
521CİLT VOL. 13 - SAYI NO. 4

Department of Architecture, İstanbul Technical University Faculty of Architecture, İstanbul, Turkey.

Article arrival date: October 27, 2017 - Accepted for publication: September 14, 2018

Correspondence: Nizam Onur SÖNMEZ. e-mail: onursonmezn@yahoo.com

© 2018 Yıldız Teknik Üniversitesi Mimarlık Fakültesi - © 2018 Yıldız Technical University, Faculty of Architecture

ARTICLE

MEGARON 2018;13(4):521-535

DOI: 10.5505/MEGARON.2018.37929

A Modular and Dynamic Evolutionary Algorithm
For Architectural Design

Mimari Tasarım İçin Modüler ve Dinamik Bir Evrimsel Algoritma

Nizam Onur SÖNMEZ

İyi tariflenmiş problem alanlarından planlama ve tasarım gibi kötü-tarifli alanlara doğru geçtiğimizde karşılaştığımız problemlerin karmaşıklığı
problem çözme yaklaşımında niteliksel değişiklikler dayatır. Bunun sonucu olarak dinamik problem çözme stratejileri hesaplamalı tasarım ça-
lışmaları için bir gereklilik olarak açığa çıkar. Bu çalışma İçiçe Evrimsel Algoritma (IEA) adında yeni bir çoklu-objektifli Evrimsel Algoritmayı (EA)
dinamik yönlere sahip bir problem çözme aracı olarak sunmaktadır. IEA’nın diğer EA’lardan farkı, kullanılan objektiflerden birinin zindelik iler-
lemesi duraklayana kadar süreci çeşitli açılardan yönlendirmesi ve daha sonra yönlendirme işlevini bir diğer objektife devretmesidir. Bu şekilde
IEA’nın farklı objektifler için farklı ayar ve operatörler kullanması mümkün olmaktadır. Bu sayede IEA problem tanımını işleyişi boyunca dinamik
biçimde uyarlayabilmektedir. IEA özel olarak tasarım problemlerinin çizgisel-olmayan, karmaşık karakterine dönük olarak geliştirildiği için bu
makalede IEA’nın kendine has özelliklerini kötü-tanımlı, çoklu-modlu ve çoklu objektifli bir problem olan Mimari Plan Düzenlemesi Problemi üze-
rinden ve kütüphane binaları özelinde sunuyoruz. İlk olarak, IEA’nın işleyiş karakteristiklerini ve başarımını bir sıralama-tabanlı EA versiyonuyla
kıyaslayarak yukarıda anlattığımız yönlendirici objektif yaklaşımının sonuçlarını ortaya koyuyoruz. Ardından, işleyiş karakteristiklerini daha
derinlemesine yorumlamak üzere IEA’yı popüler bir çoklu-objektifli EA olan NSGA2 ile kıyaslıyoruz. Son olarak spesifik tasarım alanlarına ait bil-
giyi işe koşmanın gerekçelerini ve yollarını tartışarak IEA’nın nasıl kullanımlarının olabileceğini ve nasıl daha öte geliştirilebileceğini tartışıyoruz.
Anahtar sözcükler: Otomatik plan düzenlemesi; hesaplamalı mimarlık; hesaplamalı tasarım; tasarımda evrimsel hesaplamalar; evrimsel tasarım.

ÖZ

As we move away from well-defined problem domains, and get closer to more open-ended domains like planning and design, an increase
in the complexity of the problems compel the problem-solving behavior to change in a qualitative sense. Consequently, dynamic prob-
lem solving strategies appear as one of the requirements for computational design studies. This paper presents a novel multi-objective
Evolutionary Algorithm (EA) called the Interleaved EA (IEA) as a problem-solving tool, which incorporates dynamic aspects. It is specific to
IEA that one of the objectives leads the evolution until its fitness progression stagnates. As such, IEA enables the use of different settings
and operators for each of its objectives, which would be the same for all objectives in a regular EA. This enables the IEA to dynamically
adapt its problem setting throughout its progression. We present the specificities of the IEA with an application on a design problem.
As the IEA has been developed to assist in design problems, it is examined through the “Architectural Layout Design” problem studied
through library buildings, exemplifying an ill-defined, multi-modal, and multi-objective problem. We compare the functioning of the al-
gorithm with regard to, first, a regular rank-based version, for demonstrating the effect of the leading objective approach; secondly, with
a popular multi-objective EA (i.e., NSGA2). We discuss how and why IEA can be used and developed further to incorporate domain specific
understanding for multi-modal and dynamic design problems.
Keywords: Automated plan layout development; computational architecture; computational design; evolutionary computation in design; evolution-
ary design.

ABSTRACT

Introduction and Rationale For the Study
The Two Types of Inherent Complexities in Design
Problems
In contrast to the well-defined problems, the problems

that the designers tackle often exhibit characteristics that
are referred to as ill-defined, ill-structured,1 open-ended
and even as wicked.2 This contrast is important, because,
as we move away from well-defined domains like chess
and puzzle-solving, and get close to more open-ended do-
mains like planning and design, an increase in the com-
plexity of the problems compel the problem-solving be-
havior to change in a qualitative sense.3

In the case of architectural design, the products of a de-
sign process are complex entities, involving systems, sub-
systems, parts, sections, and functions that amount to an
enormous variety of materials, details, and systems. This
situation can be referred to as the “inherent complexity”
of design.

A second kind of complexity concerns the negotiated
aspects of design. At any design situation there will al-
ways be competing viewpoints, which have to be settled
through negotiation. This issue has been among the rea-
sons why design has been characterized as “wicked”.4 This
type of complexity is related to the essentially undefined
aspects of design, because it appears within a particular
situation and it can only be solved by dispute or negotia-
tion. This property of design situations may be referred to
as the “inherent undefinedness” of design.

As an example of such complex problems, the Architec-
tural Layout Design Problem (ALDP),5 which is one of the
primary tasks in architectural design, is concerned with
the topological and geometrical assignment of activities
to space such that a set of architectural criteria are met
and some objectives are optimized. In its architectural
variant, the layout problem is an extremely complicated
problem, which is in connection with almost all aspects of
a building’s design. According to Russel and Norvig’s clas-
sification scheme,6 the task environment of a real world
ALD Problem could be claimed to be partially observable,
multi-agent, stochastic, sequential, dynamic, continuous,
and unknown, i.e., the hardest case.

