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ABSTRACT

This study explores cognitive processes in parametric design environments (PDEs), 
synthesizing current research to identify key methodologies, theoretical models, and factors 
that influence design cognition. The review addresses challenges like cognitive overload, 
algorithmic dependence, and the learning gap between novice and expert designers. A 
systematic literature review (SLR), following PRISMA guidelines for transparency and 
reproducibility, was conducted to analyze studies on design cognition in PDEs, with a focus 
on empirical research examining cognitive processes, design behavior, and educational 
strategies. The review reveals that PDEs encourage creativity, iterative problem-solving, and 
dynamic design exploration but also pose cognitive challenges, particularly for inexperienced 
designers. Expert designers exhibit greater algorithmic fluency and adaptability, while 
novices often experience cognitive strain and reliance on black-box thinking, which limits 
their creative engagement. Educational gaps persist, highlighting the need for scaffolded 
learning models, hands-on workshops, and non-digital exercises to build algorithmic skills 
progressively. Additionally, the lack of standardized frameworks for evaluating algorithm 
quality and cognitive performance underscores the need for further research. This review 
provides insights for educators and researchers to bridge the gap between technical proficiency 
and creative innovation in parametric design.
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INTRODUCTION

Design is an essential cognitive process, shaped by various 
internal and external factors. Several cognitive studies focus 
on the design process (Cross, 2001), with the origins of 
research in design cognition often attributed to Eastman's 
(1969) foundational work. Dinar et al. (2015) defined design 

cognition as the analysis of the information designers use 
during the design process. Dinar et al. (2015) reviewed 
empirical studies on design cognition and revealed that 
most existing studies focus on the early, somewhat unclear 
stages of the design process, known as conceptual design. 
Despite the significant number of empirical studies, many 
researchers emphasize that the nature of the cognitive 
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processes involved in design remains unclear (Dorst & 
Cross, 2001; Jin & Benami, 2010; Kim & Ryu, 2014).

While design cognition has been studied extensively in 
general design contexts, the focus on cognitive processes 
within parametric design environments (PDE) has been 
relatively limited. Design cognition studies examine the 
influence of various factors such as design environments 
(Trump & Shealy, 2023), restorative experience (Ignacio 
& Shealy, 2023), situatedness (Gero & Milovanovic, 
2023), and empathy (Aktaş Yanaş & Gül, 2025) on 
design processes. However, there are very few studies 
on parametric design cognition. Despite the growing 
popularity of parametric design in architecture, empirical 
evidence on designers' behaviors in PDE is limited (Yu 
& Gero, 2016). While much of the literature focuses on 
technological advancements in parametric design tools, 
our understanding of the cognitive processes underlying 
PDEs remains limited (Oxman & Gu, 2015).

Systematic literature reviews (SLR) can be beneficial in filling 
these knowledge gaps because they are commonly used to 
synthesize evidence and reduce bias. SLR systematically 
collects, synthesizes, and analyzes all relevant publications 
on a given topic using predetermined inclusion criteria, 
and it is held to the same standard as empirical research 
due to its transparency and repeatability. Conducting an 
SLR on cognitive processes in PDE can provide valuable 
insights into how designers think and study within these 
environments, highlighting common findings and differing 
perspectives. According to Marzano and Kendall (2006), 
cognitive tasks involve at least one of the following categories: 
decision-making, problem-solving, experimenting, and 
investigating. In the context of parametric design, all these 
categories are intensely utilized as integral components of 
the cognitive system in the design process.

Given the complexity and importance of these cognitive 
processes, it is crucial to synthesize existing research to 
better understand how they manifest in PDEs. While 
there are several SLRs in related areas of design cognition, 
such as Dinar et al. (2015) on empirical studies of design 
cognition, Jiang and Yen (2009) on protocol analysis, 
and Hay et al. (2017) on cognition in conceptual design, 
none of these studies specifically focus on the cognitive 
dimensions of PDEs. This gap highlights the need for a 
comprehensive SLR to synthesize existing research and 
provide a clearer understanding of cognitive processes 
unique to PDE.

This study aims to systematically review studies that 
focus on design cognition in PDE and seeks to answer the 
following questions: (i) What is our current understanding 
of cognitive processes in PDE? (ii) What methods are 
applied in this field? (iii) What variables are typically 
examined in experimental studies? By addressing these 
questions, the study aims to bridge the knowledge gap in 

this area and offer a comprehensive synthesis of existing 
research on parametric design cognition. Unlike previous 
reviews that broadly address design cognition, this study 
focuses explicitly on the unique cognitive processes that 
differentiate PDE from traditional design environments. 
Furthermore, this review focuses on empirical studies 
within PDE, examining their methods and procedures to 
inform future research. It will also discuss the limitations of 
these methods and models, providing a deeper exploration 
of the impact of PDE on novice designers. Additionally, 
the review will address the challenges faced by educators, 
especially in countries with limited educational resources, 
and propose solutions to bridge these gaps.

Design Cognition and Parametric Design
Design is recognized as a complex cognitive activity, 
requiring designers to analyze, interpret, and solve 
problems through an array of structured and unstructured 
processes  (Goldschmidt, 1991). Cognitive design studies 
often examine how designers engage in divergent and 
convergent thinking, with divergent thinking fostering 
the generation of multiple creative ideas and convergent 
thinking guiding the selection of the most feasible 
solution (Cross, 2001). This interplay between exploration 
and refinement is critical in design problem-solving, 
particularly in environments where dynamic changes 
and iterations are essential. Research on design cognition 
highlights the role of mental strategies such as abstraction, 
problem decomposition, and reflective thinking, all which 
support decision-making during the design process 
(Goldschmidt, 1991; Oxman, 2001). Protocol analysis is 
a widely used method to study these cognitive activities 
(Blandino et al., 2023), enabling the observation of 
designers' thought processes in real time. This method has 
evolved over the years, with recent studies incorporating 
multimodal protocols that use dual verbal protocols 
(Leem & Lee, 2024), eye-tracking (Härkki, 2023), video 
recordings (Gürel & Şenyapılı Ozcan, 2023), and even 
biometric analysis (Yu et al., 2023). These multimodal 
approaches offer a more comprehensive understanding 
of cognitive load, mental strategies, and problem-solving 
in design environments. These analyses reveal that 
designers engage in iterative processes, revisiting earlier 
design decisions as new information emerges (Oxman, 
2001). Such insights could also provide a foundation for 
understanding cognitive processes in PDE, which differ 
significantly from traditional design settings.

