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Mimari Tasarım İçin Modüler ve Dinamik Bir Evrimsel Algoritma
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İyi tariflenmiş problem alanlarından planlama ve tasarım gibi kötü-tarifli alanlara doğru geçtiğimizde karşılaştığımız problemlerin karmaşıklığı 
problem çözme yaklaşımında niteliksel değişiklikler dayatır. Bunun sonucu olarak dinamik problem çözme stratejileri hesaplamalı tasarım ça-
lışmaları için bir gereklilik olarak açığa çıkar. Bu çalışma İçiçe Evrimsel Algoritma (IEA) adında yeni bir çoklu-objektifli Evrimsel Algoritmayı (EA) 
dinamik yönlere sahip bir problem çözme aracı olarak sunmaktadır. IEA’nın diğer EA’lardan farkı, kullanılan objektiflerden birinin zindelik iler-
lemesi duraklayana kadar süreci çeşitli açılardan yönlendirmesi ve daha sonra yönlendirme işlevini bir diğer objektife devretmesidir. Bu şekilde 
IEA’nın farklı objektifler için farklı ayar ve operatörler kullanması mümkün olmaktadır. Bu sayede IEA problem tanımını işleyişi boyunca dinamik 
biçimde uyarlayabilmektedir. IEA özel olarak tasarım problemlerinin çizgisel-olmayan, karmaşık karakterine dönük olarak geliştirildiği için bu 
makalede IEA’nın kendine has özelliklerini kötü-tanımlı, çoklu-modlu ve çoklu objektifli bir problem olan Mimari Plan Düzenlemesi Problemi üze-
rinden ve kütüphane binaları özelinde sunuyoruz. İlk olarak, IEA’nın işleyiş karakteristiklerini ve başarımını bir sıralama-tabanlı EA versiyonuyla 
kıyaslayarak yukarıda anlattığımız yönlendirici objektif yaklaşımının sonuçlarını ortaya koyuyoruz. Ardından, işleyiş karakteristiklerini daha 
derinlemesine yorumlamak üzere IEA’yı popüler bir çoklu-objektifli EA olan NSGA2 ile kıyaslıyoruz. Son olarak spesifik tasarım alanlarına ait bil-
giyi işe koşmanın gerekçelerini ve yollarını tartışarak IEA’nın nasıl kullanımlarının olabileceğini ve nasıl daha öte geliştirilebileceğini tartışıyoruz. 
Anahtar sözcükler: Otomatik plan düzenlemesi; hesaplamalı mimarlık; hesaplamalı tasarım; tasarımda evrimsel hesaplamalar; evrimsel tasarım.

ÖZ

As we move away from well-defined problem domains, and get closer to more open-ended domains like planning and design, an increase 
in the complexity of the problems compel the problem-solving behavior to change in a qualitative sense. Consequently, dynamic prob-
lem solving strategies appear as one of the requirements for computational design studies. This paper presents a novel multi-objective 
Evolutionary Algorithm (EA) called the Interleaved EA (IEA) as a problem-solving tool, which incorporates dynamic aspects. It is specific to 
IEA that one of the objectives leads the evolution until its fitness progression stagnates. As such, IEA enables the use of different settings 
and operators for each of its objectives, which would be the same for all objectives in a regular EA. This enables the IEA to dynamically 
adapt its problem setting throughout its progression. We present the specificities of the IEA with an application on a design problem. 
As the IEA has been developed to assist in design problems, it is examined through the “Architectural Layout Design” problem studied 
through library buildings, exemplifying an ill-defined, multi-modal, and multi-objective problem. We compare the functioning of the al-
gorithm with regard to, first, a regular rank-based version, for demonstrating the effect of the leading objective approach; secondly, with 
a popular multi-objective EA (i.e., NSGA2). We discuss how and why IEA can be used and developed further to incorporate domain specific 
understanding for multi-modal and dynamic design problems.
Keywords: Automated plan layout development; computational architecture; computational design; evolutionary computation in design; evolution-
ary design.

