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Düzenli Düzgün Tesselasyonlarla Tasarlanan Radyal Açılır Kapanır
Tek Serbestlik Dereceli Plak Strüktürler için Bir Tasarım Yöntemi

Aylin GAZİ, Koray KORKMAZ

Bu yazıda tek serbestlik dereceli (TSD), radyal açılır kapanır 
(RAK), düzlem plakalardan oluşan strüktürlerin tasarımı için bir 
yöntem geliştirilmiştir. Plakaların biçiminin düzgün çokgenler 
olması istenmektedir ve herhangi bir konfigürasyonda üst üste 
gelmemeleri ve strüktür kapandığında da hiçbir boşluk olmama-
sı istenmektedir. Yöntem matematikteki tesselasyon geometri 
bilgisinden yararlanılarak geliştirilmiştir. Bu nedenle öncelikle 
tesselasyon, sonra poligon şekli dikkate alınarak yapılan bir sı-
nıflandırma anlatılmıştır. Daha sonra düzenli tesselasyonlar kul-
lanılarak RAK strüktür tasarımı yapmamızı sağlayacak yöntem 
açıklanmıştır. Yöntem plaka tiplerini ve şekillerini buldururken, 
sadece döner mafsallar ile plakaların nasıl monte edileceğinde 
de tasarımcıya yol gösterir. Bu yazıda düzenli poligonlardan olu-
şan tesselayonlardan yararlanılarak tasarlanan, çeşitli plakalar 
ve döner mafsallardan oluşan strüktürler TSD çok devreli meka-
nizmalardır. TSD mekanizmalar olduklarını kanıtlamak için birçok 
hareketlilik analizi yapılmıştır. Analizler sonucunda, çıkarıldığın-
da mekanizmanın hareketliliğini etkilemeyen (fazla) plakaların 
olduğu ve bu fazla plakaların sayısını saptayabileceğimiz bir 
teori geliştirilmiştir. Ayrıca pasif döner mafsallar da olduğu sap-
tanmıştır. Mimari uygulamalarda çok daha fazla sayıda plaka ve 
mafsal kullanıldığında, fazla plakalar ve pasif mafsallar estetik 
veya fonksiyonel sebeplerle gerektiğinde çıkarılıp tekrar monte 
edilebilir. Son olarak yapı enerji tüketimini azaltmak için bina dış 
cephesine RAK bir strüktür güneş kırıcı olarak önerilmiştir.
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This paper is concerned with a method of designing single 
degree of freedom (DOF) radially retractable planar plate 
structures (RRPS). The shape of the plates are desired to 
be regular polygons and they are not allowed to overlap in 
any configuration and no gaps in the closed configuration. 
The method has been developed by translating geometric 
knowledge of tessellation in math. Therefore the paper 
firstly introduces the fundamentals of tessellations and 
then their classification based on polygon shape. After that 
it proposes a method of designing RRPS by using 1-uniform 
regular tessellations. The method identifies the plate types, 
shape and the way of connecting the plates with only revo-
lute joints. Composed of various plates and joints, the pro-
posed RRPSs based on 1- uniform regular tessellations are 
single DOF multi-loop planar mechanisms. Mobility analysis 
is made to prove the single DOF. After various mobility anal-
ysis, a theorem is developed to find the number of exces-
sive plates. It is also introduced that there are passive joints 
besides excessive plates. When more plates and revolute 
joints are used in architectonic applications, the excessive 
plates and passive joints can be removed and reassembled 
if necessary for aesthetic or functional reasons. Finally, a 
single DOF radially retractable plate structure is proposed 
for a building façade as a sun shade to reduce the energy 
consumption.
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Introduction
Over the last couple of decades, many concepts have 

been proposed for deployable structures employing 
bar or plates for use as a roof or a facade. Several de-
ployable structures characterized by using scissor-like 
elements have been developed by Emilio Perez Pinero 
et al.,[1] Valcarcel,[2] Escrig,[3] Ziegler,[4] Hernandez and 
Zalewski[5] and Gantes.[6] These deployable structures 
can be folded into a small volume but cannot attached 
to fixed supports which makes them unstable for long 
span. Hoberman discovered the angulated element 
consists of a pair of identical bars and applied to the 
retractable roofs.[7,8] You and Pellegrino discovered 
multi-angulated element which consists of a bar with 
multiple kinks and with hinges at all kink points.[9]