To reduce this complexity, many psychological and
spatial aspects of the problem are traditionally omitted
in –mainly engineering oriented- layout problem defini-

tions, and the problem is mostly handled only in terms of
efficiency, effective use of spaces, or cost, which is by no
means a sufficient list for architectural aims. This is one
of the reasons why, despite more than 40 years of effort,
artificial architectural layout generation systems have not
reached competence levels that are comparable to human
designers’. There is no simple answer to the difficulties of
ALDP; however, dynamic problem solving strategies ap-
pear as one of the requirements.7

As a problem-solving technique, Evolutionary Comput-
ing (EC) tries to approach optimal values closer and closer
through the migration of a species of solution candidates
within a complex search space. There has been a wide
range of attempts to utilize EC for design and arts; however,
most of these studies depend upon fixed problem defini-
tions and do not utilize dynamic strategies. As examples of
early studies, John Gero’s research group studied a diverse
array of tasks through EC. They experimented with space
layout topologies, combination of Shape Grammars with
evolutionary approaches, and evolving linear plan units as
design genes within a two-phased hierarchical evolution.8
Rosenman studied interactive evolution for floor plan gen-
eration9 and Rosenman and Saunders experimented with
a self-regulatory hierarchical co-evolution model for de-
sign.10 These studies operated within highly constrained,
simplified, and isolated sub-domains of architecture and
mostly followed optimization approaches using just a few
objectives, such as circulation costs calculated through
pre-given adjacency matrices.

Likewise, the more developed applications appeared
within rather well-defined sub-problems of architecture. A
series of experimentations has been carried out by Caldas,
Norford, and Rocha,11 which use EC for the aim of integral
building envelope design and performance optimization.
Again, with a performance oriented design approach, Tur-
rin, Buelow, and Stouffs developed an application to com-
bine parametric modeling and EC.12 Such studies resulted
in a proliferation of performance oriented approaches to
design generation, whose unifying characteristic is to as-
sume a simplified, performance-oriented procedure, which
render known optimization techniques directly applicable.

In brief, EC has been mostly used through static problem
definitions, which do not respond well to the essentially
vague, highly contextual, and consequently, highly dy-
namic manner of design processes.13 Responding to such

522 CİLT VOL. 13 - SAYI NO. 4

1 Simon, 1973.
2 Rittel and Webber, 1973.
3 Lawson, 2004, p. 19.
4 Rittel and Webber, 1973; Buchanan,

1992.
5 The abbreviations used in this pa-

per are, Evolutionary Computing
(EC), Evolutionary Algorithm (EA),

7 Sönmez and Erdem, 2014.
8 Gero, Louis, and Kundu, 1994;

Gero and Schnier, 1995; Damski
and Gero, 1997; Gero and Kazakov,
1998; Jo and Gero, 1998.

9 Rosenman, 1997.
10 Rosenman and Saunders, 2003.
11 Caldas and Rocha 2001; Caldas and

Vector-Evaluated Genetic Algo-
rithm (VEGA), Interleaved Evolu-
tionary Algorithm (IEA), Non-dom-
inated Sorting Genetic Algorithm 2
(NSGA2), Architectural Layout De-
sign Problem (ALDP), Design Unit
(DU), and Design-of-Experiments
(DoE).

6 Russell and Norvig, 2010, p.41-4.

Norford, 2002, 2003; Caldas, 2003,
2005, 2006, 2008.

12 Turrin et al., 2011; Turrin, von
Buelow, and Stouffs, 2011.

13 A broad literature review and an
in-depth discussion can be found in
Sönmez and Erdem, 2014 and Sön-
mez, 2015a; 2015b.

characteristics of design situations through EC requires the
development of design-oriented, dynamic Evolutionary
Algorithms (EAs). Indeed, a recent proliferation of design-
oriented optimization approaches14 can be interpreted as
pointing to a practical need for customized methods for
specific design tasks. In many practical examples, custom-
ized variants and combinations of well-known approaches
handle a specific task more efficiently. Exemplifying such a
trend, Janssen15 presents a parallel and distributed EA to
handle high computational demands, Raphael16 develops
a novel multi-objective EA called RR-pareto, and in a series
of papers, Rodrigues, Gaspar, and Gomes17 present a hy-
brid evolutionary technique, which couples Evolutionary
Strategies with Stochastic Hill Climbing.

Likewise, this study presents a novel multi-objective
Evolutionary Algorithm (EA), i.e., the Interleaved EA (IEA).
The IEA follows the above-mentioned tendency, as an ini-
tial step towards dynamic EAs for design. It has been de-
veloped with respect to an analogy with how a human de-
signer works, who divides her design problems into smaller
parts, i.e., focuses temporarily on a limited set of aspects
to make complex problems more manageable.18 In her dy-
namic decomposition strategy, the designer improves on
her temporary problems through a pairwise integration
strategy and moves forward to improve and reintegrate
another set of aspects.19 In an analogous manner, the IEA
temporarily focuses on modules of objectives, although
the integration is holistic, rather than pairwise. The key to
holistic integration is to conserve the quality of the overall
level and not to degrade any aspect too drastically while
improving another, which is ensured by a multi-objective
population selection stage.

In IEA, the ability to separate the operators and settings
for each of the objectives gives the algorithm a modular
structure. When it is suspected that the separate objec-
tives may require different mutation and selection op-
erators and could respond to different evolutionary set-
tings (mutation and crossover numbers) and parameters
(roulette parameters, mutation ratios, step sizes, etc.) the
separation of operators, parameters, and settings may be
beneficial. This separation also enables the user to adjust
the objectives in terms of preferences through mutation
and crossover settings.

Related Approaches and the IEA
 IEA is a variant of the “criterion-based” methods for

multi-objective optimization, which switch between the
objectives during selection phases.20 In criterion-based

methods, at each selection stage, potentially different
objectives decide which members of the population will
be selected. Sometimes a probability is assigned to each
objective, which determines whether the objective will
be the sorting criterion in the next selection step. In the
“Vector-Evaluated Genetic Algorithm” (VEGA) approach,
selections are carried out according to each objective in
turn. Offspring are then mixed, regardless of which objec-
tive dictated their selection.21 In the “lexicographic” vari-
ant, the objectives are assigned priorities before optimiza-
tion and the objective with the highest priority is used first
when comparing individuals in a single-objective manner.22

In IEA, however, one of the objectives leads the evo-
lution until its fitness progression stagnates, in the sense
that the settings and fitness values of this objective is used
for some of the evolutionary decisions. We call this the
leading objective approach (Fig. 1). Note that a minimum
number of generations is assigned to each new leading
objective in the beginning of its lead (in practice, 8 to 32
generations), whether it stagnates or not. Thus, the IEA
is differentiated from the earlier approaches with a dedi-
cated period for the domination of each objective, whose
duration is dependent on the feedback from the progres-
sion of the fitness values. This modification enables a set
of dynamic methods, as will be discussed below.

