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ÖZ
Amaç: Manyetik rezonans görüntülemede görünür difüzyon katsayısı 
(ADC) radyomiks verilerine dayalı sinir ağları ile meme kanseri 
moleküler alt tiplerini tahmin etmek ve lezyon boyutunun radyomiks 
özelliklerin stabilitesi ile ilişkisini saptamaktır.
Yöntemler: Bu retrospektif çalışma, Ocak 2015 ile Ocak 2020 tarihleri 
arasında görüntüleme yapılan meme kanserli hasta kohortunu (n=221, 
224 lezyon) içermektedir. Lezyon boyutu ile radyomiks özelliklerinin 
stabilitesi arasındaki ilişkiyi incelemek için, tümör boyutuna dayalı 
(deney 1: tüm durumlar, deney 2: >1 cm3 ve deney 3: >2 cm3) üç grup 
oluşturulmuştur. Üç farklı gözlemci, difüzyon ağırlıklı görüntüleme 
ile oluşturulan ADC haritalarında tümörleri segmentlere ayırmış ve 
bu segmentasyonların hacimsel uyumu, Dice katsayısı kullanılarak 
değerlendirilmiştir. Radyomiks özellik (n=851) seçimi, sınıf içi 
korelasyon katsayısına (ICC), varyasyon katsayısına (CoV), varyans 
inflasyon faktörüne (VIF) ve en küçük mutlak küçülme ve seçim 
operatörü regresyonuna dayandırılmıştır. Sonuçlar moleküler alt tipler 
olarak tanımlanmıştır (Luminal A, Luminal B, HER2 ile zenginleştirilmiş 
ve üçlü negatif). Sinir ağı başarı performansı, eğri altındaki alan olarak 
sunulmuştur.
Bulgular: Sekiz yüz elli bir radyomiks özelliğinden 611’i ICC >0,75 idi. 
Bu özelliklerden CoV ve VIF analizi ile 37’si birincide, 49’u ikincide 
ve 59’u üçüncü deneyde sabit kaldı. İlk deneyde Luminal B, HER2 
ile zenginleştirilmiş ve üçlü negatif alt tipler için geliştirilen tahmin 
modellerinin doğruluğu yüksekti (>%80). İkinci deneyde tüm modeller 
ve üçüncü deneyde ise HER2 ile zenginleştirilmiş ve üçlü negatif 
modeller yüksek doğruluğa sahipti.
Sonuçlar: Radyomiks özellikler, artan lezyon boyutuna bağlı olarak 
pozitif stabilite göstermektedir. Yapay sinir ağları, 1 cm3 üzerindeki   
meme kanserlerini yüksek doğrulukla tahmin edebilmektedir.
Anahtar kelimeler: Meme kanseri, difüzyon manyetik rezonans 
görüntüleme, bilgisayar destekli görüntü işleme, makine öğrenimi, 
yapay zeka

ABSTRACT
Objective: To predict breast cancer molecular subtypes with neural 
networks based on magnetic resonance imaging apparent diffusion 
coefficient (ADC) radiomics and to detect the relation of lesion size with 
the stability of radiomics features. 
Methods: This retrospective study included 221 consecutive patients (224 
lesions) with breast cancer imaged between January 2015 and January 
2020. Three sample size configurations were identified based on tumor 
size (experiment 1: all cases, experiment 2: >1 cm3, and experiment 3: >2 
cm3). The tumors were segmented by three observers based on diffusion-
weighted imaging-registered ADC maps, and the volumetric agreement 
of these segmentations was evaluated using the Dice coefficient. Stability 
of radiomics features (n=851) was evaluated with intraclass correlation 
coefficient (ICC, >0.75) and coefficient of variation (CoV, <0.15). Feature 
selection was made with variance inflation factor (VIF, <10) and least 
absolute shrinkage and selection operator regression. Outcomes were 
identified as molecular subtypes (Luminal A, Luminal B, HER2-enriched, 
triple-negative). Neural network performance was presented as an area 
under the curve and accuracies.
Results: Of the 851 radiomics features, 611 had ICC >0.75, and 37 remained 
stable in the first experiment, 49 in the second, and 59 in the third based 
on CoV and VIF analysis. High accuracy was demonstrated by the Luminal 
B, HER2-enriched, and triple-negative models in the first experiment 
(>80%), all models in the second experiment, and HER2-enriched and 
triple-negative models in the third experiment.
Conclusions: A positive stability is indicated by an increased lesion size 
related to radiomics features. Neural networks may predict moleculer 
subtypes of breast cancers over 1 cm3 with high accuracy.
Keywords: Breast carcinoma, diffusion magnetic resonance imaging, 
computer-assisted image processing, machine learning, artificial 
intelligence
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 INTRODUCTION