Among the alternative approaches, flexible mem-
brane or rigid plates are the covering materials. As 
a result of the durability problem of the membrane, 
many researchers focus on rigid plates for covering. 
Kassabian et al. investigated cover plates that can be 
attached to the multi- angulated bars.[10] Jensen de-
rived a method for finding simple rigid plates that can 
be attached to the deployable structure and which do 
not overlap during the expansion. An analytical solu-
tion for the shape of these rigid cover elements was 
derived by him.[11] Later Jensen replaced the bars with 
flat plates which are connected with revolute joints at 
exactly the same locations as the original bar struc-
ture.[12] With this approach, Jensen and Pellegrino led 
to the creation of a family of structures called radially 
retractable plate structures. Lou et al. used an analyti-
cal approach to derive a set of conditions that can be 
used to determine whether all of the pivot locations of 
a multi-angulated beam are enveloped by the bound-
ary of its corresponding plate. Without any empirical 
or numerical analysis designers can choose an open-
ing profile which suits their needs and then apply ap-
propriate formula to determine the edges of the cover 

plates.[13] Buhl 
et al. consid-
ered the shape 
of cover plates. 
They found suit-
able shapes of 
the plates by 
formulating an 
o p t i m i z a t i o n 
problem.[14] Be-
sides these ap-
proaches which 
try to determine the shape of the cover plates, in 1998 
Rodriguez and Chilton introduced swivel diaphragm 
which consists of polygonal plates. A hexagonal swiv-
el diaphragm, consists of regular or irregular triangle 
plates and straight bars, could be linked together with 
revolute joints. However squares and pentagons pre-
sented problems of overlapping elements.[15] In 1971, 
Chilton proposed the geometric transformation con-
cept that is applicable to rigid expandable structures.
[16] His concept is divided into two types; the tessel-
lation transformation concept a two-space expansion; 
and polyhedral transformation concept a three-space 
expansion. He identifies three basic types of trans-
formations for regular polygons: face transformation, 
edge transformation, vertex transformation (Figure 1). 
Each of the three forms of the transformations may 
go through a rotation of 360° in which the tessellation 
forms cycles from a closed state to an open state.

The present paper presents a method to determine 
the shapes of cover plates for planar radially retract-
able single DOF structures based on tessellation with 
regular polygons such that there are no overlaps in any 
configuration and no gaps in the closed configuration. 
A feasible design area, defined by the tessellation, can 
be covered with retractable polygonal plates and thus 
the designer is not required to use numerical analy-
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Abbreviations

DOF Degrees of Freedom.
M Degree of freedom or mobility.
n Number of links.
j The total number joints.
j1 Number of 1 DOF joints.
j2 Number of 2 DOF joints.
fi The total degrees of freedom of   

 the ith joint.
L The total number of independent  

 loops.
q The number of excessive plates.

Figure 1. Two-dimensional Tessellation Transformations (Clinton, 1971).

Face Transformation
Face Transformation

Face Transformation

Edge Transformation Edge Transformation Edge Transformation

Vertex Transformation Vertex Transformation Vertex Transformation
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sis for shape optimization. Besides, this paper investi-
gates the mobility analysis. It is required to prove that 
RRPS is single DOF.

Tessellations
Tessellation is a kind of mathematical technique 

which is used in science, art and architecture. Basically, 
tessellation or tiling means to cover a plane with dis-
tinct shapes without any gaps or overlaps by consider-
ing some methods. The origin of the tessellation comes 
from the Latin word tessella that was the square stone 
or tile used in ancient Roman mosaic. The word of tiling 
and mosaics are commonly synonyms for tessellation.