In IEA, the new population is selected with a rank-based
selection operator, considering all of the objectives simulta-
neously, which makes it essentially a multi-objective algo-
rithm. However, variation selections and operations can be
carried out according to the leading objective. In this way,
separate mutation and selection operators and settings can
be specified for each of the objectives within an overall task,
which would be the same for all objectives in a regular multi-
objective EA. Thus the specificities of the Interleaved EA are:

1. Letting each objective govern the process until its fit-
ness improvement stagnates (whenever this occurs,
the lead is given to another objective).

2. Enabling the use of separate operators, parameters,
and settings for each objective.

In addition to its inherent adaptivity, the leading ob-
jective approach brings forth a potential to dynamically
decompose a process through action packages that cor-
respond to the process objectives. The rationale for this
improvement will be discussed below.

Experimental setup for the Architectural Layout
Design Problem
ALDP Representation
Because our ultimate aim is to tackle such complex

A Modular and Dynamic Evolutionary Algorithm For Architectural Design

523CİLT VOL. 13 - SAYI NO. 4

14 Machairas, Tsangrassoulis, and
Axarli, 2014.

15 Janssen, 2009.
16 Raphael, 2014.
17 Rodrigues, Gaspar, and Gomes,

21 Back, Fogel, and Michalewicz,
2000, p. 30-1.

2013a; 2013b; 2013c.
18 Akin, 2001; 2009.
19 Akin, 2001.
20 Zitzler, Laumanns, and Bleuler,

2004.
22 Back, Fogel, and Michalewicz,

2000, p. 29-30.

problems in practice, instead of the generic problem types
that are usually used for benchmarking in the EA litera-
ture, the IEA is examined in terms of the Architectural Lay-
out Design Problem (ALDP).

Within the limits of this paper,23 we define our exper-
imental layout task as adequately populating a series of
plan borders with a fixed set of arbitrary polygonal Design
Units (DUs), whose forms, functions, and dimensions are
determined and fixed at the outset (Fig. 2). The represen-
tation is flexible to enable overlapping between DUs and
outer borders. Each DU has both an inner and an outer
boundary. The inner boundary is used for measuring and
penalizing overlap situations, while the outer boundary
may be used for detecting and rewarding neighborhoods.
In the initiation phase, fixed DUs are initiated within their
pre-specified position, the remaining DUs are randomly
placed within the bounding box of a given floor outline.

Evolutionary Specifications
The genotype of a candidate layout comprises a single

list of fixed and movable DUs. The sequence of the DUs
in this list is the same for all candidates. For each DU, DU
type, center coordinates, inner and outer polygon coordi-
nates, bounding box, and related geometric information
are stored.

An N-point Crossover operator is used as default. For
variation selections, the options are Uniform and Tour-
nament (size 2) operators, while a Rank-based selection

operator is used for new population selection. In Rank-
based selection, all objectives are taken into account and
the minimum rank number of an individual determines its
selection probability as follows: For each objective, each
candidate has a separate rank amongst all candidates. The
individuals are listed according to their minimum-ranks.
Starting from the highest available minimum-rank, a de-
sired number of individuals are selected. If a series of indi-
viduals occupy the same minimum-rank level, rank values
of each individual are summed up, and the individuals are
ordered in terms of the resulting values. This approach
tends to favor the candidates, which are reasonably fine
on all objectives simultaneously, while eliminating candi-

524 CİLT VOL. 13 - SAYI NO. 4

Initiation

Operator
set 1

Operator
set 2

Parameter
set 1

Parameter
set 2

Objective 1

O
bj

ec
tiv

e
2

O
bj

ec
tiv

e
2

O
bj

ec
tiv

e
1

O
bj

ec
tiv

e
1

O
bj

ec
tiv

e
n

O
bj

ec
tiv

e
3

O
bj

ec
tiv

e
4

1st generation
Generation x Generation y

M
utation nr.

M
utation nr.

M
utation

Roulette

Roulette

Param
eters

Param
eters

M
utation

Selection

Selection

Crossover nr.

Crossover nr.

out in

Final generation

Figure 1. Schematic illustration of an Interleaved EA process.

23 Test cases involve simplifications and do not correspond to a real world us-
age. This paper presents only the aspects that are relevant to the presented
set of tests; a small and efficient set is chosen from available operators. For
other aspects, details, and implementations of ALDP and IEA, please see
Sönmez, 2015a; 2015b.

Figure 2. Basics of ALD Problem representation.

A DU is an arbitrary
pollygonal shape

Regular Convex Concave

Inner border

Outer border Layout border

DU1: office
room DU3: activity

hallDU2: study
room

Layouts are
populated by DUs

Each DU represents
a functional layout
unit

dates, which occupy low ranks on an objective, regardless
of their being high rank individuals on others.

Three different mutation operators are used, i.e.,

“Swap”, “Nudge”, and “Teleport” (Fig. 3). Swap mutation
exchanges the center locations of two DUs. Nudge muta-
tion translates a DU in X or Y direction. Teleport mutation
carries the center of a DU to an empty space within layout
boundaries. Each objective has a mutation roulette, which
includes different probabilities for each mutation operator.
During the process, for each mutation candidate, a muta-
tion operator is probabilistically drawn from this roulette.
The operators, in turn, function stochastically through a
set of parameters (nudge step σ and swap rates), which
are also different for each objective.

Evaluation Procedures For the Objectives
Four objectives have been used for the application,

i.e., “Overlap”, “Trivial Hole”, “Neighbor”, and “Neighbor
Cell” (Fig. 4). The aim of the Overlap objective is to keep

525CİLT VOL. 13 - SAYI NO. 4

A Modular and Dynamic Evolutionary Algorithm For Architectural Design

Figure 3. Mutation operators.

Layout border

Nudge
(move) Swap

locations

Teleport to
empty area

Figure 4. Calculations for the four objectives.