Breast cancer is the most common cancer in women1,2. 
Remarkable developments in the fields of imaging, 
surgery, pathology, medical oncology, and genetics have 
led to a significant decline in breast cancer-related death 
rates in 30 years1,3-5. In current clinical practice, patients 
are classified based on their molecular subtypes3,6, which 
can be identified via biopsy, thus informing treatment 
selection6. Currently, molecular subtypes guide treatment 
using tissue samples or by immunohistochemical 
markers6,7. However, the major challenges at this point are 
the limited volume of tumor represented in the biopsy 
sample and the reliability of the biopsy sample, especially 
in heterogeneous tumors7. A diagnostic prediction  
model may predict molecular subtypes using imaging 
data8-10, for examples, automated artificial neural networks 
(ANN)8 in which many networks can be trained with 
different configurations. In automation, the separation 
of the sample into training, test (hyperparameter tuning), 
and validation (hold-out) sets can be used to determine 
the training, error function, hidden activation, and output 
activation to be selected for the network structure11, and 
human-induced bias is reduced12. However, explainability 
may be limited in nonlinear models.

Previous studies focused on radiomics features 
extracted from dynamic contrast-enhanced magnetic 
resonance imaging (DCE-MRI)10,13-19. Although DCE-MRI is 
the most sensitive sequence in breast cancer imaging, the 
accumulation of gadolinium-based contrast agents in the 
brain has been a concern20. Additionally, using contrast 
agents in patients with obesity, diabetes, and renal failure 
requires great attention1,20. Therefore, non-contrast MRI 
protocols such as diffusion-weighted imaging (DWI) 
should be develope5. DWI delivers functional diffusivity 
data, and, with apparent diffusion coefficient (ADC) 
mapping, quantifies diffusivity related to cell density in 
solid tumors. DCE-MRI has been performed to predict 
molecular subtype, tumor histology, risk of recurrence, 
response to chemotherapy, and the probability of 
metastasis8,10,13-17,19,21-23. However, few studies used DWIs or 
ADCs radiomics as predictors9,18,24.

Previous studies focusing on breast cancer molecular 
subtypes have not evaluated spatial overlap10,13-19, and 
few have tested the interobserver reproducibility of the 
radiomics features22,23. Reproducibility is very important 
in radiomics feature extraction25-27 and, along with sharing 
data, is as important as the studies’ design, precision, 
and accuracy26,28. Moreover, to maintain the quality 
and reproducibility of the studies, studies on artificial 
intelligence that include complex models should report 
data with transparency.

The relation between the size of lesions and the 
stability of radiomics features has not been studied 
before. This study primarily aimed to predict breast 
cancer molecular subtypes with automated ANN 
created based on MRI ADC radiomics features and then 
to investigate the relationship between lesion size and 
stability of radiomics features and model accuracy. 

MATERIALS and METHODS
Ethical Considerations
This retrospective study was approved by Local 

Ethics Committee of the Istanbul Medeniyet University 
Goztepe Training and Research Hospital (decision no: 
2020/0303, date: 18.05.2020). The requirement for 
written informed patient consent was waived by the local 
ethics committee. We ensured adherence to the STARD 
2015 statement29 and the white papers and statements of 
European, United States, and Canadian societies26,30-32. The 
radiomics quality score was 18/3633. An Image Biomarker 
Standardization Initiative (IBSI)-compliant software was 
used for feature extraction34.

