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ABSTRACT

The growing demand for energy-efficient and sustainable buildings has accelerated the exploration 
of advanced technologies to optimize thermal comfort and reduce energy consumption. Machine 
learning techniques, particularly supervised learning approaches, have shown strong potential 
to optimize HVAC control while maintaining comfort. However, existing studies are often 
fragmented, with limited integrated analyses of methodologies and applications, particularly in 
the context of diverse climates, building typologies, and occupant behaviors. This study addresses 
these gaps through a semi-systematic review of peer-reviewed studies applying supervised 
machine learning techniques for thermal comfort prediction and energy optimization. Using 
a transparent process involving Web of Science search, predefined inclusion/exclusion criteria, 
and Rayyan-assisted screening, 18 supervised learning articles were identified from an initial 603 
records. These articles were categorized into tree-based models, regression-based models and 
neural networks. The review identifies critical gaps, such as the insufficient integration of real-
time occupant behavior, limited applicability across diverse climatic conditions, and challenges 
in achieving a balance between energy efficiency and occupant comfort. Findings highlight the 
strengths of tree-based models in feature selection and real-time decision-making, the simplicity 
of regression-based models for controlled environments, and the adaptability of neural networks 
in complex, non-linear scenarios. Despite these advancements, limitations such as data scarcity, 
computational demands, and the lack of long-term validation persist. Addressing these challenges 
is essential for the development of robust and scalable machine learning-driven solutions. 
This study provides a roadmap for future research and practical applications, emphasizing the 
transformative potential of supervised machine learning techniques in achieving sustainable, 
energy-efficient, and occupant-centered building environments.
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INTRODUCTION

The increasing global demand for energy-efficient and 
sustainable buildings has driven the exploration of 
advanced technologies for optimizing thermal comfort 
and reducing energy consumption (Moshood et al., 2024). 

As heating, ventilation, and air-conditioning (HVAC) 
systems account for a significant proportion of energy use 
in buildings (Gupta & Deb, 2022), there is a critical need to 
develop intelligent control systems capable of maintaining 
optimal indoor environments while minimizing energy 
costs (Halhoul Merabet et al., 2021). Supervised machine 
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learning techniques have emerged as powerful tools in 
this domain (Essamlali et al., 2024). They provide data-
driven approaches to predict and manage indoor thermal 
conditions. These methods enable dynamic adjustments 
in HVAC operations, ensuring a balance between energy 
efficiency and occupant comfort across diverse building 
typologies and climatic conditions (Zhou et al., 2023).

This study focuses on three supervised machine learning 
(ML) families that have demonstrated substantial promise 
in addressing challenges related to thermal comfort control 
and energy optimization. Researchers aim to enhance the 
adaptability and precision of HVAC systems by leveraging 
these models. These attributes make them responsive to 
both environmental variations and occupant behavior. 
Despite their advancements, the application of supervised 
machine learning techniques remains an evolving field, 
requiring a comprehensive understanding of their strengths, 
limitations, and practical implications. To address this need, 
a semi-systematic literature review was undertaken using 
explicit eligibility criteria, a Web of Science database search, 
Rayyan-assisted screening, and structured data extraction. 

Aim of the study
The exploration of machine learning in thermal comfort 
prediction has produced a wide range of studies, but the 
fragmented nature of existing research leaves significant 
opportunities for synthesis and further innovation. Several 
previous studies have focused on reviewing thermal comfort 
prediction studies using machine learning algorithms. 
Qavidel Fard et al. (2022) conducted a systematic review 
focusing on ML applications in thermal comfort studies, 
emphasizing methods, performance, and challenges. 
However, their review identified a lack of focus on personal 

comfort models and inadequate exploration of real-world 
applications, alongside challenges in feature selection and 
model evaluation. Similarly, Feng et al. (2022) reviewed 
data-driven methods for personal thermal comfort 
prediction, addressing experimental design and modeling 
techniques but found insufficient attention to inter- and 
intra-individual variability and limited integration of online 
learning techniques. Another review by Lala & Hagishima 
(2022) provided a unique perspective on thermal comfort 
for primary schools, focusing on children-specific challenges 
such as illogical votes, multiple comfort metrics, and class 
imbalance in machine learning prediction studies. Yet, they 
emphasized the absence of dedicated machine learning 
models for children, indicating a gap in integrating these 
insights into broader contexts. Arakawa Martins et al. (2022) 
systematically reviewed personal thermal comfort models 
but identified limited diversity in climatic conditions, 
building typologies, and participant demographics, coupled 
with challenges in standardizing predictive frameworks. 
Finally, Zhang et al. (2022) critically reviewed machine 
learning-based occupancy prediction models, linking energy 
efficiency and indoor environmental quality. However, 
their analysis highlighted gaps in integrating occupancy 
prediction with real-time HVAC optimization and the 
need for addressing perceived indoor air quality (IEQ) and 
thermal comfort jointly. 

These reviews’ findings emphasize the necessity for a review 
that synthesizes insights from supervised machine learning 
techniques in predicting indoor thermal comfort while 
addressing their limitations and bridging the identified 
gaps. Table 1 summarizes key review studies, highlighting 
their purposes and the research gaps identified. The present 
research aims to evaluate the effectiveness of supervised 

Table 1. Summary of the recent review papers on machine learning in thermal comfort

Review Study	 Purpose of the Review	 Identified Gaps

(Qavidel Fard et al., 2022)	 Systematic review of ML applications in thermal	 Lack of focus on personal comfort models, 
	 comfort to evaluate methods, performance,	 inadequate exploration of real-world applications, 
	 and challenges.	 and challenges in feature selection and model 
		  evaluation.
(Feng et al., 2022)	 Review of data-driven methods for personal	 Insufficient attention to inter- and intra-individual 
	 thermal comfort prediction, focusing on	 variability, data quality issues, and limited 
	 experimental design, data collection, and	 integration of online learning techniques. 
	 modeling techniques.
(Lala & Hagishima, 2022)	 Comprehensive review of thermal comfort in	 Absence of dedicated ML models for children, 
	 primary schools, addressing ML challenges	 challenges like illogical votes, and data imbalance 
	 specific to children.	 in primary school thermal comfort prediction.
(Arakawa Martins et al., 2022)	 Systematic review of personal thermal comfort	 Limited diversity in climate, building types, and 
	 models with a focus on predictive modeling	 participant demographics; challenges in 
	 processes.	 standardizing predictive modeling frameworks.
(Zhang et al., 2022)	 Critical review of ML-based occupancy	 Gaps in integrating occupancy prediction with 
	 prediction models for energy efficiency, air	 real-time HVAC optimization and limited studies 
	 quality, and thermal comfort.	 addressing perceived IEQ and thermal comfort 
		  jointly.
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machine learning techniques in optimizing energy use and 
maintaining thermal comfort within built environments. By 
categorizing and analyzing research articles into three ML 
approaches, the study explores methodologies, applications, 
and outcomes, seeking to:

•	 Elucidate the contributions of each machine learning 
approach to thermal comfort optimization.

•	 Identify and address limitations and inconsistencies in 
existing research.