If inner borders
overlap, give
penalty

If DU passes
over the border,
give penalty

If DU is outside
borders, give
penalty

Maximize the area
covered by inner
DU polygons

Test DU type
collision with
query square
[if outer borders
overlap, DUs are
cell neighbors]

If inner
borders
overlap, DUs
are not
neighbors

If only outer borders
overlap, DUs are
neighbors

Neighbor with
south facade

1. Find neighbors of
each DU

1. Find cell neighbors
of each DU

2. Generate a DU types
Neighborhood Maxrix

2. Generate a DU types
Neighbor Cell Maxrix

Neighbor list of DU1: DU2, DU3
Neighbor list of DU2: DU1, DU3
Neighbor list of DU3: DU1, DU2
Neighbor list of DU4: None
Neighbor list of DU5: DU3
Neighbor list of DU6: South

Cell neighbor list of DU1:
DU2, DU3, DU6
Cell neighbor list of DU5:
DU2, DU3, DU4

3. Compare it with a target matrix

ty
pe

 1

ty
pe

 1

ty
pe

 1

ty
pe

 1

type 1 type 1

type 1type 1

type 2 type 2

type 2type 2

type 3 type 3

type 3type 3

type 4 type 4

type 4type 4

type 5 type 5

type 5type 5

type n type n

type ntype n

x x x x x

ty
pe

 2

ty
pe

 2

ty
pe

 2

ty
pe

 2

ty
pe

 3

ty
pe

 3

ty
pe

 3

ty
pe

 3

ty
pe

 4

ty
pe

 4

ty
pe

 4

ty
pe

 4

ty
pe

 5

ty
pe

 5

ty
pe

 5

ty
pe

 5

ty
pe

 n

ty
pe

 n

ty
pe

 n

ty
pe

 n

If inner
borders
overlap, give
penalty

a) Overlap

c) Neighbor

b) Trivial Hole

d) Neighbor Cell

x x x x x

the DUs within plan limits while preventing DU overlap.
The procedure calculates a weighted sum of the penalties
given to layout border violation and to inner DU boundary
overlaps. First, all DUs are checked for whether their inner
boundaries violate layout border. If a DU is partially violat-
ing the border, a penalty is given according to the ratio of
the violating part. If a DU is totally out of the boundaries,
a penalty is given, proportional to the square of the DUs

distance from the border. Secondly, all DUs are checked for
overlapping other DUs (inner boundary). If overlap occurs,
the overlapping area is divided by the smaller DU’s area,
and a penalty is given accordingly. Finally, total layout bor-
der penalties and DU overlap penalties are combined into
a single fitness value by a weighted sum.

The Trivial Hole objective measures the ratio of the oc-
cupied area within plan borders, as maximizing this value

526 CİLT VOL. 13 - SAYI NO. 4

Figure 5. Interleaved EA, evolutionary process.

amounts to the minimizing of DU overlap and layout bor-
der violation; and implicitly, minimizing the empty area
within borders.

The Neighbor objective tries to maximize the similar-
ity of a candidate’s neighborhood distribution to a target
layout’s. As such, it is thought as an alternative to adja-
cency matrices, which are usually static and are prepared
by hand. This method enables the dynamic definition of a
similar matrix through example buildings. A target is pre-
pared as follows: The DUs of example layouts are vector-
ized with a color scheme. The direction that a DU is neigh-
boring is also given with this diagram. Target preparation
amounts to the collecting of the frequencies of neighbor-
hoods between DU types within a neighborhood matrix.
The rows and columns of the matrix are symmetrical and
their sequence is fixed for all applications. The frequencies
of neighborhood types are normalized by the maximum
frequency. This way, the matrix becomes a neighborhood
pattern, which can be compared with other examples. For
candidate evaluation, neighborhoods of DUs are extracted
from legitimate overlaps, i.e., overlapping of outer bound-
aries while inner boundaries remain non-violated. Outer
DU boundary collision with the direction lines are used
for the detection of direction neighborhoods. When the
neighbors for each DU type are determined, this informa-
tion is again converted into a normalized neighborhood
pattern matrix. For fitness calculation, the absolute values
of the differences of corresponding target and candidate
half-matrix cells are summed up. The resulting value is
negated to treat this error value as positive fitness.

The Neighbor Cell objective is similar in its aims to the
Neighbor objective; however, the detection method for
the spatial adjacencies is different. A fixed sized square
query cell is placed over each DU’s center. Types of all the
DUs that collide with a DU’s query cell are added to the
neighbor list of that DU. For candidate evaluation, a tar-
get’s matrix, which is similarly prepared, is compared with
the candidate’s. As with the Neighbor objective, Neighbor
Cell objective calculates and negates the difference be-
tween two matrix patterns, while adjacencies to directions
are not taken into account. It should be noted that, sepa-
rate targets may be used for each objective.

Evolutionary Processes For IEA and NSGA2
The basic IEA process is as follows: In the first step, the

candidate layouts are initiated, the default objective is set
as the leading objective, and all candidates are evaluated
for all objectives. The candidates for crossover and muta-
tion are selected using the leading objective’s selection
operators and parameters. Then the variation operations
are carried out. After a pre-specified number of genera-
tions (t), which determines the minimum number of gen-
erations for each leading objective, stagnation checks are

carried out. A slope-based method is used for stagnation
control: The fitness progression graph of an objective is
fitted with a line through linear regression for N last gen-
erations. The slope of this line shows the recent progres-
sion of the process for that objective and the stagnation
threshold denotes a minimum slope. If the leading objec-
tive’s fitness improvement is found stagnated for the last
t generations, one of the objectives is randomly drawn
from the list of objectives as the next leading objective.
This method may also be used as a stopping criterion (if
all objectives stagnate for a period of generations, stop
evolution). However, in the following test cases, stopping
criterion is a fixed number of generated offspring.

A simple approach is used to preserve diversity:24 If the
fitness value combination of a new offspring already exists
in the population, it is not inserted into the new popula-
tion. Although the population number is kept fixed for the
test cases, a simple elitism scheme adds the best candi-
date for each of the objectives to the next generation, if
not already selected. This procedure can increase the pop-
ulation number, at most for the number of objectives.

In the following test cases, the IEA will be compared
to the “Non-dominated Sorting Genetic Algorithm 2”
(NSGA2).25 In NSGA2, first, chromosomes are sorted and
put into fronts according to Pareto dominance. Within a
Pareto front, the chromosomes are ranked with regard to
the distance between the solutions. Solutions that are far
away from other solutions are given a higher preference
for selection. This is done in order to obtain a diverse so-
lution set. Therefore, the two essential differences of the
two EAs are, (1) while the IEA has a simple diversity strat-
egy, the functioning of the NSGA2 essentially depends on
the preservation of diversity; (2) while NSGA2 searches for
Pareto non-dominance, IEA uses a rank-based population
selection strategy, not explicitly maintaining Pareto non-
dominance.

Additionally, a regular rank-based version of IEA is gen-
erated by simply using a single parameter and operator
combination for all objectives. The algorithm is the same
with IEA in other respects. This version is used for assess-
ing the effect of the leading objective approach.

Because IEA and its rank-based version use the above-
mentioned elitism scheme, the length of the evolution-
ary processes for the three EAs are measured, fixed, and
equalized over the total number of generated candidates,
instead of the generation number. This is also a better es-
timate for the required amount of computation, as each of
the candidates has to be evaluated once, which is the most
time consuming aspect of our problem.

