the city. 
In 2010, a total of 12 neighborhoods in Esenler, Bağcılar, 
Kağıthane, and Esenyurt districts, and in 2020, a total of 21 
neighborhoods in Bağcılar, Güngören, Kağıthane, Esenyurt, 
and Zeytinburnu districts had the highest population 
density with 347 people per hectare.

The neighborhoods with the lowest population density are 

located on the peripheries on both sides of the city. Şile 
and Çatalca districts have the lowest population density 
with 3 people per hectare in a total of 23 neighborhoods. 
Medium-sized neighborhoods with population densities 
ranging from 141 to 280 people per hectare are distributed 
around high-density neighborhoods. Neighborhoods with 
population densities ranging from 71 to 140 people per 
hectare are distributed around low-density neighborhoods. 
Additionally, when compared between the two years, the 
scattered population density of neighborhoods in 2010 
exhibited a more concentric spatial distribution in the 
districts and neighborhoods with the highest population 
density in 2020.

Table 1 displays the summary of changing population 
data in Istanbul from 2010 to 2020. Clearly, the average 
neighborhood size decreased from 16,750 in 2010 to 
16,056 in 2020. The largest neighborhood’s size expanded 
from 84,560 in 2010 to 101,660 in 2020. Moreover, the 
number of neighborhoods with a population of 15,000 or 
more increased from 364 in 2010 to 417 in 2020. At first 
glance, there appeared to be a balanced distribution among 
neighborhood sizes and numbers. However, upon closer 
examination of minimum and maximum sizes at any 
given time, there is not a consistent and stable distribution 
among neighborhoods. Additionally, it is observed that the 
minimum and maximum neighborhood size distributions 
began to change in 2015 and 2016.

When the population data in Table 1 is examined in 

Figure 1. Study Area.
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detail, two significant years affecting population change 
stand out: 2013 and 2020. The first population change 
was driven by the population increase rates, migration 
rates, and the number of neighborhoods in 2013 and 
2020. The reason for the initial population change was 
the transformation of villages into neighborhoods under 
metropolitan municipalities through Law No. 6360 
issued in the last month of 2012 (TC Resmi Gazete, 
2012), coupled with the influx of Syrian refugees into the 
country starting at the end of 2011. This law introduced 
a different dimension to the urbanization process in 
the country, leading to a rapid increase in the urban 
population. The population of Istanbul, which was 
13,710,512 in 2012, reached 14,160,467 in 2013 with 
a population growth rate of 3.28% (TSI, 2024). With 
the opening of doors to Syrian refugees, the foreign 
population, which was 85,360 in 2012, increased by 

approximately 50,000 people in 2013, reaching 135,018 
(TSI, 2024). Consequently, 2013 had the highest 
population growth rate within the study period.

The second population change occurred in 2019 due to 
the global pandemic outbreak. Istanbul was negatively 
affected by the COVID-19 pandemic, which claimed 
the lives of approximately 10,000 people worldwide per 
month (WHO, 2024). The population growth rate and 
migration rates, which had been increasing until 2019, 
decreased significantly in 2020 for the first time. While 
the population growth rate decreased by 3.35% and the 
migration rate decreased by 5.5%, the population density 
remained constant. In summary, population changes, 
as observed in the Istanbul case, can be influenced by 
economic, social, and political decisions (Sun et al., 
2021).

Figure 2. (a) Population density distributions of neighborhoods in Istanbul in 2010, (b) Population density distributions 
of neighborhoods in Istanbul in 2020.
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Data Set and Methodology
The study encompasses all neighborhoods in Istanbul for 
the years 2010 and 2020. The neighborhood population data 
were obtained from the Turkish Statistical Institute in 2021 
(TSI, 2021). The population densities of neighborhoods 
in 2010 and 2020 were comparatively analyzed using 
established methods.
After reviewing the literature, it is evident that Zipf 's Law 
examines the rank-size relationships of cities and regions, 
Exploratory Spatial Data Analysis (ESDA) evaluates their 
spatial relationships, and Spatial Autoregressive (SAR) 

and Spatial Error (SEM) test spatial dependency. Typically, 
researchers have tested size distributions at the city or 
regional scale using general assumptions. However, there 
are a few studies that investigate density distributions, 
examine relationships between densities from the part to 
the whole scale (neighborhood to city), and assess their 
spatial interdependence. Therefore, this study presents a 
comprehensive hybrid model.
The research methodology consists of three parts. In the 
first stage, the hierarchy of neighborhood population 
densities was measured using Zipf 's Law. In the second 