•	 Provide actionable insights to advance sustainable 
building practices through machine learning-driven 
HVAC systems. 

METHODOLOGY

This study adopted a semi-systematic review approach to 
balance transparency and reproducibility with a focused 
scope on supervised machine learning for indoor thermal 
comfort and energy optimization. The review followed a 
series of predefined steps to ensure the selection of high-
quality and relevant literature, detailed as follows:

•	 Data source and search strategy: Articles indexed in 
the Web of Science Core Collection were selected as the 
data source due to its comprehensive indexing of peer-
reviewed scientific publications, ensuring access to high-
impact studies. A database search was performed using the 
keywords “Thermal Comfort” and “Machine Learning,” 
yielding 603 articles, without applying any year limit. This 
focused selection ensured methodological consistency and 
avoided redundancy across overlapping indexing platforms, 
which often contain identical records within this specialized 
research area. The choice of a single, high-quality source 
also enabled a transparent and reproducible workflow, 
emphasizing depth and reliability over breadth of coverage.

•	 Inclusion and Exclusion Criteria: Several inclusion 
and exclusion criteria were applied to refine the dataset. 
Inclusion criteria were peer-reviewed journal articles 
addressing indoor built environments, supervised 
machine learning models, and outcomes on indoor 
thermal comfort and/or energy demand. The initial 
exclusion criteria were review papers, non-English or 
non-open-access items, theses/abstracts/grey literature 
to maintain the focus on indoor built environments. 
The exclusion criteria for the first screening process 
were personal comfort systems (PCSs) relying on 
physiological data, outdoor thermal comfort (OTC), 
vehicle indoor environments, and other non-indoor 
built environment research. Then, for the second 
screening session, the studies using unsupervised 
learning, reinforcement learning, and hybrid ML 
methods were excluded. These criteria were established 
to ensure reproducibility and enable further research. 

•	 Screening: From 603 records, total 354 records were 
excluded, which were 60 review studies, 114 proceeding 
papers, three non-English studies, and 177 non-open 
access papers. The remaining 249 records were imported 
into Rayyan, a collaborative systematic review tool, to 
enhance the efficiency of the screening process (Ouzzani 
et al., 2016). Abstracts of 249 records were screened 
based on the aforementioned inclusion and exclusion 
criteria. At this stage, 215 articles were excluded because 
they did not address supervised learning for indoor built 
environments. These comprised 93 studies on personal 
comfort systems (PCSs) relying on physiological data, 
59 on outdoor thermal comfort (OTC), 36 on vehicle 
indoor environments, and 27 on other non-indoor 
built environment contexts. This refinement resulted 
in 34 research articles focusing on machine learning 
techniques applied to thermal comfort models and 
energy efficiency. A second round of screening was then 
conducted on the full texts of these 34 articles to retain 
only those employing supervised learning techniques. 
In this stage, 16 articles were excluded: Eight focused on 
unsupervised learning methods, five on reinforcement 
learning methods, and three on hybrid machine learning 
approaches. The second screening produced 18 included 
studies specifically employing supervised learning 
techniques for indoor thermal comfort (603 → 249 → 
34 → 18). The decision to focus on supervised learning 
was based on its dominance and preference in the field 
(Han et al., 2023), given its ability to handle labeled 
data for predictive accuracy and its wide applicability 
in real-world HVAC systems. Other machine learning 
approaches, including unsupervised and reinforcement 
learning, while valuable, were less represented and 
often lacked the direct applicability to thermal comfort 
optimization within building environments (Zhang et 
al., 2022).

•	 Data extraction and categorization: After screening, 
the included studies were first categorized according to 
the type of supervised machine learning approach used 
to facilitate comparative analysis:

•	 Tree-Based Models: These models, including 
Random Forest and Gradient Boosted Decision 
Trees, were evaluated for their interpretability and 
robustness in handling diverse datasets.

•	 Regression-Based Models: Studies focusing on 
linear and non-linear regression techniques were 
analyzed for their simplicity and adaptability in 
predicting thermal comfort indices.

•	 Neural Network Applications: Advanced neural 
network architectures, including Artificial Neural 
Networks (ANNs) and Physics-Informed Neural 
Networks (PiNNs), were reviewed for their ability to 
model complex, non-linear relationships.
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Following this categorization, structured data extraction 
was undertaken for each included study in each category 
to ensure consistency and comparability. Predefined fields 
included context/building type, climate/geographical 
setting, dataset size and variables (environmental and 
occupant-related parameters), validation method (cross-
validation, field testing, simulation-based), performance 
metrics (accuracy, F1-score, MAE, RMSE, energy savings), 
and energy/comfort outcomes (PMV, TSV, operative 
temperature, optimization levels, comfort improvements).

•	 Quality Assessment / Risk of Bias: To evaluate the 
methodological quality and reliability of the included 
studies, the Prediction model Risk of Bias Assessment 
Tool (PROBAST) was adapted to the context of 
supervised machine learning in thermal comfort and 
energy optimization (Wolff et al., 2019). Each study was 
independently assessed across four domains, data and 
setting (D1), predictors and feature engineering (D2), 
outcomes/labels (D3), and analysis (D4), and rated as 
low, low–moderate, moderate, or high risk of bias. The 
applicability concerns were also rated and recorded 
a short justification for each judgment (Appendix 
Table A1). This approach ensured transparency and 
reproducibility in the evaluation of the included studies.

•	 Synthesis and comparative analysis: A structured 
narrative synthesis was undertaken, organizing the 
included studies according to the three supervised 
machine learning approach groups and enabling 
systematic cross-study comparison of methods and 
outcomes. This process allowed the identification of 
patterns, methodological differences, and performance 
trends across the reviewed studies. The main analytical 
dimensions included:

•	 Adaptability: Assessing the ability of models to 
adjust to varying climates, building typologies, and 
occupant behaviors in real-time settings.

•	 Challenges: Identifying specific limitations such as 
insufficient real-time data processing or incomplete 
integration of occupant behavior.

•	 Climate influence: Examining how differences in climatic 
conditions affected optimization levels, highlighting areas 
where machine learning models underperform.

This synthesis and comparative analysis addressed critical 
questions such as whether the limitations stemmed from 
inadequate real-time data integration or inherent gaps in 
capturing occupant behavior. Thus, this approach provides 
a deeper understanding of the research landscape and 
identifies avenues for further development.

The structured selection process for the reviewed studies is 
illustrated in Figure 1, providing a visual representation of 
each searching stage, screening, and eligibility assessment, 
and categorization phase.

RESULTS AND DISCUSSION

Categorization of supervised learning approaches
Supervised learning techniques have been widely used 
in the field of thermal comfort prediction and energy 
optimization within the built environment. These methods 
employ labeled data to establish predictive models that 
address diverse challenges such as real-time HVAC control, 
adaptive thermal comfort management, and efficient 
energy use. The reviewed studies are categorized into 
three primary approaches: Tree-based models, regression-
based models, and neural network applications. Each 
category demonstrates distinct strengths and applications, 
from robust feature selection in tree-based models to 
the simplicity and interpretability of regression-based 
approaches, and the powerful adaptability of neural 
networks in handling complex, non-linear datasets. This 
section provides a detailed analysis of the selected articles 
under these categories, exploring their methodologies, 
applications, and outcomes, while also highlighting their 
contributions to addressing challenges in thermal comfort 
control and energy efficiency.