ABSTRACT



Introduction and Rationale For the Study
The Two Types of Inherent Complexities in Design
Problems
In contrast to the well-defined problems, the problems 

that the designers tackle often exhibit characteristics that 
are referred to as ill-defined, ill-structured,1 open-ended 
and even as wicked.2 This contrast is important, because, 
as we move away from well-defined domains like chess 
and puzzle-solving, and get close to more open-ended do-
mains like planning and design, an increase in the com-
plexity of the problems compel the problem-solving be-
havior to change in a qualitative sense.3 

In the case of architectural design, the products of a de-
sign process are complex entities, involving systems, sub-
systems, parts, sections, and functions that amount to an 
enormous variety of materials, details, and systems. This 
situation can be referred to as the “inherent complexity” 
of design. 

A second kind of complexity concerns the negotiated 
aspects of design. At any design situation there will al-
ways be competing viewpoints, which have to be settled 
through negotiation. This issue has been among the rea-
sons why design has been characterized as “wicked”.4 This 
type of complexity is related to the essentially undefined 
aspects of design, because it appears within a particular 
situation and it can only be solved by dispute or negotia-
tion. This property of design situations may be referred to 
as the “inherent undefinedness” of design.

As an example of such complex problems, the Architec-
tural Layout Design Problem (ALDP),5 which is one of the 
primary tasks in architectural design, is concerned with 
the topological and geometrical assignment of activities 
to space such that a set of architectural criteria are met 
and some objectives are optimized. In its architectural 
variant, the layout problem is an extremely complicated 
problem, which is in connection with almost all aspects of 
a building’s design. According to Russel and Norvig’s clas-
sification scheme,6 the task environment of a real world 
ALD Problem could be claimed to be partially observable, 
multi-agent, stochastic, sequential, dynamic, continuous, 
and unknown, i.e., the hardest case. 

To reduce this complexity, many psychological and 
spatial aspects of the problem are traditionally omitted 
in –mainly engineering oriented- layout problem defini-

tions, and the problem is mostly handled only in terms of 
efficiency, effective use of spaces, or cost, which is by no 
means a sufficient list for architectural aims. This is one 
of the reasons why, despite more than 40 years of effort, 
artificial architectural layout generation systems have not 
reached competence levels that are comparable to human 
designers’. There is no simple answer to the difficulties of 
ALDP; however, dynamic problem solving strategies ap-
pear as one of the requirements.7 

As a problem-solving technique, Evolutionary Comput-
ing (EC) tries to approach optimal values closer and closer 
through the migration of a species of solution candidates 
within a complex search space. There has been a wide 
range of attempts to utilize EC for design and arts; however, 
most of these studies depend upon fixed problem defini-
tions and do not utilize dynamic strategies. As examples of 
early studies, John Gero’s research group studied a diverse 
array of tasks through EC. They experimented with space 
layout topologies, combination of Shape Grammars with 
evolutionary approaches, and evolving linear plan units as 
design genes within a two-phased hierarchical evolution.8 
Rosenman studied interactive evolution for floor plan gen-
eration9 and Rosenman and Saunders experimented with 
a self-regulatory hierarchical co-evolution model for de-
sign.10 These studies operated within highly constrained, 
simplified, and isolated sub-domains of architecture and 
mostly followed optimization approaches using just a few 
objectives, such as circulation costs calculated through 
pre-given adjacency matrices. 

Likewise, the more developed applications appeared 
within rather well-defined sub-problems of architecture. A 
series of experimentations has been carried out by Caldas, 
Norford, and Rocha,11 which use EC for the aim of integral 
building envelope design and performance optimization. 
Again, with a performance oriented design approach, Tur-
rin, Buelow, and Stouffs developed an application to com-
bine parametric modeling and EC.12 Such studies resulted 
in a proliferation of performance oriented approaches to 
design generation, whose unifying characteristic is to as-
sume a simplified, performance-oriented procedure, which 
render known optimization techniques directly applicable.

In brief, EC has been mostly used through static problem 
definitions, which do not respond well to the essentially 
vague, highly contextual, and consequently, highly dy-
namic manner of design processes.13 Responding to such 
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1 Simon, 1973.
2 Rittel and Webber, 1973.
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13 A broad literature review and an 
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mez, 2015a; 2015b.



characteristics of design situations through EC requires the 
development of design-oriented, dynamic Evolutionary 
Algorithms (EAs). Indeed, a recent proliferation of design-
oriented optimization approaches14 can be interpreted as 
pointing to a practical need for customized methods for 
specific design tasks. In many practical examples, custom-
ized variants and combinations of well-known approaches 
handle a specific task more efficiently. Exemplifying such a 
trend, Janssen15 presents a parallel and distributed EA to 
handle high computational demands, Raphael16 develops 
a novel multi-objective EA called RR-pareto, and in a series 
of papers, Rodrigues, Gaspar, and Gomes17 present a hy-
brid evolutionary technique, which couples Evolutionary 
Strategies with Stochastic Hill Climbing. 