Table 1. Descriptive Summary Statistics of Neighborhoods

Year		  2010	 2011	 2012	 2013	 2014

Avg. neighborhood size (1000 people)	 16.75	 17.21	 17.48	 15.12	 15.34

Median neighborhood size (1000 people)	 13.93	 14.17	 14.58	 11.79	 11.93

Minimum neighborhood size	 0.018	 0.015	 0.014	 0.022	 0.013 
(1000 people)

The neighborhood and its district with	 Sarıdemir	 Sarıdemir	 Sarıdemir	 Sarıdemir	 Sarıdemir 
the smallest size	 Neigh. (Fatih)	 Neigh. (Fatih)	 Neigh. (Fatih)	 Neigh. (Fatih)	 Neigh. (Fatih)

Maximum neighborhood size	 84.56	 86.43	 85.65	 86.63	 85.75 
(1000 people)

Neighborhood and district with the	 Zafer Neigh.	 Zafer Neigh.	 Zafer Neigh.	 Zafer Neigh.	 Zafer Neigh. 
largest size	 (B.evler)	 (B.evler)	 (B.evler)	 (B.evler)	 (B.evler)

Population density (person/ha)	 25 	 26	 26	 27	 28

Population growth rate (%)	 2.64	 2.76	 1.68	 3.28	 1.52

Net migration rate (%)	 16.53	 16.68	 13.92	 15.49	 15.39

Total number of neighborhoods	 783	 783	 783	 936	 937

Number of Neighborhoods> 15,000	 364	 370	 376	 382	 389

Year		  2015	 2016	 2017	 2018	 2019	 2020

Avg. neighborhood size (1000 people)	 15.26	 15.42	 15.65	 15.64	 16.11	 16.05

Median neighborhood size	 12.18	 15.15	 12.18	 12.17	 12.48	 12.39 
(1000 people)

Minimum neighborhood size	 0.011	 0.013	 0.012	 0.019	 0.014	 0.013 
(1000 people)

The neighborhood and its district	 OSB Neigh.	 Sarıdemir	 Sarıdemir	 OSB Neigh.	 OSB Neigh.	 OSB Neigh. 
with the smallest size	 (İkitelli)	 Neigh. (Fatih)	 Neigh. (Fatih)	 (Dudullu)	 (Dudullu)	 (Dudullu)

Maximum neighborhood size	 86.44	 88.95	 93.22	 95.63	 98.80	 101.66 
(1000 people)

Neighborhood and district with the	 Zafer Neigh.	 Atakent Neigh.	 Atakent Neigh.	 Atakent Neigh.	 Atakent Neigh.	Adnan Kahveci 
largest size	 (B.evler)	 (Halkalı)	 (Halkalı)	 (Halkalı)	 (Halkalı)	 Neigh. 
							       (Beylikdüzü)

Population density (person/ha)	 28	 28	 29	 28	 29	 29

Population growth rate (%)	 1.95	 1.00	 1.52	 0.25	 2.99	 -0.36

Total migration rate (%)	 15.72	 12.62	 13.96	 12.98	 15.98	 10.48

Total number of neighborhoods	 960	 960	 960	 963	 963	 963

Number of Neighborhoods> 15,000	 402	 412	 418	 412	 421	 417
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stage, the measurement results were tested for spatial 
dependence using the Spatial Error Model (SEM) and 
Spatial Autoregressive Model (SAR) and were compared 
with the findings of Zipf 's Law. In the third stage, spatial 
autocorrelation between neighborhood locations and 
population densities was tested using Global Moran’s I, and 
neighborhood adjacency relationships were analyzed using 
LISA analysis.

