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and Rayyan-assisted screening, 18 supervised learning articles were identified from an initial 603
records. These articles were categorized into tree-based models, regression-based models and
neural networks. The review identifies critical gaps, such as the insufficient integration of real-
time occupant behavior, limited applicability across diverse climatic conditions, and challenges
in achieving a balance between energy efficiency and occupant comfort. Findings highlight the
strengths of tree-based models in feature selection and real-time decision-making, the simplicity
of regression-based models for controlled environments, and the adaptability of neural networks
in complex, non-linear scenarios. Despite these advancements, limitations such as data scarcity,
computational demands, and the lack of long-term validation persist. Addressing these challenges
is essential for the development of robust and scalable machine learning-driven solutions.
This study provides a roadmap for future research and practical applications, emphasizing the
transformative potential of supervised machine learning techniques in achieving sustainable,
energy-efficient, and occupant-centered building environments.
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INTRODUCTION As heating, ventilation, and air-conditioning (HVAC)

systems account for a significant proportion of energy use
The increasing global demand for energy-efficient and i buildings (Gupta & Deb, 2022), there is a critical need to
sustainable buildings has driven the exploration of develop intelligent control systems capable of maintaining
advanced technologies for optimizing thermal comfort optimal indoor environments while minimizing energy
and reducing energy consumption (Moshood et al., 2024).  costs (Halhoul Merabet et al., 2021). Supervised machine
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learning techniques have emerged as powerful tools in
this domain (Essamlali et al., 2024). They provide data-
driven approaches to predict and manage indoor thermal
conditions. These methods enable dynamic adjustments
in HVAC operations, ensuring a balance between energy
efficiency and occupant comfort across diverse building
typologies and climatic conditions (Zhou et al., 2023).

This study focuses on three supervised machine learning
(ML) families that have demonstrated substantial promise
in addressing challenges related to thermal comfort control
and energy optimization. Researchers aim to enhance the
adaptability and precision of HVAC systems by leveraging
these models. These attributes make them responsive to
both environmental variations and occupant behavior.
Despite their advancements, the application of supervised
machine learning techniques remains an evolving field,
requiring a comprehensive understanding of their strengths,
limitations, and practical implications. To address this need,
a semi-systematic literature review was undertaken using
explicit eligibility criteria, a Web of Science database search,
Rayyan-assisted screening, and structured data extraction.

Aim of the study

The exploration of machine learning in thermal comfort
prediction has produced a wide range of studies, but the
fragmented nature of existing research leaves significant
opportunities for synthesis and further innovation. Several
previous studies have focused on reviewing thermal comfort
prediction studies using machine learning algorithms.
Qavidel Fard et al. (2022) conducted a systematic review
focusing on ML applications in thermal comfort studies,
emphasizing methods, performance, and challenges.
However, their review identified a lack of focus on personal

comfort models and inadequate exploration of real-world
applications, alongside challenges in feature selection and
model evaluation. Similarly, Feng et al. (2022) reviewed
data-driven methods for personal thermal comfort
prediction, addressing experimental design and modeling
techniques but found insufficient attention to inter- and
intra-individual variability and limited integration of online
learning techniques. Another review by Lala & Hagishima
(2022) provided a unique perspective on thermal comfort
for primary schools, focusing on children-specific challenges
such as illogical votes, multiple comfort metrics, and class
imbalance in machine learning prediction studies. Yet, they
emphasized the absence of dedicated machine learning
models for children, indicating a gap in integrating these
insights into broader contexts. Arakawa Martins et al. (2022)
systematically reviewed personal thermal comfort models
but identified limited diversity in climatic conditions,
building typologies, and participant demographics, coupled
with challenges in standardizing predictive frameworks.
Finally, Zhang et al. (2022) critically reviewed machine
learning-based occupancy prediction models, linking energy
efficiency and indoor environmental quality. However,
their analysis highlighted gaps in integrating occupancy
prediction with real-time HVAC optimization and the
need for addressing perceived indoor air quality (IEQ) and
thermal comfort jointly.

These reviews’ findings emphasize the necessity for a review
that synthesizes insights from supervised machine learning
techniques in predicting indoor thermal comfort while
addressing their limitations and bridging the identified
gaps. Table 1 summarizes key review studies, highlighting
their purposes and the research gaps identified. The present
research aims to evaluate the effectiveness of supervised

Table 1. Summary of the recent review papers on machine learning in thermal comfort

Review Study Purpose of the Review

Identified Gaps

(Qavidel Fard et al., 2022)

(Feng et al., 2022)

(Lala & Hagishima, 2022)

(Arakawa Martins et al., 2022)

(Zhang et al., 2022)

Systematic review of ML applications in thermal
comfort to evaluate methods, performance,
and challenges.

Review of data-driven methods for personal
thermal comfort prediction, focusing on
experimental design, data collection, and
modeling techniques.

Comprehensive review of thermal comfort in
primary schools, addressing ML challenges
specific to children.

Systematic review of personal thermal comfort
models with a focus on predictive modeling
processes.

Critical review of ML-based occupancy
prediction models for energy efficiency, air
quality, and thermal comfort.

Lack of focus on personal comfort models,
inadequate exploration of real-world applications,
and challenges in feature selection and model
evaluation.

Insufficient attention to inter- and intra-individual
variability, data quality issues, and limited
integration of online learning techniques.

Absence of dedicated ML models for children,
challenges like illogical votes, and data imbalance
in primary school thermal comfort prediction.

Limited diversity in climate, building types, and
participant demographics; challenges in
standardizing predictive modeling frameworks.

Gaps in integrating occupancy prediction with
real-time HVAC optimization and limited studies
addressing perceived IEQ and thermal comfort
jointly.
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machine learning techniques in optimizing energy use and
maintaining thermal comfort within built environments. By
categorizing and analyzing research articles into three ML
approaches, the study explores methodologies, applications,
and outcomes, seeking to:

Elucidate the contributions of each machine learning
approach to thermal comfort optimization.

Identify and address limitations and inconsistencies in
existing research.

Provide actionable insights to advance sustainable
building practices through machine learning-driven
HVAC systems.

METHODOLOGY

This study adopted a semi-systematic review approach to
balance transparency and reproducibility with a focused
scope on supervised machine learning for indoor thermal
comfort and energy optimization. The review followed a
series of predefined steps to ensure the selection of high-
quality and relevant literature, detailed as follows:

Data source and search strategy: Articles indexed in
the Web of Science Core Collection were selected as the
data source due to its comprehensive indexing of peer-
reviewed scientific publications, ensuring access to high-
impact studies. A database search was performed using the
keywords “Thermal Comfort” and “Machine Learning,
yielding 603 articles, without applying any year limit. This
focused selection ensured methodological consistency and
avoided redundancy across overlapping indexing platforms,
which often contain identical records within this specialized
research area. The choice of a single, high-quality source
also enabled a transparent and reproducible workflow,
emphasizing depth and reliability over breadth of coverage.

Inclusion and Exclusion Criteria: Several inclusion
and exclusion criteria were applied to refine the dataset.
Inclusion criteria were peer-reviewed journal articles
addressing indoor built environments, supervised
machine learning models, and outcomes on indoor
thermal comfort and/or energy demand. The initial
exclusion criteria were review papers, non-English or
non-open-access items, theses/abstracts/grey literature
to maintain the focus on indoor built environments.
The exclusion criteria for the first screening process
were personal comfort systems (PCSs) relying on
physiological data, outdoor thermal comfort (OTC),
vehicle indoor environments, and other non-indoor
built environment research. Then, for the second
screening session, the studies using unsupervised
learning, reinforcement learning, and hybrid ML
methods were excluded. These criteria were established
to ensure reproducibility and enable further research.