In mathematical approach, one of the first remark-
able studies of tessellation was conducted by Johannes 
Kepler. In 1619, Kepler pictured the polygonal tessel-
lation in his book. He wrote about the regular and 
semi-regular tessellations that are covering of a plane 
with regular polygons.[17] In 1785, The Rev. Mr. Jones 
solved the problem of tiling of a plane around a point 
with regular polygons.[18] Another important study was 
done by the Russian crystallographer E.S.Fedorov in 
1891. He proved that every 1- uniform tessellation of 
the plane is constructed in accordance to one of the 
seventeen different groups of isometries.[19] In the past 
there have been many attempts to try to describe and 
systematize the notation of tessellations.[20–28] Grün-
baum and Shephard brought together older results 
with new materials in their book.[29]

Tessellations With Regular Polygons
A tile is a simply connected topological disk in the 

Euclidean plane (Fig. 2). To remove the confusion be-
tween polygon and tile, Grünbaum and Shepherd de-

scribed the polygons with corners and sides while the 
tile is represented with vertices and edges.[29]

Fig. 2 is an illustration of basic element of tessella-
tion. In this figure A, B, C, D, E, F, G are corners but A, 
C, D, E, G are vertices of the tessellation, AB, BC, CE, 
EF, FG and GA are sides while AC, CD, DE, EG and GA 
are edge.

A polygon is regular polygon if all angles are equal 
and all sides have same length. Tessellation with regu-
lar polygons is usually represented by the number of 
sides of the polygons around any vertex in the clock-
wise or anti-clockwise order. For instance, (36) repre-
sents a regular tessellation in which each of the verti-
ces are surrounded by six triangles, 3 is the number of 
the sides of a triangle and superscript 6 is the number 
of triangles around the referred vertex (Fig. 3).

The Rev. Mr. Jones developed a formula to solve the 
problem of tiling of a plane around a vertex with regu-
lar polygons.[18] The formula is obtained by the help 
of interior angle of regular polygons and its combina-
tions. The interior angle at each corner of a regular 
n-gon {n} is (n-2)π/n radians (or 180(n-2)/n degrees) 
so that if an n1- gon {n1}, an n2-gon {n2},…., an nr -gon 
{nr},meet at a vertex of a tiling then

n1 – 2 nr – 2... ...
+ + 2 (1)=

n1 n1 ... ...

According to this formulation, 17 different arrange-
ments of regular polygons fit around a vertex. Four of 
the arrangements have two distinct ways so; there are 
21 ways to fit the regular polygons around a vertex 
(Fig. 4).[30] However, not all of these can tessellate the 
plane. In these arrangements just eleven of them can 

Figure 3. (36) Triangle regular polygons fit around a vertex.Figure 2. Illustration of a polygonal tiling.
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cover the plane without any gaps or overlaps. These 
are three regular and eight semi-regular tessellations.

Many classifications of tessellations have been es-
tablished in the literature. In this study, Johannes 
Kepler’s classification based on the regular polygon 
shape is explored.

K-Uniform Tessellations
An edge-to-edge tiling by regular polygons is called 

k-uniform if its vertices form precisely k transitivity 
classes with respect to the group of symmetries of the 
tiling. In other words, the tiling is k-uniform if and only 
if it is k-isogonal and its tiles are regular polygons. 1- 
Uniform tessellations consist of the same arrangement 

of polygons and angles at each vertex. There are pre-
cisely eleven distinct edge-to-edge 1-uniform tessella-
tions. In this group of 1-uniform tessellations, three of 
them are regular while eight of them are semi-regular.

Regular tessellations consist of a fixed number of 
specific regular n-gon at every vertex (Fig. 5). Semi 
regular tessellations consist of more than one type 
of regular polygon at a vertex but each vertex has the 
same configuration (Fig. 6).

There exist twenty distinct types of 2-uniform edge-
to-edge tiling by regular polygons as shown in Fig. 7, 
namely: (36; 34.6)1, (36; 34.6)2, (36; 33.42)1, (36; 33.42)2, 
(36; 32.4.3.4), (36; 32.4.12), (36; 32.62), (34.6; 32.62), (33.42; 
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Figure 5. 1- Uniform Regular Tessellations

63 44 36

Figure 4. 21 arrangements of regular polygon combinations that fit around a vertex on plane.