Zipf 's Law
Zipf 's Law, developed by George K. Zipf (1949), is a practical 
method that has been used for many years to test the growth 
patterns of cities, thereby analyzing the acceptability of 
social and economic growth theories (Brakman et al., 1999). 
Zipf 's Law assumes that the distribution of neighborhoods 
should be linear according to the rank-size relationship. If 
a city’s Zipf distribution is valid, it implies that its growth 
is sequential, orderly, and controlled. Formula 1 illustrates 
Zipf 's Law. In the formula, N represents the sample size, A 
represents the constant empirically obtained from the data, 
x denotes the rank of population density in a neighborhood, 
Prob(x) represents the probability of population density in a 
neighborhood at rank x, and Freq(x) denotes the frequency 
of the neighborhood at rank x (Gabaix & Ioannides, 2004).

log(χ) * log(freq(χ)) = A * N		  Formula (1)

If we rank neighborhoods according to population density, 
we observe log(x) on the x-axis and freq(x) on the y-axis 
(Knudsen, 2001). If the slope is greater than 1, it indicates 
that neighborhoods are dispersed. If it is smaller than 1, it 
suggests that they are more concentrically clustered. If a 
straight line with a slope of -1 is observed, it indicates the 
validity of Zipf 's Law, demonstrating that neighborhood 
densities exhibit equal or similar distributions. However, 
when testing neighborhood densities, the law does not 
account for the relationships between neighborhoods.

Spatial Error Model (SEM) and Spatial Autoregressive 
Model (SAR)
In a multiple linear regression model (γ = χβ + ε), where y 
is the dependent variable, x is the explanatory variable, β is 
the regression coefficient, and ε is the error term (Fischer & 
Wang, 2011). The model assumes that the error terms are 
independent of each other, have a zero mean, and have a 
constant variance with a normal distribution. However, if 
the errors contain spatial autocorrelation, this assumption 
loses its validity (Anselin & Rey, 1991).
According to Anselin (1988), spatial dependence refers to 
the existence of a functional relationship between events 
occurring at specific points in space and those in other 
regions. In other words, the value of a variable at locations 
a and b is explained by both internal values (the internal 
conditions of a and b) and external values (the influence of 
a on b, and the influence of b on a) (Zeren, 2010). Ignoring 
spatial dependence can lead to underestimated true variance 
and problems in the estimation and interpretation of results.

Spatial regression models are determined based on the cause 
of spatial autocorrelation in two ways (SEM and/or SAR). 
SEM assumes that spatial autocorrelation exists among the 
error terms (Zeren, 2010; Anselin, 1988). SAR, on the other 
hand, assumes that the variables in neighboring locations 
also affect the dependent variable of observations in that 
location (Fischer & Wang, 2011). In other words, the model 
expresses the relationship between the dependent variable 
measured in one location and another. In the SAR method, 
spatial autocorrelation exists among the dependent variables.
γ = χβ + ε, ε = λW2 e + u, u~N (0,σ2 In)	 Formula (2)

Formula 2 represents the spatial error model. Here, γ 
represents the dependent variable of size nx1, X denotes 
the independent variable matrix of size kxk, β is the 
coefficient vector of size kx1, and ε represents the vector 
of independently and identically distributed error terms 
of size nx1. The spatial error coefficient, λ, measures the 
degree of spatial dependence among the error terms, and 
this coefficient takes values less than 1 (Zeren, 2010). A 
significant spatial coefficient indicates spatial dependence 
among the error terms.

γ = ρWy + βx + u and u~N(0,σ2 In)		  Formula (3)

The spatial lag model is shown in Formula 3. Here, γ 
represents the dependent variable of size nx1, X denotes the 
explanatory variable matrix of size nxk, β is the coefficient 
vector of size kx1, and u represents the error term. The 
coefficient ρ, which is the dependent variable of the spatial 
lag model, measures the effect of the γ's in neighboring 
locations on the γ in the respective location. Generally, 
|ρ|<1 is assumed (Fischer & Wang, 2011). A significant ρ 
value indicates the presence of spatial lag dependence and 
implies that the use of the classical regression model is not 
appropriate (Çetin & Sevüktekin, 2016).