Likewise, this study presents a novel multi-objective 
Evolutionary Algorithm (EA), i.e., the Interleaved EA (IEA). 
The IEA follows the above-mentioned tendency, as an ini-
tial step towards dynamic EAs for design. It has been de-
veloped with respect to an analogy with how a human de-
signer works, who divides her design problems into smaller 
parts, i.e., focuses temporarily on a limited set of aspects 
to make complex problems more manageable.18 In her dy-
namic decomposition strategy, the designer improves on 
her temporary problems through a pairwise integration 
strategy and moves forward to improve and reintegrate 
another set of aspects.19 In an analogous manner, the IEA 
temporarily focuses on modules of objectives, although 
the integration is holistic, rather than pairwise. The key to 
holistic integration is to conserve the quality of the overall 
level and not to degrade any aspect too drastically while 
improving another, which is ensured by a multi-objective 
population selection stage.

In IEA, the ability to separate the operators and settings 
for each of the objectives gives the algorithm a modular 
structure. When it is suspected that the separate objec-
tives may require different mutation and selection op-
erators and could respond to different evolutionary set-
tings (mutation and crossover numbers) and parameters 
(roulette parameters, mutation ratios, step sizes, etc.) the 
separation of operators, parameters, and settings may be 
beneficial. This separation also enables the user to adjust 
the objectives in terms of preferences through mutation 
and crossover settings.

Related Approaches and the IEA
 IEA is a variant of the “criterion-based” methods for 

multi-objective optimization, which switch between the 
objectives during selection phases.20 In criterion-based 

methods, at each selection stage, potentially different 
objectives decide which members of the population will 
be selected. Sometimes a probability is assigned to each 
objective, which determines whether the objective will 
be the sorting criterion in the next selection step. In the 
“Vector-Evaluated Genetic Algorithm” (VEGA) approach, 
selections are carried out according to each objective in 
turn. Offspring are then mixed, regardless of which objec-
tive dictated their selection.21 In the “lexicographic” vari-
ant, the objectives are assigned priorities before optimiza-
tion and the objective with the highest priority is used first 
when comparing individuals in a single-objective manner.22

In IEA, however, one of the objectives leads the evo-
lution until its fitness progression stagnates, in the sense 
that the settings and fitness values of this objective is used 
for some of the evolutionary decisions. We call this the 
leading objective approach (Fig. 1). Note that a minimum 
number of generations is assigned to each new leading 
objective in the beginning of its lead (in practice, 8 to 32 
generations), whether it stagnates or not. Thus, the IEA 
is differentiated from the earlier approaches with a dedi-
cated period for the domination of each objective, whose 
duration is dependent on the feedback from the progres-
sion of the fitness values. This modification enables a set 
of dynamic methods, as will be discussed below. 

In IEA, the new population is selected with a rank-based 
selection operator, considering all of the objectives simulta-
neously, which makes it essentially a multi-objective algo-
rithm. However, variation selections and operations can be 
carried out according to the leading objective. In this way, 
separate mutation and selection operators and settings can 
be specified for each of the objectives within an overall task, 
which would be the same for all objectives in a regular multi-
objective EA. Thus the specificities of the Interleaved EA are: 

1. Letting each objective govern the process until its fit-
ness improvement stagnates (whenever this occurs, 
the lead is given to another objective).

2. Enabling the use of separate operators, parameters, 
and settings for each objective.

In addition to its inherent adaptivity, the leading ob-
jective approach brings forth a potential to dynamically 
decompose a process through action packages that cor-
respond to the process objectives. The rationale for this 
improvement will be discussed below.

Experimental setup for the Architectural Layout 
Design Problem
ALDP Representation
Because our ultimate aim is to tackle such complex 
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problems in practice, instead of the generic problem types 
that are usually used for benchmarking in the EA litera-
ture, the IEA is examined in terms of the Architectural Lay-
out Design Problem (ALDP).