Tree-Based Models: Tree-based machine learning models 
have garnered attention for their ability to process complex 
datasets efficiently, offering robust feature selection and 
interpretability. This section details the methodologies 
and findings of six key studies that utilized tree-based 
approaches for thermal comfort and energy optimization. 
These studies denote the versatility of models such as 
Random Forest (RF), Gradient Boosted Decision Trees 

Figure 1. Flow chart of the selection strategy and categori-
zation process.
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(GBDT), and Decision Trees (DT) across different thermal 
comfort applications. Aparicio-Ruiz et al. focused on 
understanding indoor thermal comfort in Mediterranean 
climates using RF. This study emphasized the importance 
of an extended database with 21 variables, including indoor 
and outdoor parameters such as CO2 levels and running 
mean temperature. By employing RF, the researchers 
achieved a 5% improvement in accuracy, illustrating the RF's 
capacity to handle diverse inputs and optimize conditioning 
systems for Mediterranean buildings (Aparicio-Ruiz et al., 
2023). Similarly, Bai et al. compared the performance of RF 
and GBDT in predicting thermal preferences based on the 
ASHRAE Comfort Database II. Their ensemble learning 
approach demonstrated robust results, achieving weighted 
F1-scores more than 90%. The study also highlighted the 
influence of data characteristics like building type and 
season on model performance, showcasing the adaptability 
of tree-based models in varying contexts (Bai et al., 2022). 
On the other hand, Brik et al. integrated RF with Internet 
of Things (IoT) frameworks to create a real-time thermal 
comfort monitoring system. They achieved a prediction 
accuracy of 96% and reduced deviation from setpoints 
by 85% using data from a longitudinal study. Their study 
illustrated the synergy between IoT technologies and 
machine learning, offering insights into energy-efficient 
building management (Brik et al., 2022).

Hosamo et al. introduced an innovative application of RF 
within a digital twin framework to improve predictive 
maintenance and occupant comfort. The integration of 
Building Information Modelling (BIM) and real-time 
sensor data allowed for accurate detection of HVAC issues, 
reducing system failures by 10%. This study underlined 

the potential of RF in advancing maintenance strategies 
and enhancing energy efficiency (Hosamo et al., 2023). In 
the study of Lu et al. RF model was applied to a combined 
radiant floor and fan coil cooling system, focusing on 
predicting operative temperature and energy consumption. 
Their findings demonstrated that RF outperformed other 
algorithms in error metrics, with reductions of up to 82% in 
mean squared error. The study emphasized the importance 
of machine learning in optimizing hybrid cooling systems, 
particularly in high-demand scenarios (Lu et al., 2024). 
Finally, Miao et al. developed an RF-based model tailored 
for naturally ventilated educational buildings. The study 
identified occupancy and ventilation practices as critical 
factors influencing thermal comfort. By leveraging 
accessible data, the researchers provided a cost-effective 
solution for schools, achieving robust generalization and 
practical applicability without the need for extensive sensor 
networks (Miao et al., 2023). These studies demonstrate the 
versatility and efficacy of tree-based models in addressing 
challenges related to thermal comfort and energy 
optimization. The details of the methodologies and findings 
are summarized in Table 2.

Regression-Based Models: Regression-based models 
serve as fundamental tools in predicting thermal comfort 
metrics by combining simplicity and interpretability. These 
models stand out in analyzing the relationships between 
environmental and personal factors with thermal comfort 
indices like Predicted Mean Vote (PMV) and Thermal 
Sensation Vote (TSV). This section synthesizes seven 
determined studies, their methodologies, and findings, 
elaborating on their contributions to this field. Abdellatif 
et al. presented a hybrid methodology integrating Multiple 

Table 2. Summary of reviewed articles employing tree-based models

Study	 Model	 Application	 Key Metrics	 Outcomes

(Aparicio-Ruiz et al., 2023)	 Random Forest	 Thermal comfort	 Accuracy Improvement:	 Enhanced model 
		  prediction in	 5%	 performance and variable 
		  Mediterranean climates		  relevance identification.
(Bai et al., 2022)	 RF, GBDT	 Thermal preference	 F1-Score: >90%	 Superior performance of 
		  prediction		  ensemble models with 
				    expanded datasets.
(Brik et al., 2022)	 Random Forest	 Real-time IoT-based	 Accuracy: 96%,	 Improved indoor comfort 
		  thermal comfort	 Optimization: 85%	 and real-time optimization 
		  monitoring		  capabilities.
(Hosamo et al., 2023)	 Random Forest	 Digital twin-based	 HVAC Failures Reduced:	 Enhanced occupant 
		  predictive maintenance	 10%	 comfort and equipment  
				    lifespan through predictive  
				    strategies.
(Lu et al., 2024)	 Random Forest	 Hybrid cooling system	 MSE Improvement:	 Significant energy savings 
		  energy and comfort	 82%	 and predictive accuracy in 
		  prediction		  hybrid cooling systems.
(Miao et al., 2023)	 Random Forest	 Educational building	 Robust Generalization	 Cost-effective prediction 
		  thermal comfort		  models for schools relying 
				    on natural ventilation.
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Linear Regression (MLR) with genetic algorithms to 
optimize heating strategies for office buildings. By 
employing data from TRNSYS simulations, their approach 
achieved a 43% improvement in thermal comfort while 
maintaining energy efficiency. The genetic algorithm 
optimized heating parameters, demonstrating the utility of 
regression models in dynamic control systems (Abdellatif 
et al., 2022). Kumar & Kurian (2023) explored real-time 
thermal comfort prediction using Bayesian-optimized 
regression models. Their study developed predictive tools 
for PMV and Standard Effective Temperature (SET), 
leveraging automated feature selection techniques like 
Neighborhood Component Analysis. This model enhanced 
HVAC system responsiveness, yielding significant energy 
savings and improved user satisfaction through real-time 
environmental adjustments. Another study by Liu & Ma 
(2023) proposed an explainable Light Gradient Boosted 
Machine (LightGBM) regression model combined with 
SHAP analysis to assess thermal comfort across diverse 
Chinese climates. Their approach provided interpretable 
insights into the interactive effects of building and climatic 
variables, facilitating region-specific design optimizations 
aligned with energy conservation goal. 