Study Population and Data Collection
This model development study was conceived in 

Istanbul Medeniyet University Goztepe Prof. Dr. Suleyman 
Yalcin City Hospital. Data of patients histopathologically 
diagnosed with breast cancer in the general-surgery 
service of the university hospital between January 2015 
and January 2020 were collected. The inclusion criteria 
were as follows: patients with breast MRI, including DWI 
sequences; detectable lesion on the DWI and ADC map; 
and invasive breast cancer as per the pathology report (if 
the patient had two different types of tumor histology, 
the tumors were included separately). The exclusion 
criteria were as follows: patients operated at the research 
center but without available imaging results and lesions 
detected on the ADC map but were pathologically 
diagnosed as in situ cancer. A complete pipeline is 
presented in Figure 1, and a flowchart of sample selection 
for the study is presented in E-Figure 1 (You can access 
all E-Figures and E-Tables from the link at the end of the 
article). 

Based on the above criteria, 221 patients with 224 
lesions were detected for the study (experiment 1, n=224). 
Breast cancer molecular subtypes based on pathological 
examination of surgery specimens were recorded in 
a worksheet by the surgery team. The analysis was 
repeated by narrowing the data set to over 1 cm3 lesion 
(experiment 2, n=172) and over 2 cm3 lesions (experiment 
3, n=139). The 1.5 Tesla magnet power MRI protocols are 
described in E-Table 1.
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Statistical Analysis 

Predictors: Analysis of the ADC Maps

MRIs of the included patients were taken from the 
hospital archive and anonymized. Using the 3D Slicer 
(version 4.10.2; https://www.slicer.org) software, three 
radiologists with 8, 5, and 3 years of experience performed 
the segmentation from each axial segment where the 
tumor was located as seen on high b-value DWI images 
and verified on the ADC map35,36. Co-registration was 
made between T2 weighted images if the lesion was not 
detected from DWI. The predictor variables (radiomics 
features) of this study was extracted with PyRadiomics 
(version 2.2.0). All the radiomics features (n=851) were 
included, and wavelet-based filters were used. Raw ADC 
maps and resampled images (2.0x2.0x2.0 mm) were used 

and normalized36,37. Other detailed information about 
the radiomics features included in the study is provided 
in E-Table 2.

Outcomes

The outcomes of the study were molecular subtypes 
of breast cancer based on the biopsy: Luminal A, Luminal 
B, human epidermal growth factor receptor 2 (HER2)-
enriched, and triple-negative (TN). These outcomes were 
coded as “one-vs-rest” orientation (E-Table 3)27.

Features Stability Assessment

Interobserver agreement on the segmentations and 
radiomics features were evaluated by Dice similarity 
coefficient27 and the intraclass correlation coefficient 
(ICC), respectively38. Discrepancies in the Dice similarity 

Figure 1. This scheme summarizes the entire study pipeline and results. Patients with MRI among the patients operated 
on for breast cancer in our hospital were included. After normalization and resampling, three observers independently 
segmented the lesions and obtained a radiomics feature. The agreements of the segmentations were tested with the 
Dice coefficient. Interobserver agreement for radiomics features was tested using intra-class correlation coefficient. 
Patient data were divided into three experimental groups based on the lesion size. Following the European Society of 
Radiology guideline, the pipeline coefficient variance and variance inflation factor analyses are also performed. As lesion 
size increased, lesion stability and the success of automated artificial neural networks also increase.
MRI: Magnetic resonance imaging, LASSO: Least absolute shrinkage and selection operator, ANN: Artificial neural networks, AUC: Area 
under the curve, ACC: Accuracy, HER2: Human epidermal growth factor receptor 2, TN: Triple-negative 
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coefficient of segmentations (<0.50) were resolved 
by consensus. Features with an ICC >0.75 were further 
analyzed. Features from the three measurements 
were averaged, and the data were combined with the 
worksheet containing the pathology data. Worksheets 
containing three different sample size configurations 
were created. The coefficient of variation (CoV) analysis, 
which radiomics features showing >15% variance, was 
eliminated26,28. Then, Spearman’s correlation (SC) analysis 
was performed to evaluate the remaining features, 
followed by variance inflation factor (VIF) analysis.