3.7.42 3.8.24 3.9.18 3.10.15 3.12.12 4.5.20 4.6.12

4.8.8 5.5.10 6.6.6 3.3.4.12 3.4.3.12 3.3.6.6
3.6.3.6

4.4.4.4 3.4.4.6 3.4.6.4 3.3.3.3.6 3.3.3.4.4 3.3.4.3.4 3.3.3.3.3.3
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32.4.3.4)1, (3
3.42; 32.4.3.4)2, (3

3.42; 3.4.6.4), (33.42; 44)1, 
(33.42; 44)2, (3

2.4.3.4; 3.4.6.4), (32.62; 3.6.3.6), (3.4.3.12; 
3.122), (3.42.6; 3.4.6.4), (3.42.6; 3.6.3.6)1, (3.42.6; 
3.6.3.6)2, and (3.4.6.4; 4.6.12).

Denote K(k) as the number of distinct k-uniform til-
ings. K(1) = 11, K(2) = 20, K(3) = 39, K(4) = 33, K(5) = 
15, K(6) = 10, K(7) = 7 and totally there are 135 distinct 
type of k-uniform tessellation. One of them is shown 
in Fig. 8.

Duality of Tessellation
To form the dual of a tessellation, firstly center of the 

each polygon is determined as a vertex then all centers 
are joined with each other. Any motion or change of 
scale affects the tessellation and it’s dual. The trian-
gle and hexagon tessellations are duals of each other, 
while the square tessellation is its own dual (Fig. 9).

Method For RRPS Based On 1-Uniform Regular 
Tessellations
Retractable regular tessellations consist of a num-

ber of interconnected polygons individually called 
plates in this paper. The physical connection between Figure 6. 1- Uniform Semi-Regular Tessellations.

Figure 7. Twenty 2-Uniform Tessel-
lations.

 (33.42; 3.4.6.4) (33.42; 44)1 (33.42; 44)2 (32.4.3.4; 3.4.6.4) (32.62; 3.6.3.6)

    (3.4.3.12; 3.122) (3.42.6; 3.4.6.4) (3.42.6; 3.6.3.6)1 (3.42.6; 3.6.3.6)2 (3.4.6.4; 4.6.12)   

 (36; 32.4.12) (36; 32.62) (34.6; 32.62) (33.42; 32.4.3.4)1 (33.42; 32.4.3.4)

 (36; 34.6)1 (36; 34.6)2 (36; 33.42)1 (36; 33.42)2 (36;32.4.3.4)

3.6.3.6

4.82

3.122.

4.6.12 34.6

33.42

32.4.3.4.

3.4.6.4
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these plates are lower pairs (joints). The lower pairs 
are revolute joint and prismatic joint. Here the at-
tention is on the plates connected with only revolute 
joints. Firstly the method identifies extra plate type 
and secondly the way of connecting plates to reach a 
RRPS. The following steps should be followed.

RRPS Based On Hexagon Tessellation
Step 1- By selecting the hexagon tessellation (63) 

as demonstrated in Fig. 5, the flat plate type is deter-
mined. It is a plate with six nodes that are joints for the 
attachment with other plates as shown Fig. 10. 

Step 2- The second step is determining the type of 
extra plate and its dimensions. The dual of the hexa-
gon tessellation is triangle tessellation. Number of the 
sides of the triangle polygon gives us the type of extra 
plate. It is a plate with three nodes. Since all the poly-
gons are hexagon, all the extra plates are same type. 
The size of the extra plate is determined from the 
hexagon polygons’ size. First a hexagon tessellation 
is drawn, then the dimensions of the extra plate are 

determined by pointing one vertex to the three neigh-
boring vertices as shown in Fig. 11. Since all edges are 
equal in hexagon regular tessellation, the distance be-
tween the three nodes on the extra plate are equal.

Step 3- Third step is assembling processes of the 
hexagonal plate and extra plates. In this step, blue col-
ored hexagon tessellation and its red colored dual are 
drawn as shown in Fig. 12. Center points of the six hex-
agonal plates are placed on the intersection points of 
the hexagon tessellation and the dual. One more hexa-
gon plate is placed on the center point of the hexagon. 
Then the six extra plates are placed on the vertices of 
the blue hexagon. Six more extra plates are placed in 
between the hexagon plates.

This method can be applied to the other regular tes-
sellations (36) and (44). The triangle and hexagon tes-
sellations are dual of each other. The construction of 
RRPS based on triangle tessellation is the same with 
the hexagon one. In this case, extra plate is a hexagon.

Figure 8. One of thirty nine 3-Uniform Tessellations (44; 33.42; 
4.3.4.32). Figure 10. Hexagonal plate with six nodes.