PDEs introduce unique cognitive demands that challenge 
the traditional approaches used in design cognition 
(Oxman & Gu, 2015). Unlike traditional design, which often 
follows a linear process, PDEs require designers to engage 
with non-linear, iterative exploration through parametric 
logic. In PDEs, relationships between parameters must be 
defined before generating design outputs, necessitating a 
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higher level of abstraction and systematic thinking (Lee & 
Ostwald, 2019). Recent research emphasizes that this shift 
from manual design to parameter-driven logic requires 
cognitive adaptation, particularly for novice designers who 
are unfamiliar with computational logic (Dissaux & Jancart, 
2022; Liang et al., 2019).

Understanding how changes in one parameter impact the 
entire design system is a significant cognitive challenge in 
PDEs. Unlike traditional design, where design elements 
are modified directly, PDEs require designers to define 
interdependent relationships between design elements. This 
relational thinking necessitates the use of computational 
frameworks that support parametric logic. Tools like 
Grasshopper and Dynamo enable designers to visualize 
these relationships through a node-based interface, where 
inputs, transformations, and outputs are visually represented 
as components in a flowchart (Caetano et al., 2020). These 
tools reduce the need for textual coding, but they introduce 
new tasks as abstraction, rule-based thinking, and spatial 
reasoning which can cause cognitive load.

Cognitive load is another significant factor in PDEs. The dual 
requirement to manage parameter logic while also focusing 
on design goals increases the cognitive load on designers 
(Lee & Ostwald, 2019). Novice designers, in particular, are 
susceptible to cognitive overload due to unfamiliarity with 
parametric workflows and the complexity of parameter-
based relationships (Dissaux & Jancart, 2022). To address 
this, design educators have focused on developing step-
by-step pedagogical approaches that gradually introduce 
students to parametric thinking. Visual programming tools 
play a key role in this process, as they allow designers to 
manipulate visual representations of parameters, thereby 
reducing the cognitive load associated with text-based 
coding (Caetano et al., 2020; Woodbury, 2010).

One of the most critical cognitive shifts in PDEs is the move 
from product-based thinking to process-based thinking 
(Lee et al., 2013). In traditional design, the designer focuses 
on achieving a final product, often working in a linear 
sequence. In contrast, PDEs emphasize the creation of a 
generative system that produces multiple design outputs. 
This shift changes how designers approach problem-
solving, as they must think about processes, rules, and 
relationships rather than static objects (Caetano et al., 
2020). This process-oriented thinking requires designers 
to conceptualize and manage the relationships between 
interdependent components, reflecting a higher level of 
cognitive complexity.

Another prominent issue in PDEs is the tendency toward 
"black-box thinking." When designers rely on pre-built 
algorithms or imported parametric scripts, they may lose 
sight of the logic and structure underlying the design process 
(Woodbury, 2010). This reliance on pre-built solutions can 
hinder creativity and limit the designer’s ability to adapt 

to new design challenges. Vazquez (2024) suggest that 
educators should encourage students to build their own 
parametric rules and algorithms rather than relying on 
external libraries. By promoting computational literacy, 
designers can maintain greater control over the process, 
develop critical thinking skills, and avoid dependency on 
"black-box" systems.

Parametric design is used in various fields such as facade 
design (Dervishaj & Gudmundsson, 2024), structural 
optimization (Zhang et al., 2024), and urban planning 
(Tehrani et al., 2024). However, research on PDE education 
remains limited, primarily due to the high cognitive load for 
novices and black-box thinking. To address these challenges, 
it is essential to investigate the cognitive mechanisms of 
both novice and expert designers in PDEs. Therefore, this 
study systematically reviews existing research, examines 
methodologies and variables, and discusses the strengths 
and weaknesses of current approaches.

RESEARCH METHOD

This section outlines the systematic methodology used 
to examine cognitive processes specifically within PDEs. 
The review follows the PRISMA guidelines, focusing on 
cognitive processes in parametric design, rather than 
general design. The subsections of this section include 
research design (3.1), which outlines the overall approach, 
the databases used for literature gathering (3.2), the 
inclusion and exclusion criteria for selecting relevant 
studies (3.3), the search strategy applied to ensure a broad 
and relevant collection of literature (3.4), and the selection 
process for narrowing down the studies (3.5). By focusing 
on parametric design, this section ensures that the cognitive 
processes analyzed are specific to the unique characteristics 
of PDEs, rather than general design environments.

Research Design
This SLR was conducted in line with the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) guidelines (Moher et al., 2009). The purpose 
of this review is to thoroughly analyze studies examining 
cognitive processes in PDEs.

Databases
The studies included in this review were gathered from 
the SCOPUS and Web of Science (WoS) digital databases. 
To broaden the scope of the research, other databases 
such as IEEE Xplore, ACM Digital Library, ScienceDirect, 
JSTOR, EBSCO, and Taylor & Francis were also considered. 
However, SCOPUS and WoS were chosen as the primary 
databases because they provide comprehensive scientific 
research, including journal articles and conference papers 
(Zhu & Liu, 2020).
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Inclusion Criteria
To be included in this SLR, studies had to meet the following 
criteria:

• The study must provide a theoretical or applied review 
of cognitive processes in PDEs.