Collinearity-multicollinearity Analysis and Final 
Feature Selection

To achieve low collinearity-multicollinearity, VIF 
analyses were performed. In case VIF was above 10, 
the radiomic feature was eliminated28,39. For validation, 
SC analysis was performed between features and 
outcomes (p<0.01)26. Least absolute shrinkage and 
selection operator (LASSO) was used for future 
selection with random sampling method and 10-fold 
cross-validation.

Structuring Automated Artificial Neural 
Networks

Neural networks were binary classifiers as “one-vs-
rest” orientation, and a diagnostic model was developed 
after feature selection using features selected for each 
experiment and outcome27. The data were divided into 
three subsamples in each training session using a random 
number generator. The software randomly sampled 
50%-70% of the cases as training set, 10%-20% as a 
test set (hyperparameter tuning set), and 20%-30% as 
a validation (hold-out) set. Multilayer perceptron (MLP) 
and radial basis function (RBF) neurons were trained, 
and networks were feedforward and fully connected11. 
In each analysis, MLP or RBF neurons were trained, 
tested, and validated with unseen data set. The software 
automatically assigned the number of neurons (6-25), 
the number of layers [input layer (n= predictors for RBF 
and n= predictors + bias neuron for MLP), minimum two 
hidden layer, output layer (n=2, Positive event or not)], 
the number of bias neurons (minimum one per hidden 
layer both RBF and MLP), activation - hidden - output 
function [identity, logistic sigmoid, hyperbolic tangent, 

Table 1. Clinicopathologic characteristics of the participants for three experiments.
All lesions 
(n=221, 224 lesions)

Over 1 cm3 
(n=172, 172 lesions)

Over 2 cm3 
(n=139, 139 lesions)

Age (mean ± SD, year) 54±11 55±12 54±12
Sex (female, n, %) 220, 99.6% 172, 100% 139, 100%
Median tumor size cm3 (interquartile range) 1.57 (2.20) 3.37 (3.57) 5.56 (8.67)
Median voxel number (interquartile range) 167 (225) 347 (494) 650 (1264)

TN
M

 c
la

ss
ifi

ca
tio

n

T

T1 (n, %) 79, 35% 56, 33% 43, 31%
T2 (n, %) 113, 50% 97, 56% 79, 56%
T3 (n, %) 16, 7% 11, 6% 11, 8%
T4 (n, %) 6, 3% 5, 3% 4, 3%

N

N0 (n, %) 113, 50% 87, 51% 73, 51%
N1 (n, %) 64, 29% 52, 30% 39, 28%
N2 (n, %) 21, 9% 17, 10% 15, 11%
N3 (n, %) 18, 8% 15, 9% 12, 9%

M
M0 (n, %) 212, 95% 168, 98% 136, 96%
M1 (n, %) 3, 1% 2, 1% 2, 1%

Molecular subtypes
Luminal A (n, %) 82, 37% 69, 40% 55, 39%
Luminal B (n, %) 76, 34% 55, 32% 45, 32%
HER2+ (n, %) 37, 17% 30, 17% 23, 16%
Triple negative (n, %) 23, 10% 18, 11% 13, 9%
SD: Standard deviation, HER2: Human epidermal growth factor receptor 2
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Table 2. Stable radiomics features after coefficient of variance and variance inflation factor analyses for three experiments.
Experiment 1 Experiment 2 Experiment 3
1. wavelet - LLL GLRLM Short 
Run Emphasis, 
2. wavelet - LLH GLRLM Short 
Run Emphasis, 
3. wavelet - LLH GLRLM Run 
Percentage, 
4. wavelet - LLL GLCM IMC2, 
5. wavelet - LLH GLCM IMC2, 
6. wavelet - LHL GLCM IDmn, 
7. wavelet - HHH GLCM IDmn, 
8. wavelet - HLH GLCM IDmn, 
9. wavelet - LLL GLCM IDmn, 
10. wavelet - HHL GLCM IDmn, 
11. wavelet - LHH GLCM IDmn, 
12. wavelet - LHH GLRLM Short 
Run Emphasis, 
13. wavelet - LHL GLRLM Short 
Run Emphasis, 
14. wavelet - LLL GLRLM Long 
Run Emphasis, 
15. wavelet - LLH GLCM IDmn, 
16. wavelet - LHL GLCM IDn, 
17. wavelet - HHL GLCM IDn, 
18. wavelet - HHH GLCM IDn, 
19. wavelet - HLL GLRLM Short 
Run Emphasis, 