Within the limits of this paper,23 we define our exper-
imental layout task as adequately populating a series of 
plan borders with a fixed set of arbitrary polygonal Design 
Units (DUs), whose forms, functions, and dimensions are 
determined and fixed at the outset (Fig. 2). The represen-
tation is flexible to enable overlapping between DUs and 
outer borders. Each DU has both an inner and an outer 
boundary. The inner boundary is used for measuring and 
penalizing overlap situations, while the outer boundary 
may be used for detecting and rewarding neighborhoods. 
In the initiation phase, fixed DUs are initiated within their 
pre-specified position, the remaining DUs are randomly 
placed within the bounding box of a given floor outline.

Evolutionary Specifications
The genotype of a candidate layout comprises a single 

list of fixed and movable DUs. The sequence of the DUs 
in this list is the same for all candidates. For each DU, DU 
type, center coordinates, inner and outer polygon coordi-
nates, bounding box, and related geometric information 
are stored.

An N-point Crossover operator is used as default. For 
variation selections, the options are Uniform and Tour-
nament (size 2) operators, while a Rank-based selection 

operator is used for new population selection. In Rank-
based selection, all objectives are taken into account and 
the minimum rank number of an individual determines its 
selection probability as follows: For each objective, each 
candidate has a separate rank amongst all candidates. The 
individuals are listed according to their minimum-ranks. 
Starting from the highest available minimum-rank, a de-
sired number of individuals are selected. If a series of indi-
viduals occupy the same minimum-rank level, rank values 
of each individual are summed up, and the individuals are 
ordered in terms of the resulting values. This approach 
tends to favor the candidates, which are reasonably fine 
on all objectives simultaneously, while eliminating candi-
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Figure 1. Schematic illustration of an Interleaved EA process.

23 Test cases involve simplifications and do not correspond to a real world us-
age. This paper presents only the aspects that are relevant to the presented 
set of tests; a small and efficient set is chosen from available operators. For 
other aspects, details, and implementations of ALDP and IEA, please see 
Sönmez, 2015a; 2015b.

Figure 2. Basics of ALD Problem representation.
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dates, which occupy low ranks on an objective, regardless 
of their being high rank individuals on others.

Three different mutation operators are used, i.e., 

“Swap”, “Nudge”, and “Teleport” (Fig. 3). Swap mutation 
exchanges the center locations of two DUs. Nudge muta-
tion translates a DU in X or Y direction. Teleport mutation 
carries the center of a DU to an empty space within layout 
boundaries. Each objective has a mutation roulette, which 
includes different probabilities for each mutation operator. 
During the process, for each mutation candidate, a muta-
tion operator is probabilistically drawn from this roulette. 
The operators, in turn, function stochastically through a 
set of parameters (nudge step σ and swap rates), which 
are also different for each objective. 

Evaluation Procedures For the Objectives
Four objectives have been used for the application, 

i.e., “Overlap”, “Trivial Hole”, “Neighbor”, and “Neighbor 
Cell” (Fig. 4). The aim of the Overlap objective is to keep 
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Figure 3. Mutation operators.
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the DUs within plan limits while preventing DU overlap. 
The procedure calculates a weighted sum of the penalties 
given to layout border violation and to inner DU boundary 
overlaps. First, all DUs are checked for whether their inner 
boundaries violate layout border. If a DU is partially violat-
ing the border, a penalty is given according to the ratio of 
the violating part. If a DU is totally out of the boundaries, 
a penalty is given, proportional to the square of the DUs 

distance from the border. Secondly, all DUs are checked for 
overlapping other DUs (inner boundary). If overlap occurs, 
the overlapping area is divided by the smaller DU’s area, 
and a penalty is given accordingly. Finally, total layout bor-
der penalties and DU overlap penalties are combined into 
a single fitness value by a weighted sum.

The Trivial Hole objective measures the ratio of the oc-
cupied area within plan borders, as maximizing this value 
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amounts to the minimizing of DU overlap and layout bor-
der violation; and implicitly, minimizing the empty area 
within borders.