• The study must present a model, technique, or method 
to evaluate one or more factors influencing cognitive 
thinking in PDE.

• The cognitive processes analyzed must involve a design 
problem.

The following exclusion criteria were also applied:

• The study is not in English,

• The study is not related to parametric design processes,

• The profiles of the participants or trainees involved in 
the study are not clearly defined,

• The studies are duplicate or repetitive across different 
databases,

• The full text of the article or paper is not accessible.

Search Strategy
The search strategy aimed to identify primary studies 
relevant to this literature review. Keywords were selected to 
cover two main concepts: parametric design and cognitive 
processes or education/training. To ensure that as many 
relevant research studies as possible were included, the 
search terms were derived from previous searches and are 
presented in Table 1.

Selection Process
The database search was conducted on December 1, 2024, 
and a total of 1,436 records were obtained (801 from 
SCOPUS, 863 from WoS). After removing duplicate entries, 
the selection process began with 874 records. This process 
consisted of two stages. In the first stage, the titles and 
abstracts of each study that met the inclusion and exclusion 
criteria were analyzed. In the second stage, the list was 
narrowed down to 30 studies (Figure 1).

Subsequently, the second review of the selection process, 
in which the full texts were analyzed, was conducted. As 

a result of this second review, 18 studies were deemed 
appropriate for inclusion, comprising 5 conference papers 
and 13 journal articles. To ensure the selection process was 
as inclusive as possible, no year restrictions were applied 
as a selection criterion. The distribution of the selected 
publications by year is shown in Figure 2. It can be observed 
that the selected studies span the years 2012 to 2024, with 
the highest number of studies conducted in 2012.
The selected studies were coded and analyzed using MaxQda 
and Microsoft Excel. The tables presented in the report 
were generated using MaxQda’s code relation browser for 
the analysis. The themes or categories that emerged during 
the coding process were discussed in the findings section.

FINDINGS

As a result of the SLR, a bibliometric analysis was first 
conducted to identify the leading journals and conferences 
in the field. Subsequently, the reviewed studies were 
classified based on the data collection methods they 
employed, and the most common protocol analysis methods 
were examined. Since the studies identified through the SLR 
are experimental, the experimental conditions vary. In the 
following sections, these variables are analyzed under three 
headings: participant groups, design tasks, and control 
group variables.

Bibliometric Analysis
The SLR included a bibliometric analysis of studies on 
cognitive processes in parametric design. The review 
revealed that studies in this area began to increase in 2012, 
with early publications being preliminary experimental 
studies presented at conferences. Over time, the results of 
these studies were published in journals.
The most frequently published journals in this field are the 
International Journal of Architectural Computing and the 
International Journal of Design Creativity and Innovation. 
Ju Hyun Lee (Lee et al., 2013; Lee et al., 2015, Lee et al., 2016; 
Lee & Ostwald, 2019; Lee & Ostwald, 2020) and Rongrong 
Yu (Yu et al., 2012b; Yu et al., 2012a; Yu et al., 2013; Yu et 
al., 2018; Yu & Gero, 2016) are the two researchers with the 
most publications in this field.

Table 1. Keywords of the study focus

Database Results Keyword search and other applied filters

SCOPUS 801 TITLE-ABS-KEY (“parametric design” OR “parametric design environment”) AND TITLE-ABS-KEY 
  (cognit* OR "protocol analysis" OR "design thinking" OR "design education" OR educat* OR evaluation)  
  AND (LIMIT-TO (LANGUAGE, "English") 
WoS 863 Results for “parametric design” OR “parametric design environment” (Topic) AND cognit* OR 
  "protocol analysis" OR "design thinking" OR "design education" OR educat* OR evaluation (Topic)  
  AND English (Languages) and Article or Proceeding Paper (Document Types) and English (Languages)

The * symbol has been used as a truncation operator to search for documents containing the root of the term followed by any number of characters.



Megaron, Vol. 20, No. 1, pp. 37–51, March 2025 41

Data Collection Methods
In studies on cognitive processes in PDE, various data 
collection methods are used to analyze users' design 
processes. These methods include surveys, interviews, 
personal experience, and protocol analysis. Table 2 presents 
the distribution of data collection methods used in studies 
on parametric design cognition.

In cognitive process studies, surveys are used to allow 
participants to describe their own cognitive processes 
through pre-structured questions. In Alalouch’s (2018) 
study, participants' cognitive processes were assessed 
using questions designed with a five-point likert scale. 
The survey employed in that study measured three factors: 
cognitive strategies, intellectual abilities, and attitudes 
of the participants. However, this method relies on self-

assessment, which can lead to reliability issues. To address 
this problem, Namoun et al. (2019) combined the survey 
method with the think-aloud protocol used in protocol 
analysis.

The use of surveys in cognitive process studies requires self-
evaluation, meaning the reliability of the data is contingent 
on the objectivity of the participants. Nevertheless, 
participants tend to evaluate the design environments or 
tools they use more objectively than their own cognitive 
processes. For this reason, the survey method can be used 
to measure usability, as in Namoun et al. (2019)’s, study, or 
to collect preliminary data, as in Yang et al. (2022)’s, study.

In the interview method, semi-structured questions are 
used to gather information about the participants' design 
processes, followed by quantitative evaluations. Like 

Figure 1. Study Flow Chart.

Figure 2. Distribution of the selected publications by year.

Table 2. Data collection methods used in the field of parametric 
design cognition

Methods Studies

Survey (Alalouch, 2018; Namoun et al., 2019; 
 Yang et al., 2022)
Interview (Dissaux & Jancart, 2022; Lee & Ostwald, 
 2020; Namoun et al., 2019)
Personal Experience (Aish & Hanna, 2017)
Protocol Analysis Listed in Table 3
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surveys, interviews face reliability challenges, and as such, 
they should be validated through cross-referencing with 
other data, as demonstrated by Dissaux & Jancart, (2022); 
Lee & Ostwald, (2020).