527CİLT VOL. 13 - SAYI NO. 4

A Modular and Dynamic Evolutionary Algorithm For Architectural Design

24 From, Michalewicz and Schmidt,
2007.

25 The implementation is based on
Deb et al. 2002.

Test Cases
Three cases of ALD Problems that are simplified ver-

sions of real buildings (Table 1) with differing degrees of

complexity have been chosen for the test series (Figs. 6-8).
Each case is determined by a candidate scheme, which
comprises layout borders, fixed DUs and a set of movable

528 CİLT VOL. 13 - SAYI NO. 4

Table 1. Library buildings used in the preparation of targets (For all sources, last access, October, 2015)

Case Name of Library Architect More Info

1. Actur Library, 2008 Carroquino Finner http://www.archdaily.com/23128/actur-library-carroquino-finner-arquitectos/
 Arquitectos.
2. Central Library, Marsino Arquitectos http://www.archdaily.com/2742/central-library-universidad-catolica-
 Universidad Catolica Asociados del-norte-marsino-arquitectos-asociados
 del Norte, 2002
3. Santa Monica Public Moore Ruble Yudell http://www.moorerubleyudell.com/projects/santa-monica-public-library
 Library, 2006 Architects

Figure 6. Test case 1.

Figure 7. Test case 2.

a) Target layout
(16 movable + 2 fixed DUs)

a) Target layout
(32 movable + 2 fixed DUs)

b) Candidate borders,
directions, and DUs

b) Candidate borders,
directions, and DUs

c) Example results
from the test series

c) Example results
from the test series

Movable DUs

Movable DUs

Fixed DUs

Fixed DUs

Direction lines

Direction lines

2m
 5

m

2m
 5

m

10
m

10
m

DUs. This scheme is used for the initiation of all candi-
date layouts. The aim is to arrange the given movable DUs
within each layout for generating patching drafts. The tar-
get for each case is the original layout that is used in the
preparation of the candidate schemes. For each test case,
targets and candidates have the same list of DUs and lay-
out borders. This is not meaningful for real world usage;
yet, it is informative for testing aims. Note that, except for
the simplest and most constrained cases, attaining of the
real target is not expected.

Parameter Finding Process
For a proper comparison between the IEA, its rank-

based version, and NSGA2, the EAs have to be run with
their best parameter combinations. However, in each of
the EAs, a high number of parameters can have an effect
on the quality of the results, and it is not practical to find
the best parameter combinations in a single trial set, as
there would be an exponential number of combinations.
Therefore, a combined ‘Design-of-Experiments’ (DoE) and
‘Racing’ procedure was devised.

As a first step, the number of varied parameters was re-
duced. Secondly, a small set of discrete values was deter-
mined for each parameter (see Table 2). Thirdly, through
a series of consecutive racing processes, initially the most
important parameters were found and fixed (selection op-
erators, mutation and crossover ratios), and then, gradu-
ally, roulette and mutation parameters were progressively
fine-tuned. Because the process is multi-objective, a pare-
to-racing procedure was implemented as follows:26

- Generate a set of combinations, each of which de-
fines an EA instance,

- Run each of these EA instances for n turns (5 or 10
turns),

- After n turns, at each new turn,
o Compare each combination with each of the oth-

ers as follows:
• For each combination,
• For each of the objectives,

529CİLT VOL. 13 - SAYI NO. 4

A Modular and Dynamic Evolutionary Algorithm For Architectural Design

26 Based on, Yuan and Gallagher, 2007 and Zhang, Georgiopoulos, and Anag-
nostopoulos, 2013.

Figure 8. Test case 3.

Movable DUs
Fixed DUs
Direction lines

a) Target layout
(89 movable + 5 fixed DUs)

b) Candidate borders,
directions, and DUs

c) Example results
from the test series2m

 5
m

 1
0m

20
m

50
m

Figure 9. Test Case 1, distribution of 100x5 high-ranking results (IEA, NSGA2, Rank-based).

a) Overlap b) Trivial Hole c) Neighbor d) Neighbor Cell

-10 82 -350 -40

-50

-60

-70

-80

-90

-100

-400

-450

-500

-550

-600

-650

80

78

76

74

72

70

68

66

64

-20

-30

-40

-50

-60

-70

-80

Fi
tn

es
s

Fi
tn

es
s

Fi
tn

es
s

Fi
tn

es
s

IEA IEA IEA IEANSGA2 NSGA2 NSGA2 NSGA2rank-based rank-based rank-based rank-based

-22.016 -23.068

-36.919

78.705 78.273

-519.800 -518.512

-55.646

-69.854
-72.873

-522.183

71.904

o Get the distribution of the previous fitness values,
o Compare the fitness value distributions of the two

combinations using Welch’s t test,27

o If the two combinations are significantly different
(i.e., p < %5 or %10):
• Find the fitness value averages of each combi-

nation.
• Increase the counter of the worse combination

by 1.
• After the two combinations are compared for all

objectives, if one of the combinations is found
to be worse on all objectives, it is dominated by
the other. Therefore, it is left out of the popula-
tion for the next turn.

In this way, the amount of necessary computation is
decreased at each turn and the process resembles a race,
which continues until either only one candidate remains or

a pre-specified number of turns is reached (50 or 100). If
there is a set of remaining combinations, the best individ-
ual is selected amongst these, using the same rank-based
selection operator used for IEA. The value combination of
this instance is fixed for the next level of parameter find-
ing.

The best parameter/value combinations are found for
each of the EA types, using the simplest test case (Fig. 6).
Table 2 presents the parameters and found value com-
binations for each of the EAs. The varied parameters are
crossover rate, mutation rate, roulette rates (probabilities)
for each of the mutation operators and σ value for nudge
mutation. For the Interleaved EA, these parameters are
different for each of the objectives. As can be observed,
different best value combinations have been found for dif-
ferent objectives in IEA, and also amongst the different EA
types.