The Neighbor objective tries to maximize the similar-
ity of a candidate’s neighborhood distribution to a target 
layout’s. As such, it is thought as an alternative to adja-
cency matrices, which are usually static and are prepared 
by hand. This method enables the dynamic definition of a 
similar matrix through example buildings. A target is pre-
pared as follows: The DUs of example layouts are vector-
ized with a color scheme. The direction that a DU is neigh-
boring is also given with this diagram. Target preparation 
amounts to the collecting of the frequencies of neighbor-
hoods between DU types within a neighborhood matrix. 
The rows and columns of the matrix are symmetrical and 
their sequence is fixed for all applications. The frequencies 
of neighborhood types are normalized by the maximum 
frequency. This way, the matrix becomes a neighborhood 
pattern, which can be compared with other examples. For 
candidate evaluation, neighborhoods of DUs are extracted 
from legitimate overlaps, i.e., overlapping of outer bound-
aries while inner boundaries remain non-violated. Outer 
DU boundary collision with the direction lines are used 
for the detection of direction neighborhoods. When the 
neighbors for each DU type are determined, this informa-
tion is again converted into a normalized neighborhood 
pattern matrix. For fitness calculation, the absolute values 
of the differences of corresponding target and candidate 
half-matrix cells are summed up. The resulting value is 
negated to treat this error value as positive fitness.

The Neighbor Cell objective is similar in its aims to the 
Neighbor objective; however, the detection method for 
the spatial adjacencies is different. A fixed sized square 
query cell is placed over each DU’s center. Types of all the 
DUs that collide with a DU’s query cell are added to the 
neighbor list of that DU. For candidate evaluation, a tar-
get’s matrix, which is similarly prepared, is compared with 
the candidate’s. As with the Neighbor objective, Neighbor 
Cell objective calculates and negates the difference be-
tween two matrix patterns, while adjacencies to directions 
are not taken into account. It should be noted that, sepa-
rate targets may be used for each objective.

Evolutionary Processes For IEA and NSGA2
The basic IEA process is as follows: In the first step, the 

candidate layouts are initiated, the default objective is set 
as the leading objective, and all candidates are evaluated 
for all objectives. The candidates for crossover and muta-
tion are selected using the leading objective’s selection 
operators and parameters. Then the variation operations 
are carried out. After a pre-specified number of genera-
tions (t), which determines the minimum number of gen-
erations for each leading objective, stagnation checks are 

carried out. A slope-based method is used for stagnation 
control: The fitness progression graph of an objective is 
fitted with a line through linear regression for N last gen-
erations. The slope of this line shows the recent progres-
sion of the process for that objective and the stagnation 
threshold denotes a minimum slope. If the leading objec-
tive’s fitness improvement is found stagnated for the last 
t generations, one of the objectives is randomly drawn 
from the list of objectives as the next leading objective. 
This method may also be used as a stopping criterion (if 
all objectives stagnate for a period of generations, stop 
evolution). However, in the following test cases, stopping 
criterion is a fixed number of generated offspring.

A simple approach is used to preserve diversity:24 If the 
fitness value combination of a new offspring already exists 
in the population, it is not inserted into the new popula-
tion. Although the population number is kept fixed for the 
test cases, a simple elitism scheme adds the best candi-
date for each of the objectives to the next generation, if 
not already selected. This procedure can increase the pop-
ulation number, at most for the number of objectives.

In the following test cases, the IEA will be compared 
to the “Non-dominated Sorting Genetic Algorithm 2” 
(NSGA2).25 In NSGA2, first, chromosomes are sorted and 
put into fronts according to Pareto dominance. Within a 
Pareto front, the chromosomes are ranked with regard to 
the distance between the solutions. Solutions that are far 
away from other solutions are given a higher preference 
for selection. This is done in order to obtain a diverse so-
lution set. Therefore, the two essential differences of the 
two EAs are, (1) while the IEA has a simple diversity strat-
egy, the functioning of the NSGA2 essentially depends on 
the preservation of diversity; (2) while NSGA2 searches for 
Pareto non-dominance, IEA uses a rank-based population 
selection strategy, not explicitly maintaining Pareto non-
dominance. 

Additionally, a regular rank-based version of IEA is gen-
erated by simply using a single parameter and operator 
combination for all objectives. The algorithm is the same 
with IEA in other respects. This version is used for assess-
ing the effect of the leading objective approach.