Exploratory Spatial Data Analysis (ESDA)
Exploratory Spatial Data Analysis is one of the most used 
methods to test the presence of spatial autocorrelation in 
cities and regions. This method conducts two different 
spatial measurements: global (Global Moran’s I) and local 
spatial autocorrelation (Local Moran’s I). Global Moran’s 
I assumes that all observations within the studied city 
are connected, and a change in one neighbor affects all 
neighbors (Anselin, 1995). The Global Moran’s I statistic is 
expressed as follows (Rey & Montouri, 1999):

=1 =1∑ ∑ W i,j, X i,t, X j,tn
i

n
j

=1 =1∑ ∑ X i,t, X j,tn
i

n
j

It =( )n
So

—

	 Formula (4)

Formula 4 represents i and j as neighbors, n as the number of 
neighbors, Xi,t as the density of a neighborhood in year t, Wij 
as the standardized spatial weight matrix, and So as the sum 
of all Wij values. If i and j share a spatial neighborhood, Wij 
takes the value of 1; otherwise, it takes the value of 0 (Rey & 
Montouri, 1999). Although the Global Moran’s I test provides 
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a general discourse on the change in neighborhood densities, 
it does not analyze the locational information of the change.
To test the locational change in neighborhood densities, the 
Local Moran’s I method (LISA) is used. The Local Moran’s 
I (LISA) evaluates whether neighborhood densities differ 
from surrounding neighborhoods using location data. 
Additionally, it provides an opportunity to analyze densities 
in detail according to their spatial relationships. The Local 
Moran’s I is shown as follows:

=1 =1∑ ∑ W i,j, X i,tn
i

n
j X∑n

i
2
i,tm0  =It =( )Xi

So

— with
	

					     Formula (5)
In contrast to Global Moran’s I, this method includes the m0 
value. m0 represents the sum of the weighted spatial matrix, 
i.e., the sum of the Wij elements (Rey & Montouri, 1999).

RESULTS AND DISCUSSION

a. Zipf 's Law and Spatial Dependency Test Results
Zipf 's Law was applied to examine the population density 
distributions in neighborhoods. While Zipf 's Law provides 
insight into the rank-size relationship, it does not offer 
an explanatory method for the spatial dependency and 
locations of the ranks. Therefore, spatial lag and spatial 
error models were utilized to test the validity of Zipf 's Law 
and spatial dependency.
Table 2 represents the results of Zipf 's Law and spatial 
dependency tests for the years 2010 and 2020. In terms of 
neighborhood population densities, Zipf 's Law is not valid 

for both years. When evaluating the spatial dependencies 
of population densities, it was found that their distributions 
are statistically positive, indicating that neighborhoods of 
similar sizes tend to cluster in certain urban areas. In other 
words, over the decade, although the rank-size distribution 
of Istanbul may not be valid, the population densities within 
each year tend to cluster in different sizes within specific 
regions.

Figure 3 displays the graphs of Zipf 's Law, where the straight 
line represents the logarithm of neighborhood rankings on 
the y-axis to the logarithm of neighborhood population 
densities on the x-axis. According to the graph for 2010, 
the distribution in neighborhoods with high densities tends 
towards linearity, whereas it deviates from linearity towards 
neighborhoods with lower densities. The graph for 2020 
exhibits a similar trend to that of 2010. However, unlike the 
previous measurement, in 2020, the population increase has 
concentrated between ln(3) and ln(5), and also at ln(12). In 
summary, it can be stated that Zipf 's Law is not valid for 
both graphs, and the distributions among neighborhoods 
are significantly far from linear due to differences in density. 
Additionally, the requirements of the law explain the impact 
of the dependent variable on the independent variable by 
54% in 2010 and 41% in 2020. The explanatory rate of the 
variables and the resulting numerical values (-0.0098 and 
-0.0039) indicate that neighborhoods in Istanbul will not 
be distributed in accordance with the rank-size relationship 
and will continue to grow through clustering.