Screening: From 603 records, total 354 records were
excluded, which were 60 review studies, 114 proceeding
papers, three non-English studies, and 177 non-open
access papers. The remaining 249 records were imported
into Rayyan, a collaborative systematic review tool, to
enhance the efficiency of the screening process (Ouzzani
et al., 2016). Abstracts of 249 records were screened
based on the aforementioned inclusion and exclusion
criteria. At this stage, 215 articles were excluded because
they did not address supervised learning for indoor built
environments. These comprised 93 studies on personal
comfort systems (PCSs) relying on physiological data,
59 on outdoor thermal comfort (OTC), 36 on vehicle
indoor environments, and 27 on other non-indoor
built environment contexts. This refinement resulted
in 34 research articles focusing on machine learning
techniques applied to thermal comfort models and
energy efficiency. A second round of screening was then
conducted on the full texts of these 34 articles to retain
only those employing supervised learning techniques.
In this stage, 16 articles were excluded: Eight focused on
unsupervised learning methods, five on reinforcement
learning methods, and three on hybrid machine learning
approaches. The second screening produced 18 included
studies specifically employing supervised learning
techniques for indoor thermal comfort (603 > 249 >
34 > 18). The decision to focus on supervised learning
was based on its dominance and preference in the field
(Han et al., 2023), given its ability to handle labeled
data for predictive accuracy and its wide applicability
in real-world HVAC systems. Other machine learning
approaches, including unsupervised and reinforcement
learning, while valuable, were less represented and
often lacked the direct applicability to thermal comfort
optimization within building environments (Zhang et
al,, 2022).

Data extraction and categorization: After screening,
the included studies were first categorized according to
the type of supervised machine learning approach used
to facilitate comparative analysis:

o Tree-Based Models: These models, including
Random Forest and Gradient Boosted Decision
Trees, were evaluated for their interpretability and
robustness in handling diverse datasets.

o Regression-Based Models: Studies focusing on
linear and non-linear regression techniques were
analyzed for their simplicity and adaptability in
predicting thermal comfort indices.

o Neural Network Applications: Advanced neural
network architectures, including Artificial Neural
Networks (ANNs) and Physics-Informed Neural
Networks (PiNNs), were reviewed for their ability to
model complex, non-linear relationships.
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Following this categorization, structured data extraction
was undertaken for each included study in each category
to ensure consistency and comparability. Predefined fields
included context/building type, climate/geographical
setting, dataset size and variables (environmental and
occupant-related parameters), validation method (cross-
validation, field testing, simulation-based), performance
metrics (accuracy, F1-score, MAE, RMSE, energy savings),
and energy/comfort outcomes (PMV, TSV, operative
temperature, optimization levels, comfort improvements).

« Quality Assessment / Risk of Bias: To evaluate the
methodological quality and reliability of the included
studies, the Prediction model Risk of Bias Assessment
Tool (PROBAST) was adapted to the context of
supervised machine learning in thermal comfort and
energy optimization (Wolff et al., 2019). Each study was
independently assessed across four domains, data and
setting (D1), predictors and feature engineering (D2),
outcomes/labels (D3), and analysis (D4), and rated as
low, low-moderate, moderate, or high risk of bias. The
applicability concerns were also rated and recorded
a short justification for each judgment (Appendix
Table Al). This approach ensured transparency and
reproducibility in the evaluation of the included studies.

o Synthesis and comparative analysis: A structured
narrative synthesis was undertaken, organizing the
included studies according to the three supervised
machine learning approach groups and enabling
systematic cross-study comparison of methods and
outcomes. This process allowed the identification of
patterns, methodological differences, and performance
trends across the reviewed studies. The main analytical
dimensions included:

o Adaptability: Assessing the ability of models to
adjust to varying climates, building typologies, and
occupant behaviors in real-time settings.

« Challenges: Identifying specific limitations such as
insufficient real-time data processing or incomplete
integration of occupant behavior.

« Climate influence: Examining how differences in climatic
conditions affected optimization levels, highlighting areas
where machine learning models underperform.

This synthesis and comparative analysis addressed critical
questions such as whether the limitations stemmed from
inadequate real-time data integration or inherent gaps in
capturing occupant behavior. Thus, this approach provides
a deeper understanding of the research landscape and
identifies avenues for further development.

The structured selection process for the reviewed studies is
illustrated in Figure 1, providing a visual representation of
each searching stage, screening, and eligibility assessment,
and categorization phase.

[ Identification of studiesvia WOS ]
= Records excluded before screening
o Records identified via WOS (n=354)
3 (n=603) * 60 review studies;
= Search: “Thermal Comfort” AND * 114 proceedings;
s “Machine Learning”; no year limit - 3 non-English;
S sk 1/ #nonzopen;acoess
= l
Records imported to Rayyan for Records excluded in the abstract
Sereering sereening process
(n=249) (n=215)
* 93 PCS with phsiological data;
* 59 OTCstudies;
* 36 Vehicle environments;
L 7 4 other non-indoor built
2 environment studies
@
Full texts 1 for eligibili s Aniele's excluded in the full text
(n=34) screening process
(n=16)
+ 8 unsupervised learning;
* 5 reinforcement learning;
* 3 hybrid ML study
&
P
- _ ) (Supervised ML b jidscr tharmal. )
° Studies included in the review comfort/energy optimization
3 (n=18) + 6 tree-based models;
£ * 7 regression-based models;
* 5 neural network applications
Ny A

Figure 1. Flow chart of the selection strategy and categori-
zation process.

RESULTS AND DISCUSSION

Categorization of supervised learning approaches
Supervised learning techniques have been widely used
in the field of thermal comfort prediction and energy
optimization within the built environment. These methods
employ labeled data to establish predictive models that
address diverse challenges such as real-time HVAC control,
adaptive thermal comfort management, and efficient
energy use. The reviewed studies are categorized into
three primary approaches: Tree-based models, regression-
based models, and neural network applications. Each
category demonstrates distinct strengths and applications,
from robust feature selection in tree-based models to
the simplicity and interpretability of regression-based
approaches, and the powerful adaptability of neural
networks in handling complex, non-linear datasets. This
section provides a detailed analysis of the selected articles
under these categories, exploring their methodologies,
applications, and outcomes, while also highlighting their
contributions to addressing challenges in thermal comfort
control and energy efficiency.

Tree-Based Models: Tree-based machine learning models
have garnered attention for their ability to process complex
datasets efficiently, offering robust feature selection and
interpretability. This section details the methodologies
and findings of six key studies that utilized tree-based
approaches for thermal comfort and energy optimization.
These studies denote the versatility of models such as
Random Forest (RF), Gradient Boosted Decision Trees
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(GBDT), and Decision Trees (DT) across different thermal
comfort applications. Aparicio-Ruiz et al. focused on
understanding indoor thermal comfort in Mediterranean
climates using RE This study emphasized the importance
of an extended database with 21 variables, including indoor
and outdoor parameters such as CO2 levels and running
mean temperature. By employing RE the researchers
achieved a 5% improvement in accuracy, illustrating the RF's
capacity to handle diverse inputs and optimize conditioning
systems for Mediterranean buildings (Aparicio-Ruiz et al.,
2023). Similarly, Bai et al. compared the performance of RF
and GBDT in predicting thermal preferences based on the
ASHRAE Comfort Database II. Their ensemble learning
approach demonstrated robust results, achieving weighted
Fl1-scores more than 90%. The study also highlighted the
influence of data characteristics like building type and
season on model performance, showcasing the adaptability
of tree-based models in varying contexts (Bai et al., 2022).
On the other hand, Brik et al. integrated RF with Internet
of Things (IoT) frameworks to create a real-time thermal
comfort monitoring system. They achieved a prediction
accuracy of 96% and reduced deviation from setpoints
by 85% using data from a longitudinal study. Their study
illustrated the synergy between IoT technologies and
machine learning, offering insights into energy-efficient
building management (Brik et al., 2022).