Because IEA and its rank-based version use the above-
mentioned elitism scheme, the length of the evolution-
ary processes for the three EAs are measured, fixed, and 
equalized over the total number of generated candidates, 
instead of the generation number. This is also a better es-
timate for the required amount of computation, as each of 
the candidates has to be evaluated once, which is the most 
time consuming aspect of our problem.
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25 The implementation is based on 
Deb et al. 2002.



Test Cases
Three cases of ALD Problems that are simplified ver-

sions of real buildings (Table 1) with differing degrees of 

complexity have been chosen for the test series (Figs. 6-8). 
Each case is determined by a candidate scheme, which 
comprises layout borders, fixed DUs and a set of movable 
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Table 1. Library buildings used in the preparation of targets (For all sources, last access, October, 2015)

Case Name of Library Architect More Info

1. Actur Library, 2008 Carroquino Finner http://www.archdaily.com/23128/actur-library-carroquino-finner-arquitectos/ 
  Arquitectos.
2. Central Library, Marsino Arquitectos http://www.archdaily.com/2742/central-library-universidad-catolica-
 Universidad Catolica Asociados del-norte-marsino-arquitectos-asociados
 del Norte, 2002  
3. Santa Monica Public Moore Ruble Yudell http://www.moorerubleyudell.com/projects/santa-monica-public-library
 Library, 2006 Architects

Figure 6. Test case 1.

Figure 7. Test case 2.
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(16 movable + 2 fixed DUs)
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(32 movable + 2 fixed DUs)
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DUs. This scheme is used for the initiation of all candi-
date layouts. The aim is to arrange the given movable DUs 
within each layout for generating patching drafts. The tar-
get for each case is the original layout that is used in the 
preparation of the candidate schemes. For each test case, 
targets and candidates have the same list of DUs and lay-
out borders. This is not meaningful for real world usage; 
yet, it is informative for testing aims. Note that, except for 
the simplest and most constrained cases, attaining of the 
real target is not expected.

Parameter Finding Process
For a proper comparison between the IEA, its rank-

based version, and NSGA2, the EAs have to be run with 
their best parameter combinations. However, in each of 
the EAs, a high number of parameters can have an effect 
on the quality of the results, and it is not practical to find 
the best parameter combinations in a single trial set, as 
there would be an exponential number of combinations. 
Therefore, a combined ‘Design-of-Experiments’ (DoE) and 
‘Racing’ procedure was devised. 

As a first step, the number of varied parameters was re-
duced. Secondly, a small set of discrete values was deter-
mined for each parameter (see Table 2). Thirdly, through 
a series of consecutive racing processes, initially the most 
important parameters were found and fixed (selection op-
erators, mutation and crossover ratios), and then, gradu-
ally, roulette and mutation parameters were progressively 
fine-tuned. Because the process is multi-objective, a pare-
to-racing procedure was implemented as follows:26

- Generate a set of combinations, each of which de-
fines an EA instance,

- Run each of these EA instances for n turns (5 or 10 
turns),

- After n turns, at each new turn, 
o Compare each combination with each of the oth-

ers as follows: 
• For each combination,
• For each of the objectives,
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26 Based on, Yuan and Gallagher, 2007 and Zhang, Georgiopoulos, and Anag-
nostopoulos, 2013.

Figure 8. Test case 3.
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Figure 9. Test Case 1, distribution of 100x5 high-ranking results (IEA, NSGA2, Rank-based).
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o Get the distribution of the previous fitness values,
o Compare the fitness value distributions of the two 

combinations using Welch’s t test,27

o If the two combinations are significantly different 
(i.e., p < %5 or %10):
• Find the fitness value averages of each combi-

nation.
• Increase the counter of the worse combination 

by 1.
• After the two combinations are compared for all 

objectives, if one of the combinations is found 
to be worse on all objectives, it is dominated by 
the other. Therefore, it is left out of the popula-
tion for the next turn. 

In this way, the amount of necessary computation is 
decreased at each turn and the process resembles a race, 
which continues until either only one candidate remains or 

a pre-specified number of turns is reached (50 or 100). If 
there is a set of remaining combinations, the best individ-
ual is selected amongst these, using the same rank-based 
selection operator used for IEA. The value combination of 
this instance is fixed for the next level of parameter find-
ing.