Tests and Results
A set of 100 trials were run for each of the EAs and for

each of the test cases, which results in a matrix of 9 trial

530 CİLT VOL. 13 - SAYI NO. 4

Table 2. Parameters and values for test cases

 Rank-based NSGA2 IEA

Population 1000 1000 1000
Max. num. of cands. ~300000 ~300000 ~300000
Crossover selection uniform uniform uniform
Crossover ratio 1 1 0,02
Mutation selection uniform uniform uniform
Mutation ratio 0,7 0,7 Mutation ratios
 Trivial Hole 0,01
 Overlap 0,02
 Neighbor 0,001
 Neighbor Cell 0,001
Roulette parameters
Nudge rate 3 2 Overlap Nudge rate 3
Teleport rate 2 1 Overlap Teleport rate 1
Swap rate 2 1 Overlap Swap rate 1
Nudge step (σ) 2 2 Overlap Nudge step (σ) 0,8

 Trivial Hole Nudge rate 3
 Trivial Hole Teleport rate 1
 Trivial Hole Swap rate 1
 Trivial Hole Nudge step (σ) 0,8

 Neighbor Nudge rate 2
 Neighbor Teleport rate 1
 Neighbor Swap rate 3
 Neighbor Nudge step (σ) 1,5

 Neighbor Cell Nudge rate 3
 Neighbor Cell Teleport rate 1
 Neighbor Cell Swap rate 2
 Neighbor Cell Nudge step (σ) 2

 27 Python Scipy’s “Welch’s t test” implementation is used for the trials.

sets. The two main points to explicate with these trials is
(1) to show that the core innovation (i.e., the leading ob-
jective principle) does not bring a disadvantage (hence the
comparison with the regular rank-based case), and (2) to
show that the overall performance is comparable to the
state-of-the-art methods, which is the motivation behind
the comparison with NSGA2.

Two different types of visualizations are prepared for
the inspection of the results. A set of graphics compare
mean fitness progression graphs for each EA type (Figs. 10,
12, 14) where minimum, maximum, and average fitness
values are given. Each of these lines represents the mean
of 100 trials. For a design problem, the results have to be
fine on all objectives simultaneously, as a product that is

considerably bad for one objective is practically useless,
even if it is optimal for another objective. Thus, in the
process graphs, the progression of the average fitness val-
ues of populations has a practical significance. However,
because of its diversity preservation mechanism, NSGA2’s
average fitness values tend to appear lower than the other
EAs. Therefore, box plots are presented as a second as-
sessment method (Figs. 9, 11, 13), showing the fitness dis-
tribution of the 500 best results for each EA (5 best results
from each of the 100 trials are selected using the same
rank-based selection operator with the IEA). It should be
noted that, for practical aims, this appears as a better as-
sessment method, because these best results are what
would be used in practice.

531CİLT VOL. 13 - SAYI NO. 4

A Modular and Dynamic Evolutionary Algorithm For Architectural Design

Fi
tn

es
s

Fi
tn

es
s

Fi
tn

es
s

Fi
tn

es
s

Data points

Data points

Data points

Data points

a) Overlap

c) Neighbor

b) Trivial Hole

d) Neighbor Cell

IEA max

Rank-based average
Rank-based min
Rank-based max
NSGA2 average
NSGA2 min
NSGA2 max
IEA average
IEA min

-10

-20

-30

-300

-400

-500

-600

-700

-800

-900

-1000

-1100
0 20 40 60 80 100 0

-160

-140

-120

-100

-80

-60

-40

-20

20 40 60 80 100

-40

-50

-60

-70

-80

-90
0 20 40 60 80 100 100806040200

30

40

50

60

70

80

90

Figure 10. Test Case 1, Process graphs for IEA, NSGA2, and Rank-based version.

a) Overlap b) Trivial Hole c) Neighbor d) Neighbor Cell

Figure 11. Test Case 2, distribution of 100x5 high-ranking results (IEA, NSGA2, Rank-based).

-22 82 -180 -28

-30

-32

-34

-36

-38

-40

-42

-190

-200

-210

-220

-230

-240

80

78

76

74

72

70

Fi
tn

es
s

Fi
tn

es
s

Fi
tn

es
s

-24

-26

-28

-30

-32

-34
IEA IEA IEA IEANSGA2 NSGA2 NSGA2 NSGA2rank-based rank-based rank-based rank-based

-24.993
-25.960

-29.136 74.757

78.665

77.764

-205.870

-205.868

-214.275

-32.843

-37.105 -37.201

Comparing the IEA to the rank-based version, for the
simplest case (Figs. 9, 10) the final fitness levels do not
deviate considerably; however, as the problem gets more
complicated (i.e., case 3, Figs. 13, 14) the differences be-
tween the two approaches become more salient, in both
attained fitness levels and the speed in arriving high lev-
els of fitness, where IEA appears advantageous. Faster
convergence can be interpreted to express the adaptive
character of the leading objective principle. As architec-
tural fitness calculations can become time consuming, and
considering that these applications will be used on regu-
lar desktop computers, faster fitness improvement has a
practical advantage. Thus using dedicated parameter sets
for each of the objectives can generate a practical advan-
tage over the traditional ‘same parameter set’ approach.

Comparing the functioning of the IEA with NSGA2, while
NSGA2 consistently attains better maximum fitness levels
(Figs. 10, 12, 14), from a practical perspective, this does
not guarantee the usability of the proposals evolved by
the NSGA2, in the sense that these are reasonably fine on
all objectives. This is indicated by the distributions of the
best usable proposals (Figs. 9, 11, 13). In practical terms,
the IEA appears to yield more usable proposals for three
of the objectives (i.e., Overlap, Trivial Hole, and Neighbor),
while NSGA2 has dominance on the Neighbor Cell objec-
tive (Figs. 9, 11, 13).

The Neighbor and Neighbor Cell objectives measure
for a similar characteristic, yet with different methods. It
appears interesting to compare these two procedures to
shed more light on the character of the IEA. The Neighbor

532 CİLT VOL. 13 - SAYI NO. 4

Data points

Data points

Data points

Data points

c) Neighbor d) Neighbor Cell

100100

100 100

1008080

80 80

806060

60 60

604040

40 40

402020

20 20

2000

0 0

0
-80

-150 -20

-30

-40

-50

-60

-70

-80

-200

-250

-300

-350

-400

-450

-500

-70

-60

-50

-40

-30

-20 85

80

75

65

60

55

50

45

40

70

Fi
tn

es
s

Fi
tn

es
s

Fi
tn

es
s

Fi
tn

es
s

a) Overlap b) Trivial Hole

IEA max

Rank-based average
Rank-based min
Rank-based max
NSGA2 average
NSGA2 min
NSGA2 max
IEA average
IEA min

Figure 12. Test Case 2; Process graphs for IEA, NSGA2, and Rank-based.

a) Overlap b) Trivial Hole c) Neighbor d) Neighbor Cell

Figure 13. Test Case 3, distribution of 100x5 high-ranking results (IEA, NSGA2, Rank-based).