Hosamo et al. introduced an innovative application of RF
within a digital twin framework to improve predictive
maintenance and occupant comfort. The integration of
Building Information Modelling (BIM) and real-time
sensor data allowed for accurate detection of HVAC issues,
reducing system failures by 10%. This study underlined

Table 2. Summary of reviewed articles employing tree-based models

the potential of RF in advancing maintenance strategies
and enhancing energy efficiency (Hosamo et al., 2023). In
the study of Lu et al. RF model was applied to a combined
radiant floor and fan coil cooling system, focusing on
predicting operative temperature and energy consumption.
Their findings demonstrated that RF outperformed other
algorithms in error metrics, with reductions of up to 82% in
mean squared error. The study emphasized the importance
of machine learning in optimizing hybrid cooling systems,
particularly in high-demand scenarios (Lu et al., 2024).
Finally, Miao et al. developed an RF-based model tailored
for naturally ventilated educational buildings. The study
identified occupancy and ventilation practices as critical
factors influencing thermal comfort. By leveraging
accessible data, the researchers provided a cost-effective
solution for schools, achieving robust generalization and
practical applicability without the need for extensive sensor
networks (Miao et al., 2023). These studies demonstrate the
versatility and efficacy of tree-based models in addressing
challenges related to thermal comfort and energy
optimization. The details of the methodologies and findings
are summarized in Table 2.

Regression-Based Models: Regression-based models
serve as fundamental tools in predicting thermal comfort
metrics by combining simplicity and interpretability. These
models stand out in analyzing the relationships between
environmental and personal factors with thermal comfort
indices like Predicted Mean Vote (PMV) and Thermal
Sensation Vote (TSV). This section synthesizes seven
determined studies, their methodologies, and findings,
elaborating on their contributions to this field. Abdellatif
et al. presented a hybrid methodology integrating Multiple

Study Model Application

Key Metrics Outcomes

(Aparicio-Ruiz et al., 2023) Random Forest
prediction in

Mediterranean climates

(Bai et al., 2022) RE GBDT

prediction

(Brik et al., 2022) Random Forest

monitoring

(Hosamo et al., 2023) Random Forest

(Lu et al., 2024) Random Forest

prediction

(Miao et al., 2023) Random Forest

Thermal comfort

Thermal preference

Real-time IoT-based
thermal comfort

Digital twin-based
predictive maintenance

Hybrid cooling system
energy and comfort

Educational building
thermal comfort

Accuracy Improvement: ~ Enhanced model
5% performance and variable
relevance identification.

F1-Score: >90% Superior performance of
ensemble models with

expanded datasets.

Accuracy: 96%,
Optimization: 85%

Improved indoor comfort
and real-time optimization

capabilities.
HVAC Failures Reduced:  Enhanced occupant
10% comfort and equipment

lifespan through predictive
strategies.

MSE Improvement:
82%

Significant energy savings
and predictive accuracy in
hybrid cooling systems.

Robust Generalization Cost-effective prediction
models for schools relying

on natural ventilation.
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Linear Regression (MLR) with genetic algorithms to
optimize heating strategies for office buildings. By
employing data from TRNSYS simulations, their approach
achieved a 43% improvement in thermal comfort while
maintaining energy efficiency. The genetic algorithm
optimized heating parameters, demonstrating the utility of
regression models in dynamic control systems (Abdellatif
et al., 2022). Kumar & Kurian (2023) explored real-time
thermal comfort prediction using Bayesian-optimized
regression models. Their study developed predictive tools
for PMV and Standard Effective Temperature (SET),
leveraging automated feature selection techniques like
Neighborhood Component Analysis. This model enhanced
HVAC system responsiveness, yielding significant energy
savings and improved user satisfaction through real-time
environmental adjustments. Another study by Liu & Ma
(2023) proposed an explainable Light Gradient Boosted
Machine (LightGBM) regression model combined with
SHAP analysis to assess thermal comfort across diverse
Chinese climates. Their approach provided interpretable
insights into the interactive effects of building and climatic
variables, facilitating region-specific design optimizations
aligned with energy conservation goal.

Mousavi et al. (2023) utilized meta-additive regression
within a Green Building framework to optimize
residential building envelopes in semi-arid climates.
This study employed DesignBuilder simulations and
statistical optimization to determine the most effective
combinations of envelope parameters. Their methodology
led to substantial annual energy reductions, emphasizing
the adaptability of regression models in passive design
strategies. Park et al. (2024) conducted a field test

integrating MLR within a thermal comfort controller
(TCC) for residential HVAC systems. Their model utilized
mean radiant temperature estimations to achieve real-
time adjustments in HVAC settings, resulting in a 60%
improvement in PMV and over 20% energy savings. This
study highlighted the effectiveness of regression in real-
world applications under dynamic climatic conditions.
Similarly, Sibyan et al. (2022) compared MLR with machine
learning approaches like Naive Bayes classifiers for thermal
comfort prediction in naturally ventilated environments.
The analysis demonstrated MLR’s robustness despite simpler
assumptions, validating its applicability in field studies and
comparative analyses. Finally, Xi et al. (2024) applied linear
regression to assess TSV in traditional Chinese dwellings.
This study integrated field measurements and subjective
surveys, identifying temperature ranges that aligned with
historical and modern thermal comfort requirements. Their
findings underscored the importance of contextual factors,
such as cultural preferences and architectural heritage, in
predictive modeling. These studies collectively underline
the versatility of regression-based models in addressing
thermal comfort challenges across various contexts. The
methodologies and outcomes of these studies are detailed
in Table 3.

Neural Network Applications: Artificial Neural Networks
(ANNs) have emerged as a pivotal tool in advancing
thermal comfort prediction and energy optimization within
building management systems. By effectively modelling
non-linear and complex relationships among environmental
and personal parameters, ANNs demonstrate significant
advantages in handling diverse datasets and achieving high
predictive accuracy. In this section, the methodologies and

Table 3. Summary of reviewed articles employing regression-based models

Study Regression Model Application Key Metrics Outcomes
(Abdellatif et al., 2022) Multiple Linear Heating optimization for ~ <1% Error, Adjusted 43% improvement in
Regression indoor comfort R2:0.9 thermal comfort,
significant energy savings.

(Kumar & Kurian, 2023) Bayesian-Optimized Real-time PMV and High Accuracy, Fast Enhanced HVAC

MLR SET prediction Response efficiency, real-time
adaptability.

(Liu & Ma, 2023) LightGBM Regression ~ Thermal comfort Accuracy with SHAP Improved thermal designs
evaluation across interpretations for regional diversity.
climates

(Mousavi et al., 2023) Meta-Additive Envelope optimization 50% Energy Reduction  Optimal building design

Regression

(Park et al., 2024) Linear Regression

in semi-arid climates

Real-time HVAC control

for energy and comfort
enhancement.

PMV: +60%, Energy
Savings: >20%

Improved comfort and
efficiency in hot-dry

climates.
(Sibyan et al., 2022) Multiple Linear Comparison with ML Higher Prediction Validated regression
Regression methods Accuracy accuracy in field studies.
(Xi et al., 2024) Linear Regression TSV prediction for Accurate TSV Models ~ Novel insights for heritage

heritage dwellings

building thermal comfort.
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findings of five key studies that illustrate the application
of ANNs are presented. Boutahri & Tilioua highlighted
the predictive capabilities of ANNs in forecasting PMV
values with enhanced accuracy, achieving an energy-saving
potential of up to 32%. Their model incorporated real-time
sensor data and was validated through comprehensive
statistical error metrics such as Root Mean Square Error
(RMSE) and Mean Absolute Error (MAE). The study
underscored the adaptability of ANNs in smart buildings
by integrating HVAC systems with predictive controls
to balance energy consumption and occupant comfort
(Boutahri & Tilioua, 2024). Similarly, Park & Woo
investigated feature selection methods combined with
ANN' s to optimize PMV predictions. By utilizing Principal
Component Analysis (PCA) and Best Subset selection,
the research pinpointed the most influential variables
for accurate and efficient PMV computation. The study
achieved an impressive 89.7% accuracy, demonstrating the
efficacy of ANNs in reducing computational loads while
maintaining predictive precision (Park & Woo, 2023).