Mousavi et al. (2023) utilized meta-additive regression 
within a Green Building framework to optimize 
residential building envelopes in semi-arid climates. 
This study employed DesignBuilder simulations and 
statistical optimization to determine the most effective 
combinations of envelope parameters. Their methodology 
led to substantial annual energy reductions, emphasizing 
the adaptability of regression models in passive design 
strategies. Park et al. (2024) conducted a field test 

integrating MLR within a thermal comfort controller 
(TCC) for residential HVAC systems. Their model utilized 
mean radiant temperature estimations to achieve real-
time adjustments in HVAC settings, resulting in a 60% 
improvement in PMV and over 20% energy savings. This 
study highlighted the effectiveness of regression in real-
world applications under dynamic climatic conditions. 
Similarly, Sibyan et al. (2022) compared MLR with machine 
learning approaches like Naive Bayes classifiers for thermal 
comfort prediction in naturally ventilated environments. 
The analysis demonstrated MLR’s robustness despite simpler 
assumptions, validating its applicability in field studies and 
comparative analyses. Finally, Xi et al. (2024) applied linear 
regression to assess TSV in traditional Chinese dwellings. 
This study integrated field measurements and subjective 
surveys, identifying temperature ranges that aligned with 
historical and modern thermal comfort requirements. Their 
findings underscored the importance of contextual factors, 
such as cultural preferences and architectural heritage, in 
predictive modeling. These studies collectively underline 
the versatility of regression-based models in addressing 
thermal comfort challenges across various contexts. The 
methodologies and outcomes of these studies are detailed 
in Table 3.

Neural Network Applications: Artificial Neural Networks 
(ANNs) have emerged as a pivotal tool in advancing 
thermal comfort prediction and energy optimization within 
building management systems. By effectively modelling 
non-linear and complex relationships among environmental 
and personal parameters, ANNs demonstrate significant 
advantages in handling diverse datasets and achieving high 
predictive accuracy. In this section, the methodologies and 

Table 3. Summary of reviewed articles employing regression-based models

Study	 Regression Model	 Application	 Key Metrics	 Outcomes

(Abdellatif et al., 2022)	 Multiple Linear	 Heating optimization for	 <1% Error, Adjusted	 43% improvement in 
	 Regression	 indoor comfort	 R2: 0.9	 thermal comfort, 
				    significant energy savings.
(Kumar & Kurian, 2023)	 Bayesian-Optimized	 Real-time PMV and	 High Accuracy, Fast	 Enhanced HVAC 
	 MLR	 SET prediction	 Response	 efficiency, real-time 
				    adaptability.
(Liu & Ma, 2023)	 LightGBM Regression	 Thermal comfort	 Accuracy with SHAP	 Improved thermal designs 
		  evaluation across	 interpretations	 for regional diversity. 
		  climates
(Mousavi et al., 2023)	 Meta-Additive	 Envelope optimization	 50% Energy Reduction	 Optimal building design 
	 Regression	 in semi-arid climates		  for energy and comfort 
				    enhancement.
(Park et al., 2024)	 Linear Regression	 Real-time HVAC control	 PMV: +60%, Energy	 Improved comfort and 
			   Savings: >20%	 efficiency in hot-dry 
				    climates.
(Sibyan et al., 2022)	 Multiple Linear	 Comparison with ML	 Higher Prediction	 Validated regression 
	 Regression	 methods	 Accuracy	 accuracy in field studies.
(Xi et al., 2024)	 Linear Regression	 TSV prediction for	 Accurate TSV Models	 Novel insights for heritage 
		  heritage dwellings		  building thermal comfort.
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findings of five key studies that illustrate the application 
of ANNs are presented. Boutahri & Tilioua highlighted 
the predictive capabilities of ANNs in forecasting PMV 
values with enhanced accuracy, achieving an energy-saving 
potential of up to 32%. Their model incorporated real-time 
sensor data and was validated through comprehensive 
statistical error metrics such as Root Mean Square Error 
(RMSE) and Mean Absolute Error (MAE). The study 
underscored the adaptability of ANNs in smart buildings 
by integrating HVAC systems with predictive controls 
to balance energy consumption and occupant comfort 
(Boutahri & Tilioua, 2024). Similarly, Park & Woo 
investigated feature selection methods combined with 
ANNs to optimize PMV predictions. By utilizing Principal 
Component Analysis (PCA) and Best Subset selection, 
the research pinpointed the most influential variables 
for accurate and efficient PMV computation. The study 
achieved an impressive 89.7% accuracy, demonstrating the 
efficacy of ANNs in reducing computational loads while 
maintaining predictive precision (Park & Woo, 2023). 

Pavirani et al. (2024) proposed a hybrid approach by 
integrating PiNNs with Monte Carlo Tree Search (MCTS) 
algorithms. This innovative combination enabled real-time 
control of residential heating systems while maintaining 
thermal comfort and reducing energy costs. The PiNNs 
incorporated physical constraints into the neural network 
model, offering a 7% improvement in thermal comfort and 
a 4% reduction in energy costs compared to traditional 
black-box neural networks (Pavirani et al., 2024). De 
la Hoz-Torres et al. 2024 applied ANNs to develop 
adaptive thermal comfort models for naturally ventilated 
educational buildings. Their research demonstrated 
the superiority of ANN-based models over traditional 

PMV indices by achieving higher accuracy in thermal 
sensation predictions. The models were calibrated using 
data from a year-long monitoring campaign, revealing the 
significant role of adaptive behaviors in thermal comfort 
optimization. Lastly, Chegari et al. utilized ANNs within a 
surrogate-model framework to design nearly zero-energy 
buildings (NZEBs). This multi-objective optimization 
approach focused on enhancing thermal comfort and 
energy self-sufficiency, achieving an average improvement 
of 50% in comfort metrics. The surrogate model reduced 
computational requirements while maintaining robust 
performance across diverse climatic zones (Chegari et 
al., 2022). These studies collectively demonstrate the 
transformative potential of ANNs in advancing thermal 
comfort and energy optimization strategies. The detailed 
outcomes of these studies are given in Table 4.

Comparative Analysis of Energy Optimization and Comfort
The reviewed studies employing supervised machine 
learning techniques highlight their significant contributions 
to enhancing energy optimization and maintaining 
thermal comfort across diverse building typologies and 
climates. By comparing the methodologies and results 
across 18 selected papers, key insights can be drawn into 
the effectiveness and adaptability of these approaches. Tree-
based models such as Random Forest (RF) and Gradient 
Boosted Decision Trees (GBDT) demonstrated a strong 
capacity for energy optimization, particularly in scenarios 
requiring robust feature selection and high interpretability. 
For example, Aparicio-Ruiz et al. showed a 5% gain in 
accuracy for TSV prediction in Mediterranean offices with 
RF by extending the variable set to 21 environmental and 
occupant parameters, including CO2 and running mean 