Aish & Hanna (2017) took a different approach, analyzing 
parametric design processes based on their own 
experiences. In their study, the authors evaluated the three 
most commonly used environments in PDE by discussing 
the challenges they encountered. However, this method 
is considered more of a preliminary trial and requires 
validation through comparisons with the experiences of 
other users.

The most frequently used method in this field is protocol 
analysis. In this approach, participants are asked to think 
aloud during the design process, and their processes are 
recorded. The recording can be audio, or video as was the 
case in some studies. In PDE research, screen recordings 
are also commonly used. The consistency of the analysis 
improves as the volume of collected data increases. The 
reliability of the analysis process must also be tested. 
In studies where the analysis is performed by a single 
researcher, the process is repeated at two different times 
and the results are compared. In studies involving multiple 
researchers, the consistency between their analyses is 
compared statistically. Additionally, since protocol analysis 
examines the design process, it is often supplemented by 
surveys or interviews with participants at the end of the 
process.

Protocol Models
Several theoretical models are used to analyze the data 
collected during protocol analyses. These models divide 
design processes into steps that are coded according 
to the selected model, then analyzed in terms of step 
sequences, repetitions, and durations. Table 3 shows the 
coding models used in the studies identified through the 
SLR, with FBS (Function-Behavior-Structure) and PPC 
(Physical-Perceptual-Conceptual) models being the most 
frequently used.

The FBS (Function-Behavior-Structure) model developed 
by Gero, (1990) is one of the most widely used models in 
protocol studies on design. This model has been preferred 
in PDE studies due to its potential to cover the most 
meaningful cognitive aspects of the design process Yu et 
al., (2018). The FBS model's formulation is presented in 
Figure 3.

The FBS model defines the design process through six 
variables and eight transitions between them. These 
variables are:

• Requirements (R): This variable describes the things 
necessary to solve the design problem, independent of 
the designer.

• Function (F): It defines the purpose of the design and 
the designed object.

• Behavior (B): This includes the expected behavior (Be) 
and the behavior resulting from the structure (Bs) of the 
design object.

• Structure (S): This represents the components that make 
up the design object and the relationships between 
them.

• Document (D): It defines the representational outputs 
needed to communicate the design.

The transitions between these steps, as seen in Figure 
3, include formulation, synthesis, analysis, evaluation, 
documentation, and reformulation I, II, and III.

The FBS model can be used directly, as in the studies by Yu 
et al., (2018); Yu and Gero, (2016), or it can be separated 
into subcategories of design and algorithms, as seen in 
Yu et al. (2013)’s study. Furthermore, in a study by Yu et 
al. (2012b), an extended version of the decomposed FBS 
model incorporates the concepts of external, interpretive, 
and expected worlds.

Another commonly used model is Suwa et al., (1998)’s. 
PPFC (Physical-Perceptual-Functional-Conceptual) model, 
adapted for PDE. The adapted version of the PPC model, 
shown in Table 4, consists of physical, perceptual, and 
conceptual variables.Table 3. Analysis models used in protocol analyses

Models Studies

Language-oriented (Lee et al., 2016) 
coding
PSFIE  (Chien & Yeh, 2012)
PPC  (Lee et al., 2013, 2015, 2016; Lee & 
 Ostwald, 2019; Öztürk Kösenciĝ & 
 Özbayraktar, 2024)
DMP  (Lee & Ostwald, 2020)
Knowledge retrieval (Dissaux & Jancart, 2022)
FBS (Gürel & Şenyapılı Ozcan, 2023; Yu et al., 
 2012b, 2013, 2018; Yu & Gero, 2016)

Figure 3. FBS model.
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The physical variable defines production actions and 
is divided into geometric and algorithmic categories. 
Modeling functions fall under the geometric category, 
while parametric rule sequences are classified under the 
algorithmic category. The perceptual variable refers to the 
mental visualization and consideration of the produced 
objects, and it is also divided into geometric and algorithmic 
categories. The conceptual variable, adapted from the study 
of Gero & Mc Neill (1998), consists of three classes: problem 
identification, solution generation, and evaluation. Like the 
FBS model, the PPC model can be used independently or 
in combination with other models. For example, in study by 
Lee et al., (2016), the PPC model was used in conjunction 
with a newly developed semantic model to investigate the 
relationship between cognitive processes and language.

Data Evaluation Methods
The data analysis methods used in the identified studies are 
listed in Table 5. The first method is statistical analysis, used 
in studies such as Chien & Yeh’s (2012) work for evaluating 
the design processes decoded through protocol analysis 
using standard deviation and percentage distribution. More 
advanced methods like the U-test and regression are used in 
studies (Alalouch, 2018; Yang et al., 2022) with control groups.

Descriptive analysis methods are primarily used to 
examine correlations, while the Linkography method is 
used to analyze transitions between codes. Linkography 
was employed by Lee & Ostwald (2019) to analyze entropy 
between codes, allowing the visualization of relationships 

between steps in the design process, as shown in Figure 4.