Pavirani et al. (2024) proposed a hybrid approach by
integrating PiINNs with Monte Carlo Tree Search (MCTS)
algorithms. This innovative combination enabled real-time
control of residential heating systems while maintaining
thermal comfort and reducing energy costs. The PiNNs
incorporated physical constraints into the neural network
model, offering a 7% improvement in thermal comfort and
a 4% reduction in energy costs compared to traditional
black-box neural networks (Pavirani et al., 2024). De
la Hoz-Torres et al. 2024 applied ANNs to develop
adaptive thermal comfort models for naturally ventilated
educational buildings. Their research demonstrated
the superiority of ANN-based models over traditional

PMYV indices by achieving higher accuracy in thermal
sensation predictions. The models were calibrated using
data from a year-long monitoring campaign, revealing the
significant role of adaptive behaviors in thermal comfort
optimization. Lastly, Chegari et al. utilized ANNs within a
surrogate-model framework to design nearly zero-energy
buildings (NZEBs). This multi-objective optimization
approach focused on enhancing thermal comfort and
energy self-sufficiency, achieving an average improvement
of 50% in comfort metrics. The surrogate model reduced
computational requirements while maintaining robust
performance across diverse climatic zones (Chegari et
al, 2022). These studies collectively demonstrate the
transformative potential of ANNs in advancing thermal
comfort and energy optimization strategies. The detailed
outcomes of these studies are given in Table 4.

Comparative Analysis of Energy Optimization and Comfort
The reviewed studies employing supervised machine
learning techniques highlight their significant contributions
to enhancing energy optimization and maintaining
thermal comfort across diverse building typologies and
climates. By comparing the methodologies and results
across 18 selected papers, key insights can be drawn into
the effectiveness and adaptability of these approaches. Tree-
based models such as Random Forest (RF) and Gradient
Boosted Decision Trees (GBDT) demonstrated a strong
capacity for energy optimization, particularly in scenarios
requiring robust feature selection and high interpretability.
For example, Aparicio-Ruiz et al. showed a 5% gain in
accuracy for TSV prediction in Mediterranean offices with
RF by extending the variable set to 21 environmental and
occupant parameters, including CO2 and running mean

Table 4. Summary of reviewed articles employing neural network applications

Study Neural Network Type Application Key Metrics Outcomes
(Boutahri & Tilioua, 2024) ANN PMYV prediction for Accuracy (96.7% R?), Improved thermal comfort
HVAC optimization RMSE and energy savings in
smart buildings.
(Park & Woo, 2023) ANN with PCA PMYV dimension 89.7% Accuracy, PCA Enhanced prediction

reduction and prediction

(Pavirani et al., 2024) Physics-informed NN

Demand response and
heating control

Analysis speed and accuracy by
selecting key PMV

parameters.

Effective control with
reduced computational

-32% MAE, -4% energy
cost

demands using PiNN.
(de la Hoz-Torres et al., ANN Adaptive thermal Improved accuracy over Adaptive models better
2024) comfort in classrooms PMYV, enhanced PMV suited for naturally
(ePMV) ventilated educational
buildings.
(Chegari et al., 2022) ANN Surrogate model for 50% improvement in Multi-objective

NZEB design

comfort metrics optimization enhanced
thermal comfort and

energy efficiency.
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temperature (Aparicio-Ruiz et al., 2023). Similarly, Brik et
al. integrated RF with IoT networks to provide real-time
monitoring and control, reporting 96% prediction accuracy
and an 85% improvement in indoor parameter adjustment,
which translated into faster restoration of comfort after
disturbances (Brik et al., 2022). Lu et al. showed that RF
outperformed CNN, LSTM, SVM, radial basis function
(RBF) and genetic algorithm-backpropagation (GA-BP)
in a hybrid radiant floor/fan-coil cooling testbed, reducing
MSE by 82%, MAE by 43%, and MAPE by 68% compared
with other algorithms while maintaining R>0.99 (Lu et al,,
2024). RF also proved highly scalable in naturally ventilated
schools when combined with class weighting and low-
cost sensor inputs (Miao et al, 2023) highlighting its
robustness under constrained data regimes. These models
distinguish themselves in scenarios requiring immediate
decision-making, such as hybrid cooling systems and
educational buildings, by balancing energy savings with
real-time thermal comfort adjustments. However, they are
less suited to highly complex datasets with dynamic, non-
linear interactions, as these require more adaptive learning
techniques.

Regression-based models, while simpler, provided
useful information for the linear relationships between
environmental variables and thermal comfort indices like
PMV and TSV, especially under controlled conditions.
Abdellatif et al. utilized MLR with a genetic optimizer,
forecasting indoor heating with lower than 1% error
(adjusted R2=0.9) and achieving 43% improvement in
thermal comfort over a conventional strategy (Abdellatif
et al., 2022). Kumar & Kurian’s (2023) Bayesian-optimized
regression achieved rapid, real-time PMV and SET
predictions and temperature-setpoint control, delivering
measurable energy savings and higher user satisfaction in
HVAC offices. Park et al. (2024) demonstrated in a field test
that integrating mean radiant temperature into a thermal
comfort controller yielded a 60% reduction in PMV
unmet hours and more than 20% energy savings. Yet, the
inherent simplicity of regression-based approaches limited
its performance in contexts with large adaptive variability
or strong non-linear effects, such as naturally ventilated
buildings or heritage structures, where RMSEs and comfort
gains lagged behind tree-based or ANN approaches.

Neural network applications stood out for their adaptability
and precision in handling complex, non-linear datasets. This
makes them highly effective in real-time thermal comfort
control. For instance, Boutahri & Tilioua achieved a R2 of
96.7% and significant energy savings (nearly 32%) using
ANNGs for PMV forecasting in smart buildings, demonstrating
significant energy savings without compromising occupant
comfort (Boutahri & Tilioua, 2024). De la Hoz-Torres et
al. created adaptive ANN comfort models for naturally
ventilated educational buildings that outperformed
traditional methods by integrating real-time environmental

and occupant data (de la Hoz-Torres et al., 2024). Chegari et
al’s ANN surrogate model for nearly zero-energy buildings
improved thermal comfort metrics by nearly 50% while
reducing energy demand substantially (Chegari et al., 2022),
and Pavirani et al. (2024) showed that a physics-informed
neural network (PiNN) coupled with Monte Carlo Tree
Search produced 32% lower MAE in thermal forecasting, 7%
comfort improvement and 4% energy cost reduction over
a black-box NN (Pavirani et al., 2024). Park & Woo (2023)
further demonstrated that combining PCA and best-subset
selection with ANN achieved 89.7% accuracy on reduced-
dimension PMYV, cutting computational load without
sacrificing predictive precision. These examples show that,
although computationally demanding, neural networks
excel in contexts requiring adaptation to occupant behavior,
dynamic climates and multi-objective energy-comfort
balance.

Cross-model comparisons across the 18 studies reveal a
clear hierarchy of suitability under different operational
and climatic conditions. Tree-based ensembles (RE
GBDT, LightGBM) provide the most acceptable balance
of predictive accuracy, interpretability and computational
efficiency in feature-rich but moderately dynamic settings,
particularly hybrid HVAC systems, IoT deployments
and digital-twin maintenance frameworks. For example,
RF reduced MSE by 82 % and MAE by 43% in a hybrid
radiant-floor/fan-coil system (Lu et al, 2024) and
maintained R2>0.99, while class-weighted RF models in
naturally ventilated schools achieved robust performance
without dense sensor networks (Miao et al., 2023). These
results indicate that tree-based methods are especially
advantageous where real-time decisions must be combined
with variable importance screening and low-latency
response. Regression-based approaches, though inherently
linear, remain valuable when data complexity is low and
model transparency is essential. They excel in controlled
HVAC settings, offering fast convergence and interpretable
parameters, as demonstrated by Abdellatif et al. (less
than 1% forecast error and 43% comfort improvement)
and Park et al. (2024) (60% fewer unmet PMV hours and
more than 20% energy savings) in field trials. However,
the comparative RMSE and comfort gains in naturally
ventilated or heritage contexts consistently lag behind
tree-based or ANN approaches, underscoring their limited
capacity to model adaptive occupant behavior and multi-
factor interactions. Neural networks and hybrid physics-
informed variants clearly deliver the lowest RMSE and
the highest comfort gains in real-time, adaptive contexts
such as naturally ventilated schools, heritage dwellings
and demand-response heating control. Boutahri & Tilioua
reported R2 of nearly 0.97 and approximately 32% of energy
savings; Chegari et al. achieved about 50% improvement
in comfort metrics in nearly zero-energy buildings; and
Pavirani et al. (2024) demonstrated 32% lower MAE, 7%
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comfort gain and 4% cost reduction with PiNN-based
control. Park & Woo (2023) further showed that feature
selection (PCA, Best Subset) enables ANNSs to reach nearly
90% accuracy with reduced input dimensions, alleviating
computational burden while retaining predictive power.