Table 4. Summary of reviewed articles employing neural network applications

Study	 Neural Network Type	 Application	 Key Metrics	 Outcomes

(Boutahri & Tilioua, 2024)	 ANN	 PMV prediction for	 Accuracy (96.7% R²),	 Improved thermal comfort 
		  HVAC optimization	 RMSE	 and energy savings in 
				    smart buildings.
(Park & Woo, 2023)	 ANN with PCA	 PMV dimension	 89.7% Accuracy, PCA	 Enhanced prediction 
		  reduction and prediction	 Analysis	 speed and accuracy by 
				    selecting key PMV 
				    parameters.
(Pavirani et al., 2024)	 Physics-informed NN	 Demand response and	 -32% MAE, -4% energy	 Effective control with 
		  heating control	 cost	 reduced computational 
				    demands using PiNN.
(de la Hoz-Torres et al.,	 ANN	 Adaptive thermal	 Improved accuracy over	 Adaptive models better 
2024)		  comfort in classrooms	 PMV, enhanced PMV	 suited for naturally 
			   (ePMV)	 ventilated educational 
				    buildings.
(Chegari et al., 2022)	 ANN	 Surrogate model for	 50% improvement in	 Multi-objective 
		  NZEB design	 comfort metrics	 optimization enhanced 
				    thermal comfort and 
				    energy efficiency.
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temperature (Aparicio-Ruiz et al., 2023). Similarly, Brik et 
al. integrated RF with IoT networks to provide real-time 
monitoring and control, reporting 96% prediction accuracy 
and an 85% improvement in indoor parameter adjustment, 
which translated into faster restoration of comfort after 
disturbances (Brik et al., 2022). Lu et al. showed that RF 
outperformed CNN, LSTM, SVM, radial basis function 
(RBF) and genetic algorithm–backpropagation (GA-BP) 
in a hybrid radiant floor/fan-coil cooling testbed, reducing 
MSE by 82%, MAE by 43%, and MAPE by 68% compared 
with other algorithms while maintaining R>0.99 (Lu et al., 
2024). RF also proved highly scalable in naturally ventilated 
schools when combined with class weighting and low-
cost sensor inputs (Miao et al., 2023) highlighting its 
robustness under constrained data regimes. These models 
distinguish themselves in scenarios requiring immediate 
decision-making, such as hybrid cooling systems and 
educational buildings, by balancing energy savings with 
real-time thermal comfort adjustments. However, they are 
less suited to highly complex datasets with dynamic, non-
linear interactions, as these require more adaptive learning 
techniques.

Regression-based models, while simpler, provided 
useful information for the linear relationships between 
environmental variables and thermal comfort indices like 
PMV and TSV, especially under controlled conditions. 
Abdellatif et al. utilized MLR with a genetic optimizer, 
forecasting indoor heating with lower than 1% error 
(adjusted R2≈0.9) and achieving 43% improvement in 
thermal comfort over a conventional strategy (Abdellatif 
et al., 2022). Kumar & Kurian’s (2023) Bayesian-optimized 
regression achieved rapid, real-time PMV and SET 
predictions and temperature-setpoint control, delivering 
measurable energy savings and higher user satisfaction in 
HVAC offices. Park et al. (2024) demonstrated in a field test 
that integrating mean radiant temperature into a thermal 
comfort controller yielded a 60% reduction in PMV 
unmet hours and more than 20% energy savings. Yet, the 
inherent simplicity of regression-based approaches limited 
its performance in contexts with large adaptive variability 
or strong non-linear effects, such as naturally ventilated 
buildings or heritage structures, where RMSEs and comfort 
gains lagged behind tree-based or ANN approaches.

Neural network applications stood out for their adaptability 
and precision in handling complex, non-linear datasets. This 
makes them highly effective in real-time thermal comfort 
control. For instance, Boutahri & Tilioua achieved a R2 of 
96.7% and significant energy savings (nearly 32%) using 
ANNs for PMV forecasting in smart buildings, demonstrating 
significant energy savings without compromising occupant 
comfort (Boutahri & Tilioua, 2024). De la Hoz-Torres et 
al. created adaptive ANN comfort models for naturally 
ventilated educational buildings that outperformed 
traditional methods by integrating real-time environmental 

and occupant data (de la Hoz-Torres et al., 2024). Chegari et 
al.’s ANN surrogate model for nearly zero-energy buildings 
improved thermal comfort metrics by nearly 50% while 
reducing energy demand substantially (Chegari et al., 2022), 
and Pavirani et al. (2024) showed that a physics-informed 
neural network (PiNN) coupled with Monte Carlo Tree 
Search produced 32% lower MAE in thermal forecasting, 7% 
comfort improvement and 4% energy cost reduction over 
a black-box NN (Pavirani et al., 2024). Park & Woo (2023) 
further demonstrated that combining PCA and best-subset 
selection with ANN achieved 89.7% accuracy on reduced-
dimension PMV, cutting computational load without 
sacrificing predictive precision. These examples show that, 
although computationally demanding, neural networks 
excel in contexts requiring adaptation to occupant behavior, 
dynamic climates and multi-objective energy–comfort 
balance.

Cross-model comparisons across the 18 studies reveal a 
clear hierarchy of suitability under different operational 
and climatic conditions. Tree-based ensembles (RF, 
GBDT, LightGBM) provide the most acceptable balance 
of predictive accuracy, interpretability and computational 
efficiency in feature-rich but moderately dynamic settings, 
particularly hybrid HVAC systems, IoT deployments 
and digital-twin maintenance frameworks. For example, 
RF reduced MSE by 82 % and MAE by 43% in a hybrid 
radiant-floor/fan-coil system (Lu et al., 2024) and 
maintained R2>0.99, while class-weighted RF models in 
naturally ventilated schools achieved robust performance 
without dense sensor networks (Miao et al., 2023). These 
results indicate that tree-based methods are especially 
advantageous where real-time decisions must be combined 
with variable importance screening and low-latency 
response. Regression-based approaches, though inherently 
linear, remain valuable when data complexity is low and 
model transparency is essential. They excel in controlled 
HVAC settings, offering fast convergence and interpretable 
parameters, as demonstrated by Abdellatif et al. (less 
than 1% forecast error and 43% comfort improvement) 
and Park et al. (2024) (60% fewer unmet PMV hours and 
more than 20% energy savings) in field trials. However, 
the comparative RMSE and comfort gains in naturally 
ventilated or heritage contexts consistently lag behind 
tree-based or ANN approaches, underscoring their limited 
capacity to model adaptive occupant behavior and multi-
factor interactions. Neural networks and hybrid physics-
informed variants clearly deliver the lowest RMSE and 
the highest comfort gains in real-time, adaptive contexts 
such as naturally ventilated schools, heritage dwellings 
and demand-response heating control. Boutahri & Tilioua 
reported R2 of nearly 0.97 and approximately 32% of energy 
savings; Chegari et al. achieved about 50% improvement 
in comfort metrics in nearly zero-energy buildings; and 
Pavirani et al. (2024) demonstrated 32% lower MAE, 7% 
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comfort gain and 4% cost reduction with PiNN-based 
control. Park & Woo (2023) further showed that feature 
selection (PCA, Best Subset) enables ANNs to reach nearly 
90% accuracy with reduced input dimensions, alleviating 
computational burden while retaining predictive power. 

To further clarify these performance relationships, a 
visual synthesis was developed based on representative 
quantitative outcomes reported across the reviewed studies. 
Figure 2 provides a comparative summary of these results, 
emphasizing the relative patterns of error reduction, 
energy savings, and comfort accuracy among tree-based, 
regression-based, and neural-network approaches. The 
figure presents an indicative comparison, as it reflects 
the characteristic performance ranges drawn from key 
representative works (Aparicio-Ruiz et al., 2023; Bai et al., 
2022; Brik et al., 2022; Lu et al., 2024; Miao et al., 2023; 
Abdellatif et al., 2022; Kumar & Kurian, 2023; Park et al., 
2024; Boutahri & Tilioua, 2024; Chegari et al., 2022; Pavirani 
et al., 2024; de la Hoz-Torres et al., 2024). Displayed values 
illustrate the relative magnitude of error reduction, energy 
savings, and comfort accuracy reported in the literature. 