The learning curve method was used by Aish & Hanna 
(2017). In their study, problems encountered in the design 
environment were considered learning thresholds, and 
personal experiences were graphically represented and 
compared based on the issues faced during the process. 
MacLean et al. (1990) defined learning as the overcoming 

Table 4. PPC model (Lee et al. 2013)

Level Category Subclasses Description

Physical Geometry G-Geometry Create geometries without an algorithm
  G-Change Change existing geometries
 Algorithm A-Parameter Create initial parameters
  A-Change Parameter Change existing parameters
  A-Rule Create initial rules
  A-Change Rule Change existing rules
  A-Reference Retrieve or get references
Perceptual Geometry P-Geometry Attend to existing geometries
 Algorithm P-Algorithm Attend to existing algorithms
Conceptual Problem-finding F-Initial Goal Introduce new ideas or goals based on given design brief
  F-Geometry Sub Goal Introduce new geometric ideas extended from a previous idea
  F-Algorithm Sub Goal Introduce new algorithmic ideas extended from a previous idea
 Solution-generating G-Generation Make generation or variation
 Solution-evaluating E-Geometry Evaluate primitives or existing geometries
  E-Parameter Evaluate existing parameters
  E-Rule Evaluate existing rules
  E-Reference Evaluate existing references

Table 5. Data evaluation methods used

Methods Studies

Statistics and (Alalouch, 2018; Chien & Yeh, 2012; Gürel & 
Descriptive Şenyapılı Ozcan, 2023; Lee et al., 2013, 
 2015, 2016; Lee & Ostwald, 2019, 2020; 
 Namoun et al., 2019; Yang et al., 2022; 
 Yu et al., 2013, 2018; Yu & Gero, 2016)
CAT (Creativty (Lee et al., 2013, 2015; Yang et al., 2022; 
Assessment) Yu et al., 2018)
Learning Curve (Aish & Hanna, 2017)
Linkography (Lee et al., 2016; Lee & Ostwald, 2019; 
 Öztürk Kösenciĝ & Özbayraktar, 2024)

Figure 4. Linkography analysis samples (Lee & Ostwald, 
2019).
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of encountered problems. Myers (2002) suggested that 
effective learning can be represented by a smooth-sloped 
curve. Based on this, Aish & Hanna, (2017) concluded that 
Grasshopper is more conducive to learning in PDE.

The CAT (Creativity Assessment Tool) method is used in 
this field to evaluate design outcomes. These are rubric scales 
designed to measure creativity, allowing the relationships 
between processes and the final product to be examined. 
The rubric CAT scales used in studies identified through 
the SLR are based on the scale developed by Amabile, 
(1983). While these scales serve a similar function, there 
are slight variations between them. For example, the scales 
used in Lee et al. (2013); Lee et al. (2015) assess originality, 
usefulness, complexity, and aesthetics, whereas Yu et al. 
(2018) replaced complexity and aesthetics with the criterion 
of surprise. Yang et al. (2022), originality, usefulness, 
quality, and manufacturability were used as criteria. Upon 
reviewing the criteria used in CAT scales, originality and 
usefulness are consistently repeated. These scales can be 
used by the authors themselves or, as in Lee et al. (2013) 
study, to gather expert opinions.

Participant Groups
The distribution of participant groups in the studies 
included in this systematic review is presented in Table 6. 
Undergraduate students are defined as "students," while 
professionals with bachelor's degrees are categorized 
as "professional groups." A minimum of two years of 
experience with PDE is used to distinguish between 
experienced and inexperienced participants.

The most frequently studied group in PDE research 
consists of experienced architects, as PDE requires more 
prior knowledge than traditional design environments. 
Studies by Yu et al. (2018); Yu & Gero, (2016) analyzed the 
cognitive processes of experienced architects. However, 
there is limited research focusing on inexperienced users 
in PDE. Dissaux & Jancart, (2022) analyzed the thinking 
processes of inexperienced users during learning activities.

The second most common participant group consists of 

architects with mixed experience levels. In these studies, 
participants are separated based on their experience in 
PDE. Studies by Chien & Yeh (2012); Lee et al., (2015) 
analyzed the cognitive processes of architects with mixed 
experience levels. In fields outside of architecture, the web 
design process was examined with twenty-four software 
developers by Namoun et al. (2019), while the creative 
thinking process was analyzed with 110 participants by 
Yang et al. (2022).

Design Tasks
The design tasks given to participants in the studies are 
listed in Table 7. The most frequently used design task is 
high-rise building design, consistent with the focus on form 
exploration in PDE. In these studies, the emphasis is on the 
building envelope rather than interior configurations. For 
example, Chien & Yeh (2012); Lee et al., (2013) focused on 
high-rise building design. Other tasks used in the studies 
include pavilion, bridge, and public education center 
design.

While parametric design is commonly used in engineering, 
this review focused on architecture-related studies. 
However, a few examples from software engineering and 
industrial design were considered. For instance, Namoun 
et al. (2019) explored website design, while examined 
earphone design.

Experimental Variables
In the reviewed studies, it was observed that participant 
groups were generally small, as is typical for protocol 
analysis. In studies (Dissaux & Jancart 2022; Lee et al. 2016; 
Yu et al. 2012a) where the participant group consisted of 
only two or three individuals, no variables were employed, 
and the cognitive processes of the designers were examined 
directly.

Table 6. Participant groups according to the SLR

Groups Studies

Experienced (Gürel & Şenyapılı Ozcan, 2023; Lee et al., 
professionals 2013, 2016; Lee & Ostwald, 2019, 2020; 
 Öztürk Kösenciĝ & Özbayraktar, 2024; 
 Yu et al., 2012b, 2018; Yu & Gero, 2016)
Inexperienced (Yu et al., 2012a) 
professionals
Mixed professionals (Chien & Yeh, 2012; Lee et al., 2015; 
 Yu et al., 2013)
Mixed designers (Namoun et al., 2019; Yang et al., 2022)
Students (Alalouch, 2018; Dissaux & Jancart, 2022)