To further clarify these performance relationships, a
visual synthesis was developed based on representative
quantitative outcomes reported across the reviewed studies.
Figure 2 provides a comparative summary of these results,
emphasizing the relative patterns of error reduction,
energy savings, and comfort accuracy among tree-based,
regression-based, and neural-network approaches. The
figure presents an indicative comparison, as it reflects
the characteristic performance ranges drawn from key
representative works (Aparicio-Ruiz et al., 2023; Bai et al.,
2022; Brik et al., 2022; Lu et al., 2024; Miao et al., 2023;
Abdellatif et al., 2022; Kumar & Kurian, 2023; Park et al,,
2024; Boutahri & Tilioua, 2024; Chegari et al., 2022; Pavirani
et al., 2024; de la Hoz-Torres et al., 2024). Displayed values
illustrate the relative magnitude of error reduction, energy
savings, and comfort accuracy reported in the literature.

Collectively, these findings show that ANNs outperform
tree-based and regression methods when non-linearity,
occupant adaptation and multi-objective energy-comfort
balance dominate. Across all model types, integrating real-
time occupant behavior and environmental data emerged as
the single strongest predictor of stable accuracy and energy
savings. Studies omitting such inputs consistently reported
higher errors or weaker generalization. This synthesis
demonstrates that supervised learning approaches are not
interchangeable but rather scenario-specific tools:

o RFandLightGBM excel in rapid, interpretable decisions
with heterogeneous data streams;

o regression-based models are suited to stable, quasi-
linear regimes;

o ANNsorPiNNsareindispensable for non-linear, occupant-
centered and multi-objective optimization contexts.

100

Performance (%)

Neural Network

Tree-Based

Regression-Based
Model Family
W Error Reduction (%)

Bl Energy Savings (%) [ Comfort Accuracy (%)

Figure 2. Comparative performance synthesis of super-
vised learning model families.

Identified Research Gaps

While supervised machine learning techniques have
demonstrated significant potential in advancing energy
optimization and thermal comfort within the built
environment, several research gaps remain, limiting their
widespread application and effectiveness. The review of
selected studies reveals critical areas that require further
investigation to address current limitations and advance
the state of the art.

Integration of Real-Time Occupant Behavior

Many studies, particularly those employing regression-
based and tree-based models, fail to fully integrate real-time
occupant behavior into their predictive frameworks. For
instance, models developed by Bai et al. and Aparicio-Ruiz
et al. relied heavily on static environmental parameters,
overlooking dynamic behavioral patterns such as adaptive
actions or occupancy changes (Aparicio-Ruiz et al., 2023;
Bai et al., 2022). This gap suggests the need for models that
incorporate occupant interactions with their environments,
particularly in naturally ventilated or mixed-mode
buildings. To move the field forward, future work should (i)
develop standardized behavior taxonomies (e.g., window/
door operations, clothing adjustment, local fan/heater use)
and minimal sensing protocols that can be replicated across
buildings; (ii) fuse occupant-event streams with IEQ data
for sequence-aware models (e.g., RF/LightGBM with lag
features; LSTM/Temporal CNNs; hybrid PiNNs) and report
incremental error reduction attributable to behavior; and
(iii) publish ablation studies that quantify how much each
behavior class improves RMSE/MAE and energy-comfort
trade-offs. Such studies would directly test, in the same
manner as Miao et al. (2023) and Park et al. (2024), whether
adding behavior signals yields statistically significant gains
over environment-only baselines.

Limited Focus on Diverse Climates and Building Typologies

The studies predominantly address specific climates or
building types, such as Mediterranean climates (Aparicio-
Ruizetal., 2023) or educational buildings (Miao et al., 2023).
Few have extended their applications to a broader range of
climates or typologies, such as heritage buildings or high-
performance green buildings. This limitation restricts the
generalizability and scalability of the findings, underlining
the need for research exploring diverse climatic and
architectural contexts. A community benchmark of multi-
climate, multi-typology datasets (e.g., classrooms, offices,
heritage dwellings, NZEBs) with harmonized labels (PMV/
TSV/ePMV) and common splits for external validation
is recommended. Protocols should require reporting
per-climate and per-typology performance, enabling fair
cross-study comparisons similar to Liu & Ma, 2023 and
Xi et al. (2024). Model cards should include “applicability
statements” that explicitly state validated Koppen-Geiger
zones and building archetypes.
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Data Scarcity and Model Robustness

Several studies highlighted the challenges of acquiring high-
quality, comprehensive datasets. For instance, Hosamo et
al. 2023 and Brik et al. 2022 relied on IoT networks, which,
while effective, are resource-intensive and not universally
accessible. Additionally, many models were tested on
limited datasets, raising concerns about their robustness and
applicability in real-world scenarios. Future studies should
focus on developing models that are robust to incomplete
or noisy data and leverage innovative data augmentation
techniques. Concrete next steps include: (i) Adopting
nested cross-validation and leakage-safe feature selection
to improve reliability across all three families (as issues
were noted in multiple papers); (ii) stress-test models under
missingness and sensor drift; and (iii) employing transfer
learning/domain adaptation between climates and building
types (e.g., training in Mediterranean offices and adapting
to NV schools) with explicit reporting of adaptation gains.
Open baselines should include LightGBM/RE linear
models, and at least one ANN to anchor robustness claims.

Evaluation practice deficiencies

Across the corpus, nested cross-validation and external
validation were uncommon. When hyper-parameter
tuning, feature selection, or preprocessing (imputation,
scaling, resampling) are performed outside a nested scheme
or on the full dataset, information leakage can inflate
accuracy and understate uncertainty. Likewise, evaluating
only on the same sites or periods used for development
risks optimism and weakens claims of generalizability.
Minimum leakage-safe practice should include repeated
nested k-fold CV (all modeling operations confined to
inner folds) and an external test via site-out or time-split
protocols (different buildings, seasons, or terms). Reporting
should add calibration metrics, fold-wise variance, and
failure modes observed under robustness checks. Adopting
these standards will immediately improve the credibility
and comparability of results across model families.

Real-Time Processing and Adaptability

Neural network-based studies, such as those by Boutahri
& Tilioua and De la Hoz-Torres et al., demonstrated strong
adaptability but often required substantial computational
resources (Boutahri & Tilioua, 2024; de la Hoz-Torres et
al., 2024). These models struggle with real-time processing
in low-resource environments, particularly in remote or
economically constrained areas. Addressing this limitation
by optimizing algorithms for computational efficiency or
leveraging edge computing could make these methods
more accessible and practical. Future research should (i)
benchmark latency, memory, and power on representative
edge hardware; (ii) evaluate model compression
(quantization/pruning/knowledge distillation) and feature
reduction (as in Park & Woo, 2023) with comfort/energy
accuracy retained; and (iii) report end-to-end control-loop

stability (response time to setpoint changes, overshoot/
undershoot) alongside prediction metrics.