-24 81 -45 -30

-35

-40

-45

-50

-55

-50

-55

-60

-65

-70

-75

80

79

78

77

76

75

74

73

72

-25

-26

-27

-28

-29

-30

-31

-32
IEA IEA IEA IEANSGA2 NSGA2 NSGA2 NSGA2rank-based rank-based rank-based rank-based

Fi
tn

es
s

Fi
tn

es
s

Fi
tn

es
s

Fi
tn

es
s-27.149

-28.975
-28.408 75.775

77.991

76.594

-56.058
-57.970

-61.932

-38.105

-42.566 -43.071

Cell objective has a less discriminating and more permis-
sive measurement of neighborhood, as its detection area
is much larger than the Neighbor objective, which accepts
only the area between outer and inner borders of a DU
(Fig. 4). Likewise, the two other objectives, for which the
IEA exhibits practical advantage, apply fine-grained mea-
surements for their fitness calculations and they are rather
discriminating. Compared to the other three objectives,
the Neighbor Cell objective is less discriminating and al-
lows more variety, which is consistent with the overall phi-
losophy of NSGA2, which depends on the maintaining of
variety. On the other hand, the rank-based population se-
lection mechanism of the IEA favors convergence towards
a smaller search region, eliminating outliers, in order to
attain reasonable products, rather than variety.

Discussion
The above trials should be considered as providing in-

sight for the IEA’s specific functioning. The trials had sev-
eral shortcomings that have to be indicated. The number
and types of the objectives, the set of varied parameters,
and the possible values for these parameters were re-
duced and this brought forward coarse-grained test cases.
As a result, our DoE + Racing approach could only produce
an approximation of the best value combinations. Addi-
tionally, the values were fine-tuned only for the simplest
Actur case and used also for the more complex cases.

Besides the high computational load of the fitness
evaluations, another reason in the above shortcomings
was the combinatorial nature of the IEA, whose number
of parameters increases linearly with the number of ob-
jectives. To alleviate this abundance of parameters, adap-
tive parameter tuning approaches have to be integrated
to the IEA. However, as the parameter number of an EA
increases, the effectivity of adaptivity schemes decreases.
Although this indicates a crucial weakness of the IEA, in
practice, the algorithm has been used in several cases sat-
isfactorily with rather coarse values.28 This is due to the
undemanding task settings, which aimed at the develop-
ment of crude draft designs, in the absence of human-level
sensitive evaluation methods that could make high-quality
proposal development a practical aim. This is also the rea-
son for prioritizing speed and reasonable results.

In any case, it is not the practical performance gain that
is the reason behind the IEA, but rather the future devel-
opment potentials of the approach. The ability to sepa-
rate the operators and settings for each of the objectives
gives the IEA a modular structure. This modularity offers a
method for the utilization of domain-specific knowledge
for each sub-task, i.e., objective. What is aimed in such
modularity is an evolutionary process, which would ana-
lyze the situation at each important phase, and then revise
its operator set according to its evaluations. This would

533CİLT VOL. 13 - SAYI NO. 4

A Modular and Dynamic Evolutionary Algorithm For Architectural Design

-25 80

75

70

65

60

55

50

45

-30

-35

-40

-40 -30

-40

-50

-60

-70

-80

-90

-60

-80

-100

-120

-140

-160

-45

-50

-55

-60

-65

-70
0

0 0

020

20 20

2040

40 40

4060

60 60

6080

80 80

80100

100 100

100

Data points

Data points

Data points

Data points

a) Overlap b) Trivial Hole

Fi
tn

es
s

Fi
tn

es
s

c) Neighbor d) Neighbor Cell

IEA max

Rank-based average
Rank-based min
Rank-based max
NSGA2 average
NSGA2 min
NSGA2 max
IEA average
IEA min

Figure 14. Test Case 3, Process graphs for IEA, NSGA2, and Rank-based.

28 Sönmez, 2015a.

render the development process a dynamic and intelligent
one as required. In the above test cases, the transition
between objectives in IEA depends only on the feedback
from fitness progressions. In principle, other analyses
could also be used for feedback (e.g. on the details and
statistics of the states and performances of the evolved
populations). Note that this is related to the problem defi-
nition and available analysis tools, and not with the IEA it-
self, which already offers the potential for dynamism. Thus
the IEA indicates where new intelligent technologies could
be inserted; in other words, it is essentially open to further
development through additional methods to determine
when to follow which objective and with which operators,
in which case the IEA would demonstrate its full potential
as a truly dynamic EA.

Acknowledgements
The initial stage of this research was supported by

TUBITAK (The Scientific and Technical Research Council
of Turkey) and Istanbul Technical University Scientific Re-
search and Development Support Program.

References
Akin, Ö. (2001) “Variants in Design Cognition”, in Eastman, C.,

Newstetter, W., and McCracken, M. (eds.), Design Know-
ing and Learning: Cognition in Design Education, 978-
0-08-043868-9, Elsevier, http://doi.org/10.1016/B978-
008043868-9/50006-1.

Akın, Ö. (2009) “Variants and Invariants of Design Cognition”, in
McDonnell, J. and Lloyd, P. (Eds), About Designing: Analysing
Design Meetings, CRC Press, pp. 171-192.

Back, T., Fogel, D.B., and Michalewicz, Z. (Eds.) (2000) Evolution-
ary Computation 2: Advanced Algorithms and Operators, IOP
Publishing Ltd, Bristol and Philadelphia.

Buchanan, R. (1992) “Wicked problems in design thinking”, De-
sign Issues, Vol. 8, No. 2, pp. 5-21.

Caldas, L.G. (2003) “Shape generation using pareto genetic algo-
rithms”, CAADRIA 2003.

Caldas, L.G. (2005) “Three-dimensional shape generation of low-
energy architecture solutions using Pareto GA’s”, Proceedings
of ECAADE’05, Lisbon, September 21-24, 2005, pp. 647-654.

Caldas, L.G. (2006) “GENE_ARCH: An evolution-based generative
design system for sustainable architecture”, I.F.C. Smith (Ed.),
EG-ICE 2006, LNAI 4200, pp. 109 – 118, 2006.

Caldas, L.G. (2008) “Generation of energy-efficient architecture
solutions applying GENE_ARCH: An evolution-based genera-
tive design system”, Advanced Engineering Informatics, Vol-
ume 22, Issue 1 (January 2008).

Caldas, L.G. and Norford, L.K. (2002) “A design optimization tool
based on a genetic algorithm”, Automation in Construction,
11 (2002) 173 – 184.

Caldas, L.G. and Norford, L.K. (2003) “Genetic Algorithms for Op-
timization of Building Envelopes and the Design and Control
of HVAC systems”, Journal of Solar Energy Engineering, Au-
gust 2003, Vol. 125.