Figure 9. Dual of 1- Uniform regular tessellations.

36 63 44 44
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RRPS Based On Square Tessellation
It is possible to construct the RRPS based on the 

square tessellation with the same method.

Step 1- By selecting the square tessellation (44), 

type of the flat plate is determined (Fig. 5). It is a plate 
with four nodes. 

Step 2- As we mentioned above, the second step is 
finding the type of extra plate and its dimensions. The 
dual of the square tessellation is again square tessella-
tion. Number of the sides of the square polygon gives 
us the type of the extra plate. It is a plate with four 
nodes. The size and form of the extra plate is deter-
mined by pointing one vertex to the four neighboring 
vertices as shown in Fig. 13.

Step 3- Third step is assembling processes of the 
square plates and extra plates. To determine the place-
ment, blue colored square tessellation and its red col-
ored dual are drawn as shown in Fig. 14. Four square 
form plates are placed on the points where the blue 
square tessellation and its red dual intersect. One 
more plate is placed on the center point of blue tes-
sellation. Then extra plates are placed in between the 
square form plates. Fig. 15 shows the expanded and 
contracted forms of the RRPS.

Mobility and Number of Excessive
Plate Calculation
In mechanism science mobility or degrees of free-

dom is one of the first fundamental concerns of both 

Figure 11. Process of obtaining the extra plate.

Figure 12. Assembling processes of the hexagonal plates and the retraction.

Figure 13. Process of obtaining the form of the extra plate.

Figure 14. Assembling process of the square plates and the re-
traction.
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design and analysis of the mechanisms. First the sim-
plest module of the RRPS based on square tessellation 
is considered (Fig. 16). According to Grübler-Kutzbach 
formula;[32]

M= 3(n-1) – 2j1 – 2j2    (2)

where; M= degree of freedom or mobility

n= number of links

j1= number of 1 DOF joints

j2= number of 2 DOF joints

There are 9 links/plates and 12 single DOF joints. The 
mobility is calculated as M= 3(9-1) – 2.12 and found 0. 
According to the equation the structure must be static 
not retractable. However after many simulations and 
models with number of plates and revolute joints, it is 
realized that the mobility of the retractable structure is 
always one. There are mechanisms with full-range mo-
bility even though they do not meet the mobility cri-

terion. These mechanisms are called overconstrained. 
Their mobility is due to the existence of special geom-
etry conditions among the links/plates and joint axes 
that are called overconstrained conditions. The sim-
plest module is an overconstrained multi-loop mecha-
nism due to the four parallelogram loops around the 
fixed link/plate. Grübler-Kutzbach formula do not fit 
for multi-loop overconstrained mechanisms.

In this paper, the mobility of the RRPS has been cal-
culated according to Alizade and Freudenstein formula 
which is considered with the relation of joints and 
loops of the retractable structure.[31]

M (3)fi –

i=1 k=1

k

j L

λ= + qΣ Σ
where, j is the total number joints, fi is the total de-

grees of freedom of the ith joint, L is the total number 
of independent loops, q is the number of excessive 
plates (blue colored). Since there are only 1 DoF joints 
and the subspace of the mechanism is three, the equa-
tion becomes;

M= J – 3L + q     (4)

Where J is the total number of 1-DoF joints.

It is known that the mobility of the simplest retract-
able module is 1. There are totally 4 loops and 12 revo-
lute joints. According to the equation (4) variables L=4, 
J=12 the mobility of the module is calculated as M = 
12 - 3.4 + q = 1, then the number of excessive plates 
q=1. Fig. 17 shows the contraction with and without 
excessive plate.

For the second case the simplest square retractable 
module is iterated as in Fig. 18. Two modules are shar-
ing the fourth loop. There are totally 7 loops, 1 shared 
loop (4), 20 revolute joints. According to the equation 
(4) variables L=7, J=20 the mobility of the RRPS is cal-
culated as M= 20 - 3.7 + q = 1, then the number of 
excessive plates q=2. Fig. 19 shows the RRPS with and 

Figure 15. Expanded and contracted forms of the RRPS based on square tessellation.

Figure 16. Simplest module of the RRPS based on square tessel-
lation with one excessive plate
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without two excessive plates. Excessive plates are dis-
played with blue color.