Collectively, these findings show that ANNs outperform 
tree-based and regression methods when non-linearity, 
occupant adaptation and multi-objective energy–comfort 
balance dominate. Across all model types, integrating real-
time occupant behavior and environmental data emerged as 
the single strongest predictor of stable accuracy and energy 
savings. Studies omitting such inputs consistently reported 
higher errors or weaker generalization. This synthesis 
demonstrates that supervised learning approaches are not 
interchangeable but rather scenario-specific tools:

•	 RF and LightGBM excel in rapid, interpretable decisions 
with heterogeneous data streams; 

•	 regression-based models are suited to stable, quasi-
linear regimes; 

•	 ANNs or PiNNs are indispensable for non-linear, occupant-
centered and multi-objective optimization contexts.

Identified Research Gaps
While supervised machine learning techniques have 
demonstrated significant potential in advancing energy 
optimization and thermal comfort within the built 
environment, several research gaps remain, limiting their 
widespread application and effectiveness. The review of 
selected studies reveals critical areas that require further 
investigation to address current limitations and advance 
the state of the art.

Integration of Real-Time Occupant Behavior

Many studies, particularly those employing regression-
based and tree-based models, fail to fully integrate real-time 
occupant behavior into their predictive frameworks. For 
instance, models developed by Bai et al. and Aparicio-Ruiz 
et al. relied heavily on static environmental parameters, 
overlooking dynamic behavioral patterns such as adaptive 
actions or occupancy changes (Aparicio-Ruiz et al., 2023; 
Bai et al., 2022). This gap suggests the need for models that 
incorporate occupant interactions with their environments, 
particularly in naturally ventilated or mixed-mode 
buildings. To move the field forward, future work should (i) 
develop standardized behavior taxonomies (e.g., window/
door operations, clothing adjustment, local fan/heater use) 
and minimal sensing protocols that can be replicated across 
buildings; (ii) fuse occupant-event streams with IEQ data 
for sequence-aware models (e.g., RF/LightGBM with lag 
features; LSTM/Temporal CNNs; hybrid PiNNs) and report 
incremental error reduction attributable to behavior; and 
(iii) publish ablation studies that quantify how much each 
behavior class improves RMSE/MAE and energy-comfort 
trade-offs. Such studies would directly test, in the same 
manner as Miao et al. (2023) and Park et al. (2024), whether 
adding behavior signals yields statistically significant gains 
over environment-only baselines.

Limited Focus on Diverse Climates and Building Typologies

The studies predominantly address specific climates or 
building types, such as Mediterranean climates (Aparicio-
Ruiz et al., 2023) or educational buildings (Miao et al., 2023). 
Few have extended their applications to a broader range of 
climates or typologies, such as heritage buildings or high-
performance green buildings. This limitation restricts the 
generalizability and scalability of the findings, underlining 
the need for research exploring diverse climatic and 
architectural contexts. A community benchmark of multi-
climate, multi-typology datasets (e.g., classrooms, offices, 
heritage dwellings, NZEBs) with harmonized labels (PMV/
TSV/ePMV) and common splits for external validation 
is recommended. Protocols should require reporting 
per-climate and per-typology performance, enabling fair 
cross-study comparisons similar to Liu & Ma, 2023 and 
Xi et al. (2024). Model cards should include “applicability 
statements” that explicitly state validated Köppen–Geiger 
zones and building archetypes.

Figure 2. Comparative performance synthesis of super-
vised learning model families.
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Data Scarcity and Model Robustness

Several studies highlighted the challenges of acquiring high-
quality, comprehensive datasets. For instance, Hosamo et 
al. 2023 and Brik et al. 2022 relied on IoT networks, which, 
while effective, are resource-intensive and not universally 
accessible. Additionally, many models were tested on 
limited datasets, raising concerns about their robustness and 
applicability in real-world scenarios. Future studies should 
focus on developing models that are robust to incomplete 
or noisy data and leverage innovative data augmentation 
techniques. Concrete next steps include: (i) Adopting 
nested cross-validation and leakage-safe feature selection 
to improve reliability across all three families (as issues 
were noted in multiple papers); (ii) stress-test models under 
missingness and sensor drift; and (iii) employing transfer 
learning/domain adaptation between climates and building 
types (e.g., training in Mediterranean offices and adapting 
to NV schools) with explicit reporting of adaptation gains. 
Open baselines should include LightGBM/RF, linear 
models, and at least one ANN to anchor robustness claims.

Evaluation practice deficiencies

Across the corpus, nested cross-validation and external 
validation were uncommon. When hyper-parameter 
tuning, feature selection, or preprocessing (imputation, 
scaling, resampling) are performed outside a nested scheme 
or on the full dataset, information leakage can inflate 
accuracy and understate uncertainty. Likewise, evaluating 
only on the same sites or periods used for development 
risks optimism and weakens claims of generalizability. 
Minimum leakage-safe practice should include repeated 
nested k-fold CV (all modeling operations confined to 
inner folds) and an external test via site-out or time-split 
protocols (different buildings, seasons, or terms). Reporting 
should add calibration metrics, fold-wise variance, and 
failure modes observed under robustness checks. Adopting 
these standards will immediately improve the credibility 
and comparability of results across model families.

Real-Time Processing and Adaptability

Neural network-based studies, such as those by Boutahri 
& Tilioua and De la Hoz-Torres et al., demonstrated strong 
adaptability but often required substantial computational 
resources (Boutahri & Tilioua, 2024; de la Hoz-Torres et 
al., 2024). These models struggle with real-time processing 
in low-resource environments, particularly in remote or 
economically constrained areas. Addressing this limitation 
by optimizing algorithms for computational efficiency or 
leveraging edge computing could make these methods 
more accessible and practical. Future research should (i) 
benchmark latency, memory, and power on representative 
edge hardware; (ii) evaluate model compression 
(quantization/pruning/knowledge distillation) and feature 
reduction (as in Park & Woo, 2023) with comfort/energy 
accuracy retained; and (iii) report end-to-end control-loop 

stability (response time to setpoint changes, overshoot/
undershoot) alongside prediction metrics.