Beyond raw accuracy, the real-world applicability of ANN/
PiNN approaches is shaped by total cost of ownership and
operational risk. Training often depends on specialized
accelerators and curated pipelines, while inference on site
can exceed the latency, memory, and power envelopes of
legacy BMS or low-cost edge controllers; cloud off-loading
adds recurring costs, privacy/compliance concerns, and
network fragility. Scaling across buildings also requires
site-specific calibration and continuous monitoring for
drift, with nontrivial data quality checks, re-training,
versioning, and rollbacks. Limited transparency can slow
operator troubleshooting when comfort or IAQ alarms
trigger, reducing trust compared with simpler, interpretable
controllers. A pragmatic stance is to prefer compact tree
ensembles or linear controllers when ANN gains are
marginal or budgets are constrained, reserving ANN/
PiNN solutions for strongly non-linear, occupant-adaptive
contexts where demonstrated energy/comfort benefits
outweigh compute and maintenance costs. When ANNs
are deployed, studies should include simple guardrails on
set-point changes, document fail-safe modes for sensor/
connectivity faults, and report measured latency, memory,
and power for the compressed/distilled model on the target
edge device to demonstrate field readiness.

Balancing Energy Savings with Thermal Comfort

While energy optimization is an important focus, few studies
explicitly quantify the trade-offs between energy savings
and thermal comfort. For example, the works by Kumar &
Kurian (2023) and Mousavi et al. (2023) emphasized energy
savings but provided limited insights into how these savings
impact occupant comfort under varying conditions. Future
research should aim to establish a clearer balance between
these objectives, incorporating adaptive comfort models
that prioritize human well-being without significant energy
penalties. For explicit multi-objective formulations with
Pareto fronts (comfort vs. kWh/cost), reporting dominated
vs. non-dominated solutions and sensitivity to seasonal/
occupancy regimes is beneficial. Studies like Pavirani
et al. (2024) and Chegari et al. (2024) provide templates;
forthcoming work should standardize comfort violation
metrics (e.g., unmet PMV/TSV hours, ePMV bands) and
quantify comfort “cost” per unit energy saved.

Integration with Emerging Technologies

Most studies reviewed did not explore the integration of
supervised learning techniques with emerging technologies
such as digital twins, advanced IoT frameworks, or
blockchain for data security and decentralization. The work
by Hosamo et al. (2023) on digital twins stands as a notable
exception but highlights the potential for combining
machine learning with advanced technologies to enhance
predictive accuracy, energy efficiency, and comfort
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management. Future work should couple calibrated digital
twins with supervised learning for fault diagnostics and
proactive control, evaluating whether twin-in-the-loop
supervision reduces failure rates and comfort violations
beyond RF-only baselines (as hinted by Hosamo et al,
2023). Data governance should be addressed via privacy-
preserving pipelines (federated learning, differential
privacy) to enable cross-site generalization without sharing
raw occupant data.

Long-Term Validation Studies

Many studies evaluated their models using short-term
datasets or simulations, with limited validation in real-
world, long-term operational settings. For example, Lu et
al. (2024) demonstrated energy savings in hybrid cooling
systems but lacked long-term empirical data to substantiate
these findings under varying operational conditions.
Longitudinal studies that track model performance over
extended periods are needed to validate their reliability and
effectiveness. More than 12-month deployments spanning
seasons and occupancy cycles, with pre-registered analysis
plans, drift detection, and periodic re-calibration rules
are recommended. Reports should include durability of
gains (R2/MAE stability, comfort violations, energy bills)
and failure mode analyses (sensor outages, occupancy
anomalies).

Equity and Accessibility Considerations

A recurring gap is the lack of focus on making these
technologies accessible in economically constrained
or developing regions. Models relying on high-cost
infrastructure, such as IoT networks or advanced
computational systems, are less applicable in these settings.
Research aimed at creating cost-effective and scalable
solutions, like the RF-based model by Miao et al. (2023),
could address this inequity. Priorities include low-cost
sensing kits, sparse-feature models that maintain accuracy
with minimal inputs, and edge-deployable controllers.
Studies should report a “cost-to-accuracy” curve and
provide open designs/bills of materials so that public
schools and small offices can reproduce the results.

In sum, the empirical patterns across the 18 studies suggest
a pathway for targeted progress: (1) Add behavior signals
and temporal structure to supervised models; (2) validate
across climates/typologies using shared benchmarks;
(3) enforce leakage-safe evaluation (nested CV, external
tests) and robustness checks; (4) operationalize real-time
constraints on edge hardware; (5) optimize explicitly on
the comfort-energy Pareto frontier; (6) integrate digital-
twin supervision and privacy-preserving data pipelines;
(7) extend evaluations to multi-season deployments; and
(8) prioritize low-cost, reproducible solutions. Addressing
these items will convert today’s promising but fragmented
results into generalizable, field-ready ML frameworks that
reliably balance energy efficiency and occupant comfort.

Strategies for Progress: Practical Implications

The limitations identified in Section 3.3 are not isolated
shortcomings but stem from recurring structural and
methodological challenges within the current research
landscape. Recognizing the underlying reasons for these
shortcomings and proposing practical strategies to address
them can accelerate progress in supervised machine
learning for thermal comfort and energy efficiency. A first
and persistent limitation arises from the restricted data
coverage and quality of existing studies. Many models are
developed from single buildings, limited climates, or short
monitoring periods. This narrow scope limits the diversity
of environmental conditions, occupant behaviors, and
building typologies captured in the datasets. As a result,
models often lack external validity and show performance
drops when applied to new settings. Addressing this
gap requires coordinated efforts to build multi-site and
multi-season datasets with harmonized comfort indices,
consistent sensor metadata, and clear contextual variables
such as occupancy schedules or ventilation strategies.
When such large-scale data collection is not feasible,
researchers can still improve reliability through nested
cross-validation, leakage-safe feature selection, and data
augmentation or simulation of unobserved conditions. By
stress-testing models under missing data or sensor drift,
studies can quantify robustness before deployment.

Another major cause of current shortcomings is the
limited integration of occupant behavior into predictive
frameworks. Most models rely heavily on environmental
variables and treat occupants as passive recipients of
indoor conditions. Yet evidence from adaptive comfort
research shows that actions such as window opening,
clothing adjustment, or use of local fans can substantially
shift comfort thresholds. A key strategy is to develop
standardized, low-cost protocols for capturing occupant
actions, either through simple binary sensors or self-
reports linked to time-stamped environmental data. These
behavioral event streams can then be incorporated into
supervised models as lagged or sequential features, or
through temporal and sequence-aware architectures such
as LSTMs, temporal CNNs, or hybrid physics-informed
neural networks. Publishing ablation studies that explicitly
compare environment-only models with behavior-
enhanced models would help quantify the added value and
set benchmarks for future work.

A third limitation stems from generalizing across climates
and building typologies. Most models have been validated
only in Mediterranean offices, naturally ventilated schools,
or similar narrow archetypes. This raises the risk that models
encode climate-specific correlations rather than universal
principles. Researchers can overcome this by developing
and sharing multi-climate benchmark datasets with fixed
training-testing splits, and by reporting performance
separately for each climate zone and building archetype.
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Domain adaptation and transfer-learning methods can be
tested explicitly (for example, training on Mediterranean
offices and adapting to educational buildings in temperate
zones) with reported adaptation gains. Model “applicability
statements” could then state validated Kppen-Geiger zones
and archetypes, improving transparency for practitioners.

Computational constraints also play a key role. High-
capacity neural networks offer excellent accuracy but may
be too resource-intensive for real-time, edge-level control.
Without careful attention to latency, memory, and power,
these models cannot be integrated into HVAC controllers
or low-cost sensing platforms. Strategies include model
compression techniques such as quantization, pruning, or
knowledge distillation, combined with feature-reduction
approaches to lower input dimensionality while retaining
predictive power. Benchmarking models on representative
embedded hardware, and reporting end-to-end controlloop
metrics such as response time and overshoot, would make
research outcomes far more actionable for practitioners.