Table 7. Design tasks according to the SLR

Design Task Studies

Website (Namoun et al., 2019)
Curve Control (Aish & Hanna, 2017)
High-rise building (Chien & Yeh, 2012; Dissaux & Jancart, 
 2022; Lee et al., 2013, 2016; Lee & Ostwald, 
 2019, 2020; Yu et al., 2012b)
Pavillion (Chien & Yeh, 2012; Dissaux & Jancart, 
 2022; Öztürk Kösenciĝ & Özbayraktar, 
 2024)
Pedestrian bridge (Dissaux & Jancart, 2022)
Shopping mall (Yu et al., 2013, 2018; Yu & Gero, 2016)
Community center (Yu et al., 2013, 2018; Yu & Gero, 2016)
Vehicle stop (Alalouch, 2018; Chien & Yeh, 2012)
Shelter  (Gürel & Şenyapılı Ozcan, 2023)
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In studies where cognitive processes are compared based on 
variables, two primary variables are identified: environment 
and experience (Table 8). In research examining the 
experience variable, participants are classified according 
to their experience in PDE. Alalouch (2018) categorized 
users based on their experience with different modeling 
software. Similarly, Lee et al., (2013); Lee & Ostwald, (2019) 
and Namoun et al. (2019) divided users into two groups: 
Experts and novices. This allowed for a comparison of the 
cognitive processes of participants working in the same 
environment on the same design problem, investigating the 
impact of experience on cognitive processes.

In studies where the environment is the variable, design 
processes are compared using different software and tools 
as design environments. Aish & Hanna, (2017) performed 
the same design task using different software, while Yu et 
al. (2018); Yu & Gero (2016) compared design processes 
conducted in geometric modeling environments (GME) 
and PDE by using different design problems. Chien & 
Yeh, (2012) compared design processes across three 
environments: PDE, GME, and traditional pen-and- 
paper design. In Lee & Ostwald’s, (2020), study involving 
six participants, participants were divided into experts 
and novices based on their experience. Additionally, one 
participant from each group worked in a code-based 
environment, while the others used a visual programming 
environment. This allowed for an investigation of the effects 
of both experience and environment on cognitive processes 
during design. The same method was also employed by Lee 
et al., (2015).

DISCUSSION

The studies summarized in Table 9 highlight key factors 
influencing cognitive processes in PDEs, with a focus 
on experience and environment. Protocol analysis, used 
extensively across the reviewed studies, reveals how 
designers interact with parametric tools and adapt their 
cognitive strategies during design tasks. Frameworks such 

as FBS (Öztürk Kösenciğ & Özbayraktar, 2024; Yu et al., 
2012a; Yu et al., 2012b) and PPC (Gürel & Şenyapılı Ozcan, 
2023; Lee et al., 2013; Lee & Ostwald, 2019) are central to 
evaluating design behavior.

Experience consistently emerges as a significant variable, 
with expert designers demonstrating greater fluency 
and creativity, while novices frequently need on external 
assistance, such as tutorial videos or assistants, to navigate 
PDEs (Dissaux & Jancart, 2022; Namoun et al., 2019). 
Comparisons between PDEs and GMEs suggest that 
parametric tools can foster more design exploration, but 
may also lead to increased cognitive load, particularly for 
less experienced users (Gürel & Şenyapılı Ozcan, 2023; 
Yu et al., 2013; Yu & Gero, 2016). Lee et al. (2016) and Yu 
et al. (2013, 2018) find no significant difference in design 
behavior between PDEs and GMEs, suggesting that the 
influence of environment may depend heavily on individual 
experience.

Although PDEs show potential for enhancing creativity and 
expanding design possibilities, they introduce challenges 
such as steep learning curves (Aish & Hanna, 2017) and 
black box thinking (Dissaux & Jancart, 2022), limiting the 
designer's control over algorithms and decision-making 
processes. The tendency for novices to generate unexpected 
outcomes (Chien & Yeh, 2012) further underscores the 
need for educational models that balance exploration with 
structured learning.

The next sections delve into two critical aspects drawn 
from this synthesis: the challenges PDEs present for novice 
designers and the gaps in current educational approaches, 
followed by an examination of the methodological 
limitations in existing studies and recommendations for 
future research.

Challenges of PDE on Novice Designers and Solutions 
for Educational Gaps
Parametric design is recognized as a fundamental 
component of current architectural practice, promoting 
innovation and expanding design alternatives. Despite 
its significance, parametric design is often introduced at 
later stages of architectural education, primarily within 
digital tools and computational design courses (Alalouch, 
2018). This delay arises from the complexity of parametric 
modeling, which requires proficiency in software, scripting, 
and shape grammar. However, Gürel & Şenyapılı Ozcan 
(2023) demonstrate that PDEs can also be effectively 
integrated into the early concept design phase through 
collaboration with traditional hand-sketching methods. 
For instance, Alalouch (2018) introduces parametric 
principles with the "serial of planes" technique to foster 
early parametric thinking. While this technique effectively 
builds foundational understanding, it often results in 
simpler algorithms that lack the complexity needed for 

Table 8. Variables examined in studies

Variables Studies

None  (Dissaux & Jancart, 2022; Lee et al., 2016; 
 Yang et al., 2022; Yu et al., 2012a)
Environment (Aish & Hanna, 2017; Chien & Yeh, 2012; 
 Gürel & Şenyapılı Ozcan, 2023; Lee et al., 
 2013, 2015; Lee & Ostwald, 2019, 2020; 
 Namoun et al., 2019; Öztürk Kösenciĝ & 
 Özbayraktar, 2024; Yu et al., 2013, 2018; 
 Yu & Gero, 2016)
Experience (Alalouch, 2018; Chien & Yeh, 2012; 
 Lee et al., 2013, 2015; Lee & Ostwald, 2019, 
 2020; Namoun et al., 2019)
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advanced design processes. Determining the optimal stage 
to introduce PDEs in architectural education remains an 
important area for further exploration.