Note that each iteration of a new module that shares 
only one loop increase the excessive plate one more. 
If one more module is iterated as in Fig. 20, there are 
two shared loops (4 and 6). There are totally 10 loops, 
2 shared loops (4, 6), 28 revolute joints. According to 
the equation (4) variables L=10, J=28 the mobility of 
the RRPS is calculated as M= 28 - 3.10 + q = 1, then 
the number of excessive plates q=3. Fig. 21 shows the 
tessellation with and without three excessive plates.

After two identical iterations, with the third itera-
tion the RRPS shares four loops (3-4-7-10) not three 
(Fig. 22). There are totally 12 loops, 4 shared loops, 32 

revolute joints. According to the equation (4) variables 
L=12, J=32 the mobility of the structure is calculated 
as M= 32 - 3.12 + q = 1, then the number of excessive 
plates q=5. Fig. 23 shows the RRPS with and without 
five excessive plates. After the last iteration, it should 
be noted that sharing two loops with one additional 
module adds two excessive plates to the tessellation 
instead of one. After these iterations it can be said that 
the number of excessive plates is equal to one plus the 
number of loops that are shared on the structure.

Same formula can be used to find the excessive 
plates in RRPS based on hexagon tessellation. Firstly 
the simplest module of the hexagon regular RRPS is 
considered. There are totally 12 loops, 30 revolute 
joints as shown in Fig. 24. According to the equation 

Figure 17. Simplest module of the RRPS based on square tessel-
lation with and without excessive plate Figure 19. Iterated module with and without 2 excessive plates.

Figure 18. Iterated module with a shared loop and two exces-
sive plates.

Figure 20. Two times iterated module with two shared loops 
and three excessive plates.
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(4) variables L=12, J=30 the mobility of the RRPS is cal-
culated as M= 30 - 3.12 + q = 1. It is found that there 
are seven excessive plates which are displayed with 
blue color. Fig. 25 shows the RRPS without seven ex-
cessive plates.

For the second case the simplest module is iterated. 
There are totally 19 loops, 5 shared loops (1, 7, 6, 5, 
12), 46 revolute joints as in Fig. 26. According to the 
equation (4) variables L=19, J=46 the mobility of the 
RRPS is calculated as M= 46 - 3.19 + q = 1. It is found 

Figure 21. Two times iterated module with and without 3 exces-
sive plates.

Figure 23. Three times iterated module with and without 5 ex-
cessive plates.

Figure 22. Three times iterated module with four loops and five 
excessive plates.

Figure 24. Simplest module of the RRPS based on hexagon tes-
sellation.

Figure 25. Contraction of the RRPS based on hexagon tessellation without seven excessive plates.
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that there are twelve excessive plates. Fig. 27 shows 
the RRPS without twelve excessive plates.

When simplest module is two times iterated, there 
are twenty-six loop, 10 shared loops (1, 7, 6, 5, 12, 13, 
14, 15, 17, 18), 62 revolute joints on the structure as in 
Fig. 28. According to the equation (4) variables L=26, 

J=62 the mobility of the RRPS is calculated as M= 62 - 
3.26 + q = 1. It is found that there are seventeen exces-
sive plates which are displayed with blue color. Fig. 29 
shows the RRPS without seventeen excessive plates.

Note that each iteration adds seven loops, sixteen 
joints, five sharing loops and five excessive plates to 
the whole RRPS. If the two iteration procedure is com-
bined, a new theorem can be introduced to the litera-
ture related with the mobility calculations of the RRPS 
based on regular tessellations.

Theorem: Number of excessive links is equal to the 
number of excessive links of simplest module plus the 
number of loops that are shared during the whole it-
eration process.

Retraction Capability of Scaled Modules
The proposed retractable module can get endless-

ly small while still providing the same expansion and 
contraction. At the same time, modules of different 
sizes can be connected to each other without losing 
their retractable capability. To reach this aim, a mod-
ule is scaled ½ down and two number of this module 
connected with 1/1 scale module in Fig. 30.

Figure 26. Iterated module with five shared loops and twelve 
excessive plates.

Figure 27. Iterated module without twelve excessive plates.