Zipf 's Law and spatial dependency tests are useful in testing 
rank-size relationships and spatial dependencies among 

Table 2. Results of Zipf 's Law and Spatial Dependency Tests in Istanbul

			   Model 1 (2010)			   Model 2 (2020)

		  Coefficient		  p	 Coefficient		  p

Constant	 646.589		  0.0000	 315.435		  0.0000

Pop_Density	 -0.0098		  0.0000	 -0.0039		  0.0000

R-Squared		  0.54			   0.41

Spatial Error Model

	 Constant	 602.869		  0.0000	 312.545		  0.0000

	 Pop_Density	 -0.0074		  0.0000	 -0.0038		  0.0000

	 LAMBDA	 0.5942		  0.0000	 0.1201		  0.0155

	 R-Squared		  0.66			   0.42

Spatial Lag Model

	 Constant	 375.488		  0.0000	 275.583		  0.0000

	 Pop_Density	 -0.0068		  0.0000	 -0.0037		  0.0000

	 W_Rank	 0.452635		  0.0000	 0.1400		  0.0026

	 R-Squared	 0.66		  0.42

N			   783			   963
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neighborhood population densities but do not provide 
detailed information about their locations and neighborhood 
relationships. Therefore, Global Moran’s I and LISA analyses 
were conducted to examine the correlation between 
neighborhood locations and population densities in detail.

b. Global Moran’s I
To determine the relationships between neighborhood 
population densities and their locations, the Global 
Moran’s I test was conducted. Global Moran’s I explains a 
relationship or clustering between neighborhood density 

values and their locations within the range of -1 and 1. As 
shown in Formula 4, if the result is close to 1, it indicates 
positive autocorrelation, and if it is close to -1, it indicates 
negative autocorrelation.

Figure 4 illustrates the Global Moran’s I scatter plots of 
neighborhood population densities for the years 2010 
and 2020. The plots indicate that the density values are 
not randomly distributed. The Moran’s I value, calculated 
as 0.506 in 2010, decreased to 0.364 in 2020. These 
values indicate that neighborhood population densities 
exhibit positive spatial autocorrelation. In other words, 
there is a positive relationship between neighborhood 
locations and their densities in both years. However, the 
positive autocorrelation value of the spatial pattern for 
Istanbul in 2010 is higher compared to 2020. Therefore, 
although neighborhood population densities have positive 
autocorrelation in recent years, the relationship between 
neighborhood locations and their densities appears to be 
decreasing.

c. Local Moran’s I
To examine the spatial behavior between neighborhood 
population densities and their neighborhood relationships, 
Local Moran’s I (LISA) analysis was utilized. As shown 
in Formula 5, Local Moran’s I analysis tests local-scale 
spatial neighborhood relationships of the Global Moran’s I 
test in four different types. HH and LL regions represent 
neighborhoods with positive clustering, while HL and LH 
regions represent neighborhoods with negative clustering 
(spatial outliers).

Figure 5 illustrates the local distributions of neighborhood 
population densities for the years 2010 and 2020. 
Neighborhoods located in the HH region exhibit positive 
clustering relationships in the southern part of the European 
side of the city, with their population densities higher than 
the Istanbul average. In 2010, the positive clustering pattern 
of neighborhoods with high densities extended to influence 
11 neighborhoods in 2020, thereby increasing the level of 
spatial autocorrelation. Neighborhoods in the LL region 
demonstrate positive clustering along the east-west axis on 
both sides of the city. These neighborhoods have significantly 
lower population densities than the Istanbul average and 
are also in proximity to neighborhoods with low densities. 
Comparing the LL regions of the two years, the number 
of neighborhoods exhibiting positive clustering patterns 
increased in 2020, including 9 additional neighborhoods. 
This increase, in 2010, encompassed neighborhoods 
previously exhibiting negative autocorrelation, clustering 
in the inner areas of both sides of the city.

Neighborhoods in the HL region exhibit negative 
autocorrelation. The population densities of neighborhoods 
in these regions are above the Istanbul average. However, 
most neighborhoods in the HL region are adjacent to those 

Figure 3. (a) Graph of Zipf distribution in 2010, (b) Graph 
of Zipf distribution in 2020.

a)

b)
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in the LL region. Neighborhoods in the LH region represent 
a negative clustering pattern, with population densities 
lower than those in Istanbul on average. Additionally, these 
neighborhoods are related to those with denser populations 
than the Istanbul average. The number of LH regions 
decreased from 2010 to 2020, reducing the level of negative 
autocorrelation. As expected, these are observed on the 
European side of the city, where the HH region clusters 
densely.