Caldas, L.G. and Rocha, J. (2001) “A generative design system ap-
plied to Siza’s school of architecture at Oporto”, In J.S. Gero,

S. Chase and M. Rosenman (Eds) CAADRIA 2001, Key Centre
of Design Computing and Cognition, University of Sydney,
2001, pp. 253-264.

Damski, J.C. and Gero, J.S. (1997) “An evolutionary approach to
generating constraint-based space layout topologies”, In R.
Junge (Ed.), CAADFutures 1997, Kluwer, Dordrecht. pp. 855-
864.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002) “A fast
and elitist multiobjective genetic algorithm: NSGA-II”, IEEE
Transactions on Evolutionary Computation, 6(2), pp. 182–
197.

Gero, J.S., Louis S., and Kundu, S. (1994) “Evolutionary learn-
ing of novel grammars for design improvement”, AI EDAM,
8(2):83-94.

Gero, J.S. and Schnier, T. (1995) “Evolving representations of
design cases and their use in creative design”, Third Inter-
national Conference on Computational Models of Creative
Design.

Gero, J.S. and Kazakov, V.A. (1998) “Evolving design genes in
space layout planning problems”, Artificial Intelligence in
Engineering, 12 (1998) 163-176.

Janssen, P. H. (2009) “An evolutionary system for design explo-
ration”, in Proceedings of the International Conference on
Computer Aided Architectural Design Futures, Montréal,
Canada17th-19th June, pp. 260–272.

Lawson, B. (2004) What Designers Know, Elsevier / Architectural
Press, Amsterdam.

Machairas, V., Tsangrassoulis, A., & Axarli, K. (2014) “Algorithms
for optimization of building design: A review”, Renewable
and Sustainable Energy Reviews, 31, pp. 101–112, http://doi.
org/10.1016/j.rser.2013.11.036

Michalewicz, Z. and Schmidt, M. (2007) “Parameter Control in
Practice”, in Lobo, F.J., Lima, C.F., and Michalewicz, Z. (Eds.),
Parameter Setting in Evolutionary Algorithms, Series: Studies
in Computational Intelligence, Vol. 54, XII, Springer-Verlag,
Berlin, Heidelberg, 2007, pp. 277-294.

Raphael, B. (2014) “Multi-Criteria Decision Making for the De-
sign of Building Facade”, in Computing in Civil and Building
Engineering, ASCE, pp. 1650–1658.

Rittel, H. W. J. and Webber, M. M. (1973) “Dilemmas in a General
Theory of Planning”, Policy Sciences, 4, pp. 155-169.

Rodrigues, E., Gaspar, A.R., and Gomes, Á. (2013a) “An approach
to the multi-level space allocation problem in architecture us-
ing a hybrid evolutionary technique”, Automation in Construc-
tion, 35, pp. 482–498, doi:10.1016/j.autcon.2013.06.005

Rodrigues, E., Gaspar, A.R., and Gomes, Á., (2013b) “An evo-
lutionary strategy enhanced with a local search technique
for the space allocation problem in architecture, Part 1:
Methodology”, Computer-Aided Design, 45, pp. 887–897,
doi:10.1016/j.cad.2013.01.001

Rodrigues, E., Gaspar, A.R., and Gomes, Á. (2013c) “An evolu-
tionary strategy enhanced with a local search technique for
the space allocation problem in architecture, Part 2: Valida-
tion and performance tests”, Computer-Aided Design, 45, pp.
898–910, doi:10.1016/j.cad.2013.01.003

Rosenman, M.A. (1997) “The generation of form using an evo-
lutionary approach”, [online] http://arch.usyd.edu.au (Ac-
cessed: September 2009).

Rosenman, M.A. and Saunders, R. (2003) “Self-regulatory hierar-

534 CİLT VOL. 13 - SAYI NO. 4

chical coevolution”, AI-EDAM, 2003, 17, 273 – 285.
Russell, S. J. and Norvig, P., (2010) Artificial Intelligence: A

Modern Approach, Prentice Hall (third edition).
Simon, H. A. (1973) “The Structure of Ill Structured Problems”,

Artificial Intelligence, 4 (3): pp. 181–201.
Sönmez, N.O., Erdem, A. (2014) “Design games: A conceptual

framework for dynamic evolutionary design”, A | Z ITU Jour-
nal of the Faculty of Architecture, Vol. 11, No. 1, 03/2014.

Sönmez, N.O. (2015a) Evolutionary Design Assistants for Archi-
tecture, ABE, Architecture and the Built Environment, 5(3),
pp. 1–284, http://doi.org/10.7480/abe.2015.3

Sönmez, N.O. (2015b) “Architectural Layout Evolution through
Similarity-Based Evaluation”, International Journal of Archi-
tectural Computing (IJAC), Vol. 13, No. (3-4), 10/2015, pp.
271–298, http://doi.org/10.1260/1478-0771.13.3-4.271

Turrin, M., von Buelow, P., and Stouffs, R. (2011), “Design ex-
plorations of performance driven geometry in architec-
tural design using parametric modeling and genetic algo-
rithms”, Advanced Engineering Informatics, doi:10.1016/j.
aei.2011.07.009.

Turrin, M., von Buelow, P., Kilian, A., and Stouffs, R. (2011), “Per-
formative skins for passive climatic comfort: A parametric
design process”, Automation in Construction, doi:10.1016/j.
autcon.2011.08.001.

Yuan, B. and Gallagher, M. (2007) “Combining Meta-EAs and
Racing for Difficult EA Parameter Tuning Tasks”, in Lobo, F.
J., Lima, C. F., and Michalewicz, Z. (Eds.), Parameter Setting
in Evolutionary Algorithms, Series: Studies in Computational
Intelligence, Vol. 54, 2007, XII, Springer-Verlag, Berlin, Hei-
delberg, pp. 121-142.

Zhang, T., Georgiopoulos, M., and Anagnostopoulos, G.C. (2013)
“S-Race: a multi-objective racing algorithm”, in Proceedings
of the Fifteenth Annual Conference on Genetic and Evolu-
tionary Computation Conference, ACM, pp. 1565–1572.

Zitzler, E., Laumanns, M., and Bleuler, S. (2004) “A tutorial on
evolutionary multiobjective optimization”, in Gandibleux, X.,
Sevaux, M., Sörensen, K., and T’kindt, V. (Eds.), Metaheuris-
tics for Multiobjective Optimisation, Lecture Notes in Eco-
nomics and Mathematical Systems, Volume 535, 2004, pp.
3-37.

535CİLT VOL. 13 - SAYI NO. 4

A Modular and Dynamic Evolutionary Algorithm For Architectural Design