Figure 28. Two times iterated module.
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Alizade and Freudenstein formula can be used again. 
Fig. 30a is the simplest scaled and connected modules. 
There are totally 9 loops, 28 revolute joints. According 
to the equation (4) variables L=9, J=28 the mobility of 
the RRPS is calculated as M= 28 - 3.9 + q = 1. It is found 
that the mobility of the RRPS is equal to 1 without any 

excessive plate. Fig. 30b shows the contraction of the 
modules. Fig. 30c shows the same modules with two 
excessive plates. With these two excessive plates the 
new RRPS has 11 loops and 32 joints. According to the 
equation (4) variables L=11, J=32 the mobility of the 
RRPS is calculated as M= 32 - 3.11 + q = 1. It is found 

Figure 29. Two times iterated module without seventeen excessive plates.

Figure 30. Contraction capability of the scaled modules.

Figure 31. Contraction capability of the iterated scaled mod-
ules.

Figure 32. Contraction of the iterated scaled modules without 
passive joint.
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that the mobility of the RRPS is again equal to 1 with 
two excessive plates.

Fig. 31 shows the contraction capability of the it-
erated scaled modules without any excessive plates. 
There are totally 16 loops, 47 revolute joints. If the 
equation (4) variables L=16, J=47 are inserted to the 
formula M= 47 - 3.16 = -1. Even though RRPS does not 
meet mobility criterion it retracts because there is one 
passive joint as shown in Fig. 31a with a blue circle. Fig. 

32 shows the contraction of the RRPS without passive 
joint and any excessive plate. Now there are totally 
15 loops, 46 revolute joints. If the equation variables 
L=15, J=46 are inserted to the formula M= 46 - 3.15 
= 1.

Architectonic Applications
In order to illustrate the architectonic potential of 

the RRPS, this paper shows illustrations of a project 
of exterior sun shade designed by the authors. At the 

Figure 33. Scaled modules at different zones.
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present time buildings consume almost 50% of the en-
ergy today. With regard to overheating, transparent 
parts of the building envelope (facades and roof) have 
a large effect on the building’s energy consumption. 
Architects can play a major role in the reduction of 
energy consumption. A RRPS based on hexagon tes-
sellation is proposed to be an exterior sun shade for 
a building façade in order to limit cooling loads. The 
exterior sun shade consists out of an array of expand-
able modules varying in size to fulfill criteria like spe-
cific views, transparency and aesthetics. If a facade is 
divided into horizontal zones, the center zone is mostly 
used for a high degree of visual contact. Contrarily to 
the center zone, the upper and bottom zones should 
be protected from direct solar radiation. Therefore, 
a retractable module can be scaled and multiplied to 
have repetitive elements without losing the retraction 
capability in different zones. By changing the size of 
the module, the number of modules to provide the 
same retraction will have to be adjusted in the zones. 
If the module does not have to be big for visual con-
tact, it can be scaled down for shading purpose at the 
upper and bottom zones. The openings in the center 
zone are aimed to be bigger than the openings on the 
top and at the bottom. According to the scenario, the 
center components of the retractable modules are 

maximized while the edge components get smaller in 
the upper and bottom zones (Fig. 33). 

Figures 34 shows retractable shading mechanism 
providing visual contact in the center zone and protec-
tion at the upper and bottom zones.

Conclusion
In this paper, a method has been presented for the 

development of radially retractable plates structures 
based on 1-uniform regular tessellations. According to 
the method, various single degree of freedom RRPSs 
based on square and hexagon tessellations are devel-
oped. It is understood that extra plates are necessary in 
between the square or hexagon polygons to achieve the 
retraction. Mobility analysis is done with Alizade Freud-
enstein formula for every RRPS and it is explored that 
there are excessive plates. These excessive plates can be 
eliminated one by one without effecting the retraction. 
Finally, scaled plates have been connected and proved 
that RRPS still achieves the retraction. It is obvious that a 
better understanding and translating geometric knowl-
edge of tessellation could be a foundation for develop-
ing a new source of concepts in mechanism science and 
kinetic architecture. With this idea, a RRPS based on 
hexagon regular tessellation is proposed to a building fa-
çade as a sun shade to reduce the energy consumption.

Figure 34. RRPS application as an exterior sun shade for a building facade.
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