The best parameter/value combinations are found for 
each of the EA types, using the simplest test case (Fig. 6). 
Table 2 presents the parameters and found value com-
binations for each of the EAs. The varied parameters are 
crossover rate, mutation rate, roulette rates (probabilities) 
for each of the mutation operators and σ value for nudge 
mutation. For the Interleaved EA, these parameters are 
different for each of the objectives. As can be observed, 
different best value combinations have been found for dif-
ferent objectives in IEA, and also amongst the different EA 
types.

Tests and Results 
A set of 100 trials were run for each of the EAs and for 

each of the test cases, which results in a matrix of 9 trial 
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Table 2. Parameters and values for test cases

 Rank-based NSGA2  IEA

Population 1000 1000  1000
Max. num. of cands. ~300000 ~300000  ~300000
Crossover selection uniform uniform  uniform
Crossover ratio 1 1  0,02
Mutation selection uniform uniform  uniform
Mutation ratio 0,7 0,7 Mutation ratios 
   Trivial Hole 0,01
   Overlap 0,02
   Neighbor 0,001
   Neighbor Cell 0,001
Roulette parameters     
Nudge rate 3 2 Overlap Nudge rate 3
Teleport rate 2 1 Overlap Teleport rate 1
Swap rate 2 1 Overlap Swap rate 1
Nudge step (σ) 2 2 Overlap Nudge step (σ) 0,8

   Trivial Hole Nudge rate 3
   Trivial Hole Teleport rate 1
   Trivial Hole Swap rate 1
   Trivial Hole Nudge step (σ) 0,8

   Neighbor Nudge rate 2
   Neighbor Teleport rate 1
   Neighbor Swap rate 3
   Neighbor Nudge step (σ) 1,5

   Neighbor Cell Nudge rate 3
   Neighbor Cell Teleport rate 1
   Neighbor Cell Swap rate 2
   Neighbor Cell Nudge step (σ) 2

 27 Python Scipy’s “Welch’s t test” implementation is used for the trials.



sets. The two main points to explicate with these trials is 
(1) to show that the core innovation (i.e., the leading ob-
jective principle) does not bring a disadvantage (hence the 
comparison with the regular rank-based case), and (2) to 
show that the overall performance is comparable to the 
state-of-the-art methods, which is the motivation behind 
the comparison with NSGA2. 

Two different types of visualizations are prepared for 
the inspection of the results. A set of graphics compare 
mean fitness progression graphs for each EA type (Figs. 10, 
12, 14) where minimum, maximum, and average fitness 
values are given. Each of these lines represents the mean 
of 100 trials. For a design problem, the results have to be 
fine on all objectives simultaneously, as a product that is 

considerably bad for one objective is practically useless, 
even if it is optimal for another objective. Thus, in the 
process graphs, the progression of the average fitness val-
ues of populations has a practical significance. However, 
because of its diversity preservation mechanism, NSGA2’s 
average fitness values tend to appear lower than the other 
EAs. Therefore, box plots are presented as a second as-
sessment method (Figs. 9, 11, 13), showing the fitness dis-
tribution of the 500 best results for each EA (5 best results 
from each of the 100 trials are selected using the same 
rank-based selection operator with the IEA). It should be 
noted that, for practical aims, this appears as a better as-
sessment method, because these best results are what 
would be used in practice.
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Figure 10. Test Case 1, Process graphs for IEA, NSGA2, and Rank-based version.
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Figure 11. Test Case 2, distribution of 100x5 high-ranking results (IEA, NSGA2, Rank-based).
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Comparing the IEA to the rank-based version, for the 
simplest case (Figs. 9, 10) the final fitness levels do not 
deviate considerably; however, as the problem gets more 
complicated (i.e., case 3, Figs. 13, 14) the differences be-
tween the two approaches become more salient, in both 
attained fitness levels and the speed in arriving high lev-
els of fitness, where IEA appears advantageous. Faster 
convergence can be interpreted to express the adaptive 
character of the leading objective principle. As architec-
tural fitness calculations can become time consuming, and 
considering that these applications will be used on regu-
lar desktop computers, faster fitness improvement has a 
practical advantage. Thus using dedicated parameter sets 
for each of the objectives can generate a practical advan-
tage over the traditional ‘same parameter set’ approach.