Another widespread shortcoming is the one-sided focus
on either comfort or energy without explicitly quantifying
trade-offs. This obscures the true cost of achieving comfort
gains or energy savings. Future work should adopt multi-
objective optimization frameworks to map Pareto fronts of
comfort versus energy, and employ standardized comfort
violation metrics such as unmet PMV or TSV hours.
Reporting comfort “cost per unit energy saved” and seasonal
sensitivity analyses would help designers and operators
choose balanced strategies and compare across studies. This
approach transforms models from black-box predictors into
decision-support tools with clear operational implications.

Finally, issues of data governance, privacy, and reproducibility
constrain the cross-site validation needed for robust
models. Sharing raw occupant or environmental data across
institutions is often impractical or unethical. Emerging
privacy-preserving methods such as federated learning or
differential privacy can allow multiple sites to train a shared
model without exchanging raw data. Accompanying open-
source code, baseline models, and clear reporting checklists
(including dataset splits, leakage tests, and calibration
metrics) will further strengthen reproducibility and
accelerate uptake. Together, these strategies form a coherent
roadmap for converting today’s promising but fragmented
studies into reliable, scalable tools for building practice. By
combining broader, higher-quality datasets with behavior-
aware features, multi-climate benchmarking, edge-ready
model designs, explicit multi-objective optimization, and
privacy-preserving collaboration, the field can move beyond
narrow proofs of concept to deliver field-ready, occupant-
centered, energy-efficient control systems. In practical
terms, this means HVAC systems capable of dynamically
adapting to both environmental changes and human actions,
design recommendations grounded in diverse climates

and typologies, and machine learning models that can be
deployed even in low-resource settings. Ultimately, such
advances will help translate the theoretical potential of
supervised machine learning into widespread real-world
impact, supporting carbon reduction, improved occupant
well-being, and the broader goals of sustainable architecture
and urban development.

CONCLUSION

This study employed a semi-systematic review to examine
the application of supervised learning approaches in
thermal comfort prediction and energy optimization within
the built environment, using a transparent and replicable
search, and screening process. By categorizing the reviewed
studies into tree-based models, regression-based models,
and neural network applications, their unique strengths,
methodological contributions, and practical applications
were highlighted.

Tree-based models, such as Random Forest and Gradient
Boosted Decision Trees, stand out in interpretability and
feature selection, which makes them effective tools for real-
time decision-making in hybrid systems and IoT-enhanced
frameworks. Regression-based models, characterized
by their simplicity and linear focus, are highly suited for
controlled environments and scenarios requiring efficient
and scalable solutions. Neural networks demonstrated good
adaptability and precision, particularly in dynamic, non-
linear scenarios requiring real-time adjustments, such as
naturally ventilated or smart buildings. Supervised learning
approaches collectively showed a substantial potential in
improving building energy efficiency and occupant comfort.
Neural network models, in particular, consistently delivered
high accuracy and adaptability, enabling significant energy
savings while maintaining or enhancing thermal comfort.
However, tree-based and regression models remain valuable
alternatives in contexts with constrained computational
resources or data availability, providing practical and scalable
solutions. Synthesizing across these strands, several practice-
oriented takeaways emerge:

o In practice, selecting the model family to fit the
operational context yields the best results, with tree
ensembles balancing accuracy and interpretability in
feature-rich yet moderately dynamic settings, regression
suiting simple and transparent control, and ANNSs/
PiNNs excelling in strongly non-linear, occupant-
adaptive scenarios.

o With appropriate configuration and validation,
supervised models can deliver measurable energy
savings without degrading thermal comfort.

+ Incorporating real-time occupantactions and contextual
variables improves generalization across climates and
building typologies.
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o Leakage-safe pipelines with repeated nested cross-
validation plus external tests are essential for reliable,
comparable claims across model families.

o Deployment constraints (compute, latency, power,
maintainability) often favor compact ensembles
or compressed neural networks on edge hardware,
supplemented by guardrails and fail-safes for closed-
loop control.

The study identified several critical research gaps and
methodological limitations that constrain the broader
application of these techniques. Key gaps include the limited
integration of real-time occupant behavior, insufficient focus
on diverse climatic and building typologies, challenges in
data availability and model robustness, and the trade-offs
between energy savings and occupant comfort. The lack
of long-term validation studies and limited integration
with emerging technologies, such as digital twins and edge
computing, further underscore the need for advanced
research efforts. In addition, as a semi-systematic review with
a defined search scope and standardized inclusion criteria,
the analysis is inherently bounded by its database coverage
and screening framework. Although every effort was made
to ensure transparency and replicability, the reliance on
a single indexing source and the absence of a formal risk-
of-bias appraisal may have led to the omission of a small
number of relevant studies. This focused approach was
adopted to maintain methodological consistency, clarity,
and reproducibility while minimizing redundancy among
overlapping indexing platforms. Future reviews may broaden
the search scope as the field expands and diversifies.

Acknowledging both research gaps and methodological
constraints provides a transparent basis for interpreting
the findings and highlights opportunities for future work
to develop more inclusive, robust, and scalable machine
learning-based solutions. As a minimum good-practice
standard, future studies should report repeated nested
cross-validation (with all modeling operations inside folds)
together with an external validation on independent sites
or time windows, alongside calibration and robustness
analyses. The practical implications of this research offer
that machine learning-driven HVAC systems represent
a transformative approach to sustainable building
practices, enabling buildings to dynamically adapt to
changing conditions while balancing energy efliciency
and human comfort. These systems have the potential to
reduce energy consumption, lower operational costs, and
enhance occupant well-being, contributing to global efforts
toward carbon neutrality and sustainable development. As
technology and computational capabilities advance, the
integration of supervised learning in HVAC systems and
thermal comfort management will likely play an essential
role in shaping the future of energy-efficient and human-
centered architecture.

Appendix: https://jagjournalagent.com/megaron/abs files/
MEGARON-02256/MEGARON-02256 (2) Appendix Ta-
ble Al.pd,

ETHICS: There are no ethical issues with the publication of
this manuscript.

PEER-REVIEW: Externally peer-reviewed.

CONFLICT OF INTEREST: The authors declared no po-
tential conflicts of interest with respect to the research, au-
thorship, and/or publication of this article.

FINANCIAL DISCLOSURE: The authors declared that
this study has received no financial support.

REFERENCES

Abdellatif, M., Chamoin, J., Nianga, J. M., & Defer, D.
(2022). A thermal control methodology based on
a machine learning forecasting model for indoor
heating. Energy and Buildings, 255, 111692. https://
doi.org/10.1016/j.enbuild.2021.111692

Aparicio-Ruiz, P, Barbadilla-Martin, E., Guadix, J., & Ne-
vado, J. (2023). Analysis of variables affecting indoor
thermal comfort in Mediterranean climates using
machine learning. Buildings, 13(9), 2215. https://
doi.org/10.3390/buildings13092215

Arakawa Martins, L., Soebarto, V., & Williamson, T. (2022).
A systematic review of personal thermal comfort
models. Building and Environment, 207, 108502.
https://doi.org/10.1016/j.buildenv.2021.108502

Bai, Y, Liu, K., & Wang, Y. (2022). Comparative analy-
sis of thermal preference prediction performance
in different conditions using ensemble learning
models based on ASHRAE Comfort Database II.
Building and Environment, 223, 109462. https://doi.
org/10.1016/j.buildenv.2022.109462

Boutahri, Y., & Tilioua, A. (2024). Machine learning-based
predictive model for thermal comfort and ener-
gy optimization in smart buildings. Results in En-
gineering, 22, 102148. https://doi.org/10.1016/j.
rineng.2024.102148

Brik, B., Esseghir, M., Merghem-Boulahia, L., & Hentati, A.
(2022). Providing convenient indoor thermal com-
fort in real-time based on energy-efficiency IoT net-
work. Energies, 15(3), 808. https://doi.org/10.3390/
en15030808