Beyond raw accuracy, the real-world applicability of ANN/
PiNN approaches is shaped by total cost of ownership and 
operational risk. Training often depends on specialized 
accelerators and curated pipelines, while inference on site 
can exceed the latency, memory, and power envelopes of 
legacy BMS or low-cost edge controllers; cloud off-loading 
adds recurring costs, privacy/compliance concerns, and 
network fragility. Scaling across buildings also requires 
site-specific calibration and continuous monitoring for 
drift, with nontrivial data quality checks, re-training, 
versioning, and rollbacks. Limited transparency can slow 
operator troubleshooting when comfort or IAQ alarms 
trigger, reducing trust compared with simpler, interpretable 
controllers. A pragmatic stance is to prefer compact tree 
ensembles or linear controllers when ANN gains are 
marginal or budgets are constrained, reserving ANN/
PiNN solutions for strongly non-linear, occupant-adaptive 
contexts where demonstrated energy/comfort benefits 
outweigh compute and maintenance costs. When ANNs 
are deployed, studies should include simple guardrails on 
set-point changes, document fail-safe modes for sensor/
connectivity faults, and report measured latency, memory, 
and power for the compressed/distilled model on the target 
edge device to demonstrate field readiness.

Balancing Energy Savings with Thermal Comfort

While energy optimization is an important focus, few studies 
explicitly quantify the trade-offs between energy savings 
and thermal comfort. For example, the works by Kumar & 
Kurian (2023) and Mousavi et al. (2023) emphasized energy 
savings but provided limited insights into how these savings 
impact occupant comfort under varying conditions. Future 
research should aim to establish a clearer balance between 
these objectives, incorporating adaptive comfort models 
that prioritize human well-being without significant energy 
penalties. For explicit multi-objective formulations with 
Pareto fronts (comfort vs. kWh/cost), reporting dominated 
vs. non-dominated solutions and sensitivity to seasonal/
occupancy regimes is beneficial. Studies like Pavirani 
et al. (2024) and Chegari et al. (2024) provide templates; 
forthcoming work should standardize comfort violation 
metrics (e.g., unmet PMV/TSV hours, ePMV bands) and 
quantify comfort “cost” per unit energy saved.

Integration with Emerging Technologies

Most studies reviewed did not explore the integration of 
supervised learning techniques with emerging technologies 
such as digital twins, advanced IoT frameworks, or 
blockchain for data security and decentralization. The work 
by Hosamo et al. (2023) on digital twins stands as a notable 
exception but highlights the potential for combining 
machine learning with advanced technologies to enhance 
predictive accuracy, energy efficiency, and comfort 
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management. Future work should couple calibrated digital 
twins with supervised learning for fault diagnostics and 
proactive control, evaluating whether twin-in-the-loop 
supervision reduces failure rates and comfort violations 
beyond RF-only baselines (as hinted by Hosamo et al., 
2023). Data governance should be addressed via privacy-
preserving pipelines (federated learning, differential 
privacy) to enable cross-site generalization without sharing 
raw occupant data.

Long-Term Validation Studies

Many studies evaluated their models using short-term 
datasets or simulations, with limited validation in real-
world, long-term operational settings. For example, Lu et 
al. (2024) demonstrated energy savings in hybrid cooling 
systems but lacked long-term empirical data to substantiate 
these findings under varying operational conditions. 
Longitudinal studies that track model performance over 
extended periods are needed to validate their reliability and 
effectiveness. More than 12-month deployments spanning 
seasons and occupancy cycles, with pre-registered analysis 
plans, drift detection, and periodic re-calibration rules 
are recommended. Reports should include durability of 
gains (R2/MAE stability, comfort violations, energy bills) 
and failure mode analyses (sensor outages, occupancy 
anomalies).

Equity and Accessibility Considerations

A recurring gap is the lack of focus on making these 
technologies accessible in economically constrained 
or developing regions. Models relying on high-cost 
infrastructure, such as IoT networks or advanced 
computational systems, are less applicable in these settings. 
Research aimed at creating cost-effective and scalable 
solutions, like the RF-based model by Miao et al. (2023), 
could address this inequity. Priorities include low-cost 
sensing kits, sparse-feature models that maintain accuracy 
with minimal inputs, and edge-deployable controllers. 
Studies should report a “cost-to-accuracy” curve and 
provide open designs/bills of materials so that public 
schools and small offices can reproduce the results.

In sum, the empirical patterns across the 18 studies suggest 
a pathway for targeted progress: (1) Add behavior signals 
and temporal structure to supervised models; (2) validate 
across climates/typologies using shared benchmarks; 
(3) enforce leakage-safe evaluation (nested CV, external 
tests) and robustness checks; (4) operationalize real-time 
constraints on edge hardware; (5) optimize explicitly on 
the comfort-energy Pareto frontier; (6) integrate digital-
twin supervision and privacy-preserving data pipelines; 
(7) extend evaluations to multi-season deployments; and 
(8) prioritize low-cost, reproducible solutions. Addressing 
these items will convert today’s promising but fragmented 
results into generalizable, field-ready ML frameworks that 
reliably balance energy efficiency and occupant comfort.

Strategies for Progress: Practical Implications
The limitations identified in Section 3.3 are not isolated 
shortcomings but stem from recurring structural and 
methodological challenges within the current research 
landscape. Recognizing the underlying reasons for these 
shortcomings and proposing practical strategies to address 
them can accelerate progress in supervised machine 
learning for thermal comfort and energy efficiency. A first 
and persistent limitation arises from the restricted data 
coverage and quality of existing studies. Many models are 
developed from single buildings, limited climates, or short 
monitoring periods. This narrow scope limits the diversity 
of environmental conditions, occupant behaviors, and 
building typologies captured in the datasets. As a result, 
models often lack external validity and show performance 
drops when applied to new settings. Addressing this 
gap requires coordinated efforts to build multi-site and 
multi-season datasets with harmonized comfort indices, 
consistent sensor metadata, and clear contextual variables 
such as occupancy schedules or ventilation strategies. 
When such large-scale data collection is not feasible, 
researchers can still improve reliability through nested 
cross-validation, leakage-safe feature selection, and data 
augmentation or simulation of unobserved conditions. By 
stress-testing models under missing data or sensor drift, 
studies can quantify robustness before deployment.

Another major cause of current shortcomings is the 
limited integration of occupant behavior into predictive 
frameworks. Most models rely heavily on environmental 
variables and treat occupants as passive recipients of 
indoor conditions. Yet evidence from adaptive comfort 
research shows that actions such as window opening, 
clothing adjustment, or use of local fans can substantially 
shift comfort thresholds. A key strategy is to develop 
standardized, low-cost protocols for capturing occupant 
actions, either through simple binary sensors or self-
reports linked to time-stamped environmental data. These 
behavioral event streams can then be incorporated into 
supervised models as lagged or sequential features, or 
through temporal and sequence-aware architectures such 
as LSTMs, temporal CNNs, or hybrid physics-informed 
neural networks. Publishing ablation studies that explicitly 
compare environment-only models with behavior-
enhanced models would help quantify the added value and 
set benchmarks for future work.

A third limitation stems from generalizing across climates 
and building typologies. Most models have been validated 
only in Mediterranean offices, naturally ventilated schools, 
or similar narrow archetypes. This raises the risk that models 
encode climate-specific correlations rather than universal 
principles. Researchers can overcome this by developing 
and sharing multi-climate benchmark datasets with fixed 
training–testing splits, and by reporting performance 
separately for each climate zone and building archetype. 
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Domain adaptation and transfer-learning methods can be 
tested explicitly (for example, training on Mediterranean 
offices and adapting to educational buildings in temperate 
zones) with reported adaptation gains. Model “applicability 
statements” could then state validated Köppen–Geiger zones 
and archetypes, improving transparency for practitioners.