Comparing the functioning of the IEA with NSGA2, while 
NSGA2 consistently attains better maximum fitness levels 
(Figs. 10, 12, 14), from a practical perspective, this does 
not guarantee the usability of the proposals evolved by 
the NSGA2, in the sense that these are reasonably fine on 
all objectives. This is indicated by the distributions of the 
best usable proposals (Figs. 9, 11, 13). In practical terms, 
the IEA appears to yield more usable proposals for three 
of the objectives (i.e., Overlap, Trivial Hole, and Neighbor), 
while NSGA2 has dominance on the Neighbor Cell objec-
tive (Figs. 9, 11, 13). 

The Neighbor and Neighbor Cell objectives measure 
for a similar characteristic, yet with different methods. It 
appears interesting to compare these two procedures to 
shed more light on the character of the IEA. The Neighbor 
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Figure 12. Test Case 2; Process graphs for IEA, NSGA2, and Rank-based.
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Figure 13. Test Case 3, distribution of 100x5 high-ranking results (IEA, NSGA2, Rank-based).
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Cell objective has a less discriminating and more permis-
sive measurement of neighborhood, as its detection area 
is much larger than the Neighbor objective, which accepts 
only the area between outer and inner borders of a DU 
(Fig. 4). Likewise, the two other objectives, for which the 
IEA exhibits practical advantage, apply fine-grained mea-
surements for their fitness calculations and they are rather 
discriminating. Compared to the other three objectives, 
the Neighbor Cell objective is less discriminating and al-
lows more variety, which is consistent with the overall phi-
losophy of NSGA2, which depends on the maintaining of 
variety. On the other hand, the rank-based population se-
lection mechanism of the IEA favors convergence towards 
a smaller search region, eliminating outliers, in order to 
attain reasonable products, rather than variety.

Discussion
The above trials should be considered as providing in-

sight for the IEA’s specific functioning. The trials had sev-
eral shortcomings that have to be indicated. The number 
and types of the objectives, the set of varied parameters, 
and the possible values for these parameters were re-
duced and this brought forward coarse-grained test cases. 
As a result, our DoE + Racing approach could only produce 
an approximation of the best value combinations. Addi-
tionally, the values were fine-tuned only for the simplest 
Actur case and used also for the more complex cases. 

Besides the high computational load of the fitness 
evaluations, another reason in the above shortcomings 
was the combinatorial nature of the IEA, whose number 
of parameters increases linearly with the number of ob-
jectives. To alleviate this abundance of parameters, adap-
tive parameter tuning approaches have to be integrated 
to the IEA. However, as the parameter number of an EA 
increases, the effectivity of adaptivity schemes decreases. 
Although this indicates a crucial weakness of the IEA, in 
practice, the algorithm has been used in several cases sat-
isfactorily with rather coarse values.28 This is due to the 
undemanding task settings, which aimed at the develop-
ment of crude draft designs, in the absence of human-level 
sensitive evaluation methods that could make high-quality 
proposal development a practical aim. This is also the rea-
son for prioritizing speed and reasonable results.

In any case, it is not the practical performance gain that 
is the reason behind the IEA, but rather the future devel-
opment potentials of the approach. The ability to sepa-
rate the operators and settings for each of the objectives 
gives the IEA a modular structure. This modularity offers a 
method for the utilization of domain-specific knowledge 
for each sub-task, i.e., objective. What is aimed in such 
modularity is an evolutionary process, which would ana-
lyze the situation at each important phase, and then revise 
its operator set according to its evaluations. This would 
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render the development process a dynamic and intelligent 
one as required. In the above test cases, the transition 
between objectives in IEA depends only on the feedback 
from fitness progressions. In principle, other analyses 
could also be used for feedback (e.g. on the details and 
statistics of the states and performances of the evolved 
populations). Note that this is related to the problem defi-
nition and available analysis tools, and not with the IEA it-
self, which already offers the potential for dynamism. Thus 
the IEA indicates where new intelligent technologies could 
be inserted; in other words, it is essentially open to further 
development through additional methods to determine 
when to follow which objective and with which operators, 
in which case the IEA would demonstrate its full potential 
as a truly dynamic EA.
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