Managing cognitive load is one of the most significant 
challenges in parametric design education, particularly 
when PDEs are introduced in the early stages of architectural 
training. This challenge arises from the steep learning curve 
(Aish & Hanna, 2017) associated with parametric modeling 
and the need to balance conceptual design exploration 
with technical skill-building. But integrating the technical 
knowledge required for PDEs into already intensive 
architectural programs is difficult. Workshops have been 
proposed as a practical solution for this problem (Öztürk 
Kösenciğ & Özbayraktar, 2024). By offering intensive, 
focused environments, workshops allow students to engage 
directly with parametric tools in a compressed timeframe. 
While workshops are effective in familiarizing students with 
PDEs, they may not always provide a long-term solution 
to managing cognitive overload or support the gradual 
development of expertise. 

In recent years, integrating advanced technologies such as 
augmented and virtual reality (AR/VR) has been explored 
as a means to enhance parametric design education. For 
example, the pARam tool, which combines parametric 
design with AR, has shown promise in making artifact 
customization more intuitive and accessible for students 
(Stemasov et al., 2024). Similarly, AR/VR technologies 
have been found to improve spatial awareness and design 
communication, fostering a more immersive and engaging 
learning experience (Hafizi, 2024). These technological 
innovations can offer potential solutions for alleviating some 
of the challenges faced in parametric design education.

Another significant challenge in parametric design 
education is black-box thinking, often caused by reliance 
on online tutorials and pre-made scripts (Dissaux & 
Jancart, 2022). While these resources support self-regulated 
learning, they risk creating superficial understanding 
by obscuring the logic behind parametric systems. This 
reliance can hinder creativity and independent exploration. 
Educational models that incorporate the dissection and 
adaptation of tutorial content with expert guidance 
could foster deeper algorithmic understanding and 
reduce dependency on external resources. By making the 
underlying processes transparent, students can develop 
more flexible and adaptive problem-solving skills.

The creativity gap between novice and expert designers is 
another critical concern. Experts perform better in PDEs due 
to their accumulated knowledge and experience, enabling 
them to efficiently generate complex and innovative designs. 
In contrast, novices often encounter unexpected solutions 
(Chien & Yeh, 2012), which, while fostering creativity, may 
limit progress due to gaps in foundational knowledge. This 
highlights the importance of balancing technical skill-

building with exercises that encourage divergent thinking. 
Scaffolded complexity and incomplete recipes (Vazquez, 
2024), where students gradually progress from basic 
tasks to advanced challenges, could support this balance. 
Such strategies provide opportunities for both structured 
learning and open-ended exploration, accommodating the 
needs of learners at different skill levels.

In low-resource educational settings, these challenges 
are magnified by limited access to advanced software, 
hardware, and trained instructors (Atabek, 2019). To 
address these constraints, non-digital exercises such as 
manual shape grammar, physical parametric models, and 
algorithmic thinking through paper-based activities offer 
practical and accessible alternatives (Alalouch, 2018). 
These approaches simulate parametric processes effectively, 
enabling students to develop foundational skills without 
reliance on digital tools. For example, physical model-based 
workshops can introduce essential parametric concepts 
while fostering creativity and adaptability in resource-
constrained environments. Additionally, Gürel & Şenyapılı 
Ozcan (2023) suggests developing AI-assisted scripting to 
simplify the coding process, further easing the transition 
into PDE for novice designers and highlighting this as a 
promising area for future research. 

Addressing the multifaceted challenges of parametric 
design education requires innovative pedagogical strategies 
that balance accessibility, technical proficiency, and creative 
exploration. Workshops, scaffolded learning environments, 
and non-digital approaches each play a role in equipping 
students with the skills and mindset needed to navigate the 
complexities of PDEs. By fostering transparent learning 
processes and supporting learners at different stages, 
educators can prepare the next generation of architects to 
engage confidently and creatively with PDEs.

Limitations of Current Methods and Future Works
The methods employed to investigate cognitive processes 
in PDE vary widely, reflecting the complexity and layered 
nature of design cognition. Surveys (Alalouch, 2018; Yang 
et al., 2022) and interviews (Namoun et al., 2019) are 
commonly used, yet their reliance on self-assessment and 
introspection introduces inherent biases. Participants may 
misinterpret questions, provide socially desirable answers, 
or inaccurately recall their design processes, leading 
to results that may not fully capture actual behaviors. 
Similarly, protocol analysis, while a preferred method 
for real-time cognitive data, is subject to coding biases 
and inconsistencies among evaluators. These limitations 
highlight the need for combining surveys, interviews, and 
protocol analysis to enhance the validity and reliability of 
findings. However, few studies (Dissaux & Jancart, 2022; 
Lee et al., 2013) in this review effectively integrate multiple 
methods, underscoring a gap in broader research practices.
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Protocol analysis remains the most widely adopted 
approach due to its ability to document design cognition 
directly through think-aloud protocols and audio-visual 
recordings. This method provides a granular view of the 
design process, capturing the sequence and flow of cognitive 
actions. Compared to self-reporting methods, protocol 
analysis offers a more objective perspective. However, the 
quality of the results depends heavily on coding accuracy 
and methodology. Additionally, (Shealy et al., 2023) have 
shown that the think-aloud method applied during protocol 
analysis creates additional mental load, thereby reducing 
the time allocated for design.

The absence of standardized coding schemes across studies 
introduces variability, making cross-comparisons difficult. 
Although not observed in the studies reviewed, the use of 
biometric data such as heart rate variability  (Ignacio & 
Shealy, 2023) and EEG (Balters et al., 2023) in cognitive 
research presents an opportunity to improve the reliability 
of protocol analysis by providing physiological indicators. 
Future PDE studies could benefit from incorporating these 
tools to mitigate the risks of subjective interpretation.