Chegari, B., Tabaa, M., Simeu, E., Moutaouakkil, F, &
Medromi, H. (2022). An optimal surrogate-mod-
el-based approach to support comfortable and near-
ly zero energy buildings design. Energy, 248, 123584.
https://doi.org/10.1016/j.energy.2022.123584

de la Hoz-Torres, M. L., Aguilar, A. ], Ruiz, D. P, &
Martinez-Aires, M. D. (2024). An investigation of
indoor thermal environments and thermal comfort


https://jag.journalagent.com/megaron/abs_files/MEGARON-02256/MEGARON-02256_(2)_Appendix_Table_A1.pdf
https://jag.journalagent.com/megaron/abs_files/MEGARON-02256/MEGARON-02256_(2)_Appendix_Table_A1.pdf
https://jag.journalagent.com/megaron/abs_files/MEGARON-02256/MEGARON-02256_(2)_Appendix_Table_A1.pdf

Megaron, Vol. 20, No. 3, pp. 418-432, September 2025

431

in naturally ventilated educational buildings. Jour-
nal of Building Engineering, 84, 108677. https://doi.
org/10.1016/j.jobe.2024.108677

Essamlali, I., Nhaila, H., & El Khaili, M. (2024). Super-
vised machine learning approaches for predicting
key pollutants and for the sustainable enhance-
ment of urban air quality: A systematic review.
Sustainability, 16(3), 976. https://doi.org/10.3390/
sul6030976

Feng, Y., Liu, S., Wang, ., Yang, ], Jao, Y. L., & Wang, N.
(2022). Data-driven personal thermal comfort pre-
diction: A literature review. Renewable and Sus-
tainable Energy Reviews, 161, 112357. https://doi.
org/10.1016/j.rser.2022.112357

Gupta, V., & Deb, C. (2022). Energy retrofit analysis
for an educational building in Mumbai. Sustain-
able Futures, 4, 100096. https://doi.org/10.1016/j.
sftr.2022.100096

Halhoul Merabet, G., Essaaidi, M., Ben Haddou, M., Qolo-
many, B,, Qadir, J., Anan, M., Al-Fuqaha, A., Abid,
M. R., & Benhaddou, D. (2021). Intelligent build-
ing control systems for thermal comfort and en-
ergy-efficiency: A systematic review of artificial
intelligence-assisted techniques. Renewable and Sus-
tainable Energy Reviews, 144, 110969. https://doi.
org/10.1016/j.rser.2021.110969

Han, X,, Hu, Z,, Li, C, Wu, ], Li, C, & Sun, B. (2023).
Prediction of human thermal comfort preference
based on supervised learning. Journal of Thermal
Biology, 112, 103484. https://doi.org/10.1016/j.jther-
bi0.2023.103484

Hosamo, H. H., Nielsen, H. K., Kraniotis, D., Svennevig, P.
R., & Svidt, K. (2023). Improving building occupant
comfort through a digital twin approach: A Bayesian
network model and predictive maintenance meth-
od. Energy and Buildings, 288, 112992. https://doi.
org/10.1016/j.enbuild.2023.112992

Kumar, T. M. S., & Kurian, C. P. (2023). Real-time data
based thermal comfort prediction leading to tem-
perature setpoint control. Journal of Ambient Intelli-
gence and Humanized Computing, 14(9), 12049-60.
https://doi.org/10.1007/512652-022-03754-8

Lala, B., & Hagishima, A. (2022). A review of thermal
comfort in primary schools and future challenges
in machine learning-based prediction for children.
Buildings, 12(11), 2007. https://doi.org/10.3390/
buildings12112007

Liu, H., & Ma, E. (2023). An explainable evaluation mod-
el for building thermal comfort in China. Build-
ings, 13(12), 3107. https://doi.org/10.3390/build-
ings13123107

Lu, S., Cui, M., Gao, B, Liu, J., Ni, ], Liu, J., & Zhou, S.
(2024). A comparative analysis of machine learn-
ing algorithms in predicting the performance of a

combined radiant floor and fan coil cooling sys-
tem. Buildings, 14(6), 1659. https://doi.org/10.3390/
buildings14061659

Miao, S., Gangolells, M., & Tejedor, B. (2023). Data-driven
model for predicting indoor air quality and thermal
comfort levels in naturally ventilated educational
buildings using easily accessible data for schools.
Journal of Building Engineering, 80, 108001. https://
doi.org/10.1016/j.jobe.2023.108001

Moshood, T. D., Nawanir, G., Lee, C. K., & Fauzi, M. A.
(2024). Toward sustainability and resilience with In-
dustry 4.0 and Industry 5.0. Sustainable Futures, 8,
100349. https://doi.org/10.1016/j.sftr.2024.100349

Mousavi, S., Gheibi, M., Waclawek, S., Smith, N. R., Ha-
jiaghaei-Keshteli, M., & Behzadian, K. (2023).
Low-energy residential building optimisation for
energy and comfort enhancement in semi-arid
climate conditions. Energy Conversion and Man-
agement, 291, 117264. https://doi.org/10.1016/j.
enconman.2023.117264

Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagar-
mid, A. (2016). Rayyan—a web and mobile app for
systematic reviews. Systematic Reviews, 5(1), 210.
https://doi.org/10.1186/s13643-016-0384-4

Park, ], Kim, T., Kim, D., Alghimlas, E, AlRagom, E, Choi,
H., & Cho, H. (2024). Field test of machine-learning
based mean radiant temperature estimation meth-
ods for thermal comfort-integrated air-conditioning
control improvement and energy savings. Energy
Reports, 11, 5682-702. https://doi.org/10.1016/].
egyr.2024.05.040

Park, K. Y., & Woo, D. O. (2023). PMV dimension reduc-
tion utilizing feature selection method: Comparison
study on machine learning models. Energies, 16(5),
2419. https://doi.org/10.3390/en16052419

Pavirani, F, Gokhale, G., Claessens, B., & Develder, C.
(2024). Demand response for residential building
heating: Effective Monte Carlo Tree Search con-
trol based on physics-informed neural networks.
Energy and Buildings, 311, 114161. https://doi.
org/10.1016/j.enbuild.2024.114161

Qavidel Fard, Z., Zomorodian, Z. S., & Korsavi, S. S. (2022).
Application of machine learning in thermal com-
fort studies: A review of methods, performance
and challenges. Energy and Buildings, 256, 111771.
https://doi.org/10.1016/j.enbuild.2021.111771

Sibyan, H., Svajlenka, J., Hermawan, H., Faqih, N., & Ar-
rizqi, A. N. (2022). Thermal comfort prediction ac-
curacy with machine learning between regression
analysis and naive Bayes classifier. Sustainability,
14(23), 15663. https://doi.org/10.3390/su142315663

Wolff, R. E, Moons, K. G. M,, Riley, R. D., Whiting, P. E,
Westwood, M., Collins, G. S., Reitsma, J. B., Klei-
jnen, J., & Mallett, S. (2019). PROBAST: A tool to



432 Megaron, Vol. 20, No. 3, pp. 418-432, September 2025

assess the risk of bias and applicability of prediction cupancy prediction through machine learning for
model studies. Annals of Internal Medicine, 170(1), enhancing energy efficiency, air quality and thermal
51-8. https://doi.org/10.7326/M18-1376 comfort in the built environment. Renewable and
Xi, H., Wang, B., & Hou, W. (2024). Machine learning-based Sustainable Energy Reviews, 167, 112704. https://doi.
prediction of indoor thermal comfort in traditional org/10.1016/j.rser.2022.112704
Chinese dwellings: A case study of Hankou Lifen. Zhou, S. L., Shah, A. A,, Leung, P. K., Zhu, X, & Liao, Q.
Case Studies in Thermal Engineering, 61, 105048. (2023). A comprehensive review of the applications
https://doi.org/10.1016/j.csite.2024.105048 of machinelearning for HVAC. DeCarbon, 2, 100023.

Zhang, W.,, Wu, Y., & Calautit, ]. K. (2022). A review on oc- https://doi.org/10.1016/j.decarb.2023.100023