Computational constraints also play a key role. High-
capacity neural networks offer excellent accuracy but may 
be too resource-intensive for real-time, edge-level control. 
Without careful attention to latency, memory, and power, 
these models cannot be integrated into HVAC controllers 
or low-cost sensing platforms. Strategies include model 
compression techniques such as quantization, pruning, or 
knowledge distillation, combined with feature-reduction 
approaches to lower input dimensionality while retaining 
predictive power. Benchmarking models on representative 
embedded hardware, and reporting end-to-end control loop 
metrics such as response time and overshoot, would make 
research outcomes far more actionable for practitioners.

Another widespread shortcoming is the one-sided focus 
on either comfort or energy without explicitly quantifying 
trade-offs. This obscures the true cost of achieving comfort 
gains or energy savings. Future work should adopt multi-
objective optimization frameworks to map Pareto fronts of 
comfort versus energy, and employ standardized comfort 
violation metrics such as unmet PMV or TSV hours. 
Reporting comfort “cost per unit energy saved” and seasonal 
sensitivity analyses would help designers and operators 
choose balanced strategies and compare across studies. This 
approach transforms models from black-box predictors into 
decision-support tools with clear operational implications.

Finally, issues of data governance, privacy, and reproducibility 
constrain the cross-site validation needed for robust 
models. Sharing raw occupant or environmental data across 
institutions is often impractical or unethical. Emerging 
privacy-preserving methods such as federated learning or 
differential privacy can allow multiple sites to train a shared 
model without exchanging raw data. Accompanying open-
source code, baseline models, and clear reporting checklists 
(including dataset splits, leakage tests, and calibration 
metrics) will further strengthen reproducibility and 
accelerate uptake. Together, these strategies form a coherent 
roadmap for converting today’s promising but fragmented 
studies into reliable, scalable tools for building practice. By 
combining broader, higher-quality datasets with behavior-
aware features, multi-climate benchmarking, edge-ready 
model designs, explicit multi-objective optimization, and 
privacy-preserving collaboration, the field can move beyond 
narrow proofs of concept to deliver field-ready, occupant-
centered, energy-efficient control systems. In practical 
terms, this means HVAC systems capable of dynamically 
adapting to both environmental changes and human actions, 
design recommendations grounded in diverse climates 

and typologies, and machine learning models that can be 
deployed even in low-resource settings. Ultimately, such 
advances will help translate the theoretical potential of 
supervised machine learning into widespread real-world 
impact, supporting carbon reduction, improved occupant 
well-being, and the broader goals of sustainable architecture 
and urban development.

CONCLUSION

This study employed a semi-systematic review to examine 
the application of supervised learning approaches in 
thermal comfort prediction and energy optimization within 
the built environment, using a transparent and replicable 
search, and screening process. By categorizing the reviewed 
studies into tree-based models, regression-based models, 
and neural network applications, their unique strengths, 
methodological contributions, and practical applications 
were highlighted.

Tree-based models, such as Random Forest and Gradient 
Boosted Decision Trees, stand out in interpretability and 
feature selection, which makes them effective tools for real-
time decision-making in hybrid systems and IoT-enhanced 
frameworks. Regression-based models, characterized 
by their simplicity and linear focus, are highly suited for 
controlled environments and scenarios requiring efficient 
and scalable solutions. Neural networks demonstrated good 
adaptability and precision, particularly in dynamic, non-
linear scenarios requiring real-time adjustments, such as 
naturally ventilated or smart buildings. Supervised learning 
approaches collectively showed a substantial potential in 
improving building energy efficiency and occupant comfort. 
Neural network models, in particular, consistently delivered 
high accuracy and adaptability, enabling significant energy 
savings while maintaining or enhancing thermal comfort. 
However, tree-based and regression models remain valuable 
alternatives in contexts with constrained computational 
resources or data availability, providing practical and scalable 
solutions. Synthesizing across these strands, several practice-
oriented takeaways emerge:

•	 In practice, selecting the model family to fit the 
operational context yields the best results, with tree 
ensembles balancing accuracy and interpretability in 
feature-rich yet moderately dynamic settings, regression 
suiting simple and transparent control, and ANNs/
PiNNs excelling in strongly non-linear, occupant-
adaptive scenarios.

•	 With appropriate configuration and validation, 
supervised models can deliver measurable energy 
savings without degrading thermal comfort.

•	 Incorporating real-time occupant actions and contextual 
variables improves generalization across climates and 
building typologies.
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•	 Leakage-safe pipelines with repeated nested cross-
validation plus external tests are essential for reliable, 
comparable claims across model families.

•	 Deployment constraints (compute, latency, power, 
maintainability) often favor compact ensembles 
or compressed neural networks on edge hardware, 
supplemented by guardrails and fail-safes for closed-
loop control.

The study identified several critical research gaps and 
methodological limitations that constrain the broader 
application of these techniques. Key gaps include the limited 
integration of real-time occupant behavior, insufficient focus 
on diverse climatic and building typologies, challenges in 
data availability and model robustness, and the trade-offs 
between energy savings and occupant comfort. The lack 
of long-term validation studies and limited integration 
with emerging technologies, such as digital twins and edge 
computing, further underscore the need for advanced 
research efforts. In addition, as a semi-systematic review with 
a defined search scope and standardized inclusion criteria, 
the analysis is inherently bounded by its database coverage 
and screening framework. Although every effort was made 
to ensure transparency and replicability, the reliance on 
a single indexing source and the absence of a formal risk-
of-bias appraisal may have led to the omission of a small 
number of relevant studies. This focused approach was 
adopted to maintain methodological consistency, clarity, 
and reproducibility while minimizing redundancy among 
overlapping indexing platforms. Future reviews may broaden 
the search scope as the field expands and diversifies. 

Acknowledging both research gaps and methodological 
constraints provides a transparent basis for interpreting 
the findings and highlights opportunities for future work 
to develop more inclusive, robust, and scalable machine 
learning-based solutions. As a minimum good-practice 
standard, future studies should report repeated nested 
cross-validation (with all modeling operations inside folds) 
together with an external validation on independent sites 
or time windows, alongside calibration and robustness 
analyses. The practical implications of this research offer 
that machine learning-driven HVAC systems represent 
a transformative approach to sustainable building 
practices, enabling buildings to dynamically adapt to 
changing conditions while balancing energy efficiency 
and human comfort. These systems have the potential to 
reduce energy consumption, lower operational costs, and 
enhance occupant well-being, contributing to global efforts 
toward carbon neutrality and sustainable development. As 
technology and computational capabilities advance, the 
integration of supervised learning in HVAC systems and 
thermal comfort management will likely play an essential 
role in shaping the future of energy-efficient and human-
centered architecture.

Appendix: https://jag.journalagent.com/megaron/abs_files/
MEGARON-02256/MEGARON-02256_(2)_Appendix_Ta-
ble_A1.pdf
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