A closer examination of protocol models reveals a 
strong reliance on frameworks like FBS and PPC. These 
models are instrumental in capturing design cognition, 
particularly in the iterative workflow characteristic of PDE. 
Despite their strengths, limitations persist. In Yu & Gero’s 
(2016) study, FBS protocol analysis indicated a higher 
frequency of function-to-structure (F→S) transitions in 
PDE compared to GME. However, the study could not 
determine whether the identified functions stemmed from 
pre-learned design patterns or novel rule sets developed 
during the design task. Similarly, Gürel, A., & Şenyapılı 
Ozcan, B. (2023) found increased perceptual actions in 
PDE relative to hand sketching, but the underlying cause 
whether driven by the design environment or individual 
cognitive styles remained ambiguous. Addressing such 
ambiguities requires post-experiment interviews and 
follow-up discussions, as demonstrated by Lee et al. 
(2013) to distinguish between emergent design strategies 
and prior knowledge.

The adaptability of cognitive models is evident when 
combined with supplementary methods such as semantic 
analysis (Lee et al., 2016) and entropy analysis (Lee 
& Ostwald, 2019). These hybrid approaches provide 
a more nuanced understanding of design complexity 
and variability. However, while Lee & Ostwald (2019) 
introduces a framework for quantifying cognitive 
complexity, the dynamic nature of cognitive styles which 
evolve with experience and task variation complicates the 
interpretation of data. The lack of established scales and 
benchmarks further restricts the generalizability of these 
findings, emphasizing the need for developing standardized 
measurement tools in future studies.

Several studies (Lee et al., 2013; Lee et al., 2015; Yang et al., 
2022; Yu et al., 2018) investigate the relationship between 
design patterns and creativity in PDE, yet few address the 
performance of the resulting designs and none address the 
algorithm quality. The small sample sizes in most studies 
limit the scope for statistical analysis, resulting in a heavy 
reliance on descriptive methods. For instance, Yu et al. 
(2018) found no significant difference in creativity through 
mean-split analysis, with 30% variance set as the threshold, 
while Lee et al. (2016) similarly reported no meaningful 
variation in creativity scores. This suggests that design 
cognition alone may not directly correlate with enhanced 
creativity in PDEs. The absence of performance metrics 
raises questions about the practical implications of these 
cognitive models, indicating a need for studies that evaluate 
design output and performance alongside cognitive 
measures.

A broader issue is the inherent limitation of laboratory-
based studies in capturing the macro-cognitive activities and 
unique creative strategies of designers. As Lee & Ostwald 
(2020) notes, controlled environments often exclude 
critical creative processes such as replication, integration, 
and analogical reasoning. Expanding experimental models 
to incorporate computational design principles such as 
combination, transformation, and emergence can help 
bridge this gap. However, achieving this necessitates new 
coding schemes and diverse experimental designs tailored 
specifically to the iterative and generative workflows in 
PDE. 

While many studies compare PDE and GME, the scope of 
comparison remains narrow. As Lee and Ostwald (2019) 
highlights, extending these comparisons to include hand 
sketching (Gürel, A., & Şenyapılı Ozcan, B. (2023)) and 
digital fabrication (Öztürk Kösenciğ & Özbayraktar, 2024) 
could provide a more comprehensive understanding of how 
different environments shape design cognition. Emerging 
technologies like VR and BIM also present unexplored 
opportunities for expanding this research. Additionally, 
despite increasing attention to diversity in design, Gurel & 
Senyapılı Ozcan (2023) notes absence of studies addressing 
gender-based differences in PDE like Alalouch (2018). This 
represents an area that needs further exploration.

Expanding the scope of PDE research through 
interdisciplinary collaboration, incorporating insights 
from cognitive psychology, human-computer interaction, 
and artificial intelligence could lead to more holistic 
frameworks for PDE studies. This approach would not only 
deepen theoretical insights but also enhance the practical 
application of PDE in architecture, industrial design, and 
engineering. Addressing the limitations discussed here will 
be essential for advancing parametric design research and 
fostering more inclusive and adaptable educational models.
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CONCLUSION

This systematic literature review highlights the evolving 
landscape of cognitive research in PDE, identifying critical 
trends and methodological approaches across 18 studies. 
While parametric tools foster iterative and generative 
design processes, the findings reveal gaps in understanding 
how these environments influence cognitive load, creative 
performance, and design behavior across varying levels of 
experience.

The prevalence of protocol analysis as the primary data 
collection method reflects the demand for real-time cognitive 
insights in PDEs. However, the limitations associated with 
self-assessment biases and coding inconsistencies call for 
more diverse methodological frameworks. Integrating 
biometric tools and post-experiment interviews could 
address these challenges by providing objective data to 
complement subjective feedback.

A significant gap lies in the under-explored area of PDE 
education, particularly concerning how novice designers 
develop parametric skills and overcome black-box 
thinking. Although workshops and short-term learning 
models provide valuable introductory exposure, long-term 
strategies that balance technical complexity with conceptual 
exploration remain underdeveloped. Future studies should 
focus on scaffolded learning pathways that enable gradual 
mastery of PDEs while fostering independent problem-
solving.

Additionally, research to date has largely centered on 
conceptual design phases, with limited examination of how 
PDEs operate during later design stages, such as analysis, 
fabrication, and evaluation. Expanding this scope could 
provide a more holistic view of parametric design's role 
throughout the entire architectural workflow.

Moving forward, there is a need to broaden participant 
diversity and consider cultural, demographic, and 
institutional differences in PDE adoption and learning. 
Exploring gender-based variations, low-resource 
educational settings, and alternative design environments, 
such as VR and digital fabrication, can further enrich the 
field.

Ultimately, advancing research in PDE cognition requires 
interdisciplinary collaboration that bridges the fields of 
architecture, cognitive science, AI, and human-computer 
interaction. By addressing the methodological and 
educational gaps identified in this review, future studies can 
drive more inclusive, innovative, and effective applications 
of parametric design across disciplines.
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