The study examines the spatial behavior of urban growth in 
Istanbul, Türkiye's fastest-growing city in the last decade, 
both through spatial econometric tests and Zipf 's Law 
at the neighborhood level. To conclude, Zipf 's Law was 
invalid in both years, and there were significant differences 
in neighborhood population density distributions. 
Additionally, neighborhood densities exhibited noteworthy 
spatial dependence, positive spatial autocorrelation, 
and physical neighborhood relationships. In a general 
evaluation, although Zipf 's Law was found to be invalid in 
Istanbul's density distribution, as Anselin (1995) pointed 
out, the spatial relationships of neighborhoods were found 
to be significantly affected by internal and external factors.

EVALUATION AND CONCLUSION

The aim of the study was to test the distribution of 
neighborhood densities using Zipf 's Law and to examine 
their spatial dependence, clustering patterns, and 
neighborhood relationships in Istanbul. To achieve this 
goal, a multifaceted methodological approach was adopted, 

and both population density distributions and their spatial 
relationships were tested with different methods, and the 
validity of the acquired knowledge was verified.

Firstly, the validity of Zipf 's Law and spatial dependence 
were measured across the city. In Istanbul, Zipf ’s 
Law proved invalid, yet it showed positive spatial 
autocorrelation. The dependency tests received statistically 
significant findings, demonstrating that neighborhood 
population densities were influenced by the densities of 
adjacent neighborhoods. It was observed that political 
decisions led to the invalidation of Zipf ’s Law in Istanbul. 
The "Metropolitan Law" enacted in 2012 and the influx of 
Syrian refugees in 2013 introduced a different perspective 
to urbanization in Istanbul. As mentioned in the literature, 
uncontrolled urbanization has had a negative impact on 
the maintenance of Zipf 's scientific law (Dittmar, 2009). 
The findings regarding Zipf 's distribution in Istanbul 
align with research conducted by Akseki et al. (2014), 
Behrens et al. (2014), Black & Henderson (2003), and 
Casetti (1972).

Secondly, the spatial behavior of density distributions 
was examined using Global Moran’s I and Local Moran’s 
I analyses. According to the Global Moran’s I test, 
neighborhood population densities in Istanbul exhibited 
positive spatial autocorrelation. Local Moran’s I analysis 
revealed that neighborhood population densities in 
Istanbul had a heterogeneous distribution. High-density 
neighborhoods clustered in the inner areas of both sides of 
Istanbul, while low-density neighborhoods were observed 
to have neighborhood relationships on the eastern and 

Figure 4. (a) Global Moran’s I Distribution in 2010, (b) Global Moran’s I Distribution in 2020.
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western peripheries of the city.

In summary, it was analyzed that neighborhoods are not 
independent of their neighbors and are influenced by 
their density distributions, and spatiality is an important 
and statistically accountable factor. Although there were 
no significant changes in density distributions and spatial 
dependencies when comparing data from both years, it was 
evidenced that population movements exhibited a more 
heterogeneous distribution over time in the urban space. 
The increase in spatial heterogeneity in 2020 was triggered 
not only by population movements but also by an increase 
in mortality rates and significant migration outflows due to 
the global pandemic in 2019 (Baser, 2021).

The study's usefulness lies in its requirement to examine 
spatiality as an effective indicator in research on density 
distribution in metropolitan areas such as Istanbul. Future 
studies could add new methods to the proposed hybrid 

approach to test the validity of the results. The study provides 
fundamental knowledge for future policy implementations 
regarding sustainable urban growth, as well as important 
insights into understanding the spatial distribution and 
socioeconomic dynamics of the city. Researchers can test 
the same methods and datasets in other metropolitan cities 
and compare them to our study. Additionally, they can 
contribute to the literature by introducing new indicators.
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