1. wavelet - HLL GLCM IDmn, 
2. wavelet - LHL GLCM IDmn, 
3. wavelet - LLL GLRLM Run Length Non-
Uniformity Normalized, 
4. wavelet - HHL GLCM IDmn, 
5. wavelet - LLL GLCM IDmn, 
6. wavelet - HHH GLCM IDmn, 
7.wavelet - HLH GLCM IDmn, 
8. wavelet - LHH GLCM IDmn, 
9. wavelet - LLH GLCM IMC2, 
10. wavelet - LHH GLRLM Short Run Emphasis, 
11. wavelet - HHL GLCM IDn, 
12. original GLCM IDn, 
13. wavelet - LHL GLRLM Short Run Emphasis, 
14. original GLRLM Run Length Non-
Uniformity Normalized, 
15. wavelet - LLH GLCM IDmn, 
16. wavelet - HHH GLCM IDn, 
17. wavelet - HLH GLRLM Short Run Emphasis, 
18. wavelet - LLH GLSZM Small Area Emphasis, 
19. original GLCM IMC, 
20. wavelet - LHL GLDM Dependence Entropy, 
21. wavelet - LHH GLDM Dependence Entropy 
22. wavelet - HHL GLDM Dependence Entropy, 
23.original GLSZM Small Area Emphasis, 

1. wavelet - LLL GLRLM Short Run Emphasis, 
2. wavelet - LLH GLRLM Short Run Emphasis, 
3. wavelet - HLL GLCM IDmn, 
4. wavelet - LHL GLCM IDmn, 
5. wavelet - LLL GLCM IMC2, 
6. original GLCM IDmn, 
7. wavelet - HLH GLCM IDmn, 
8. wavelet - LLL GLCM IDmn, 
9. original GLRLM Short Run Emphasis, 
10. wavelet - HHH GLCM IDmn, 
11. wavelet - LHH GLCM IDmn, 
12. wavelet - HHL GLCM IDmn, 
13. wavelet - LLH GLCM IMC2, 
14. wavelet - LLH GLCM IDmn, 
15. wavelet - HHL GLCM IDn, 
16. wavelet - LHH GLRLM Short Run Emphasis, 
17. wavelet - HHH GLCM IDn, 
18. wavelet - LHL GLRLM Short Run Emphasis, 
19. wavelet - LLL GLRLM Long Run Emphasis, 
20. wavelet - HLH GLRLM Short Run Emphasis, 
21. wavelet - LLH GLSZM Small Area Emphasis, 
22. original GLCM IMC2, 
23. wavelet - LHL GLDM Dependence Entropy, 24. 
wavelet - LHH GLDM Dependence Entropy

20. wavelet - HLH GLRLM Short 
Run Emphasis, 
21. wavelet - LLH GLSZM Small 
Area Emphasis, 
22. wavelet - LLL GLSZM Small 
Area Emphasis, 
23. wavelet - LLH GLRLM Long 
Run Emphasis, 
24. wavelet - LLL GLCM MCC, 
25. wavelet - HHH GLRLM Short 
Run Emphasis 
26. wavelet - HHL GLRLM Short 
Run Emphasis, 
27. wavelet - LLH GLCM MCC, 
28. wavelet - LHL GLRLM Run 
Entropy, 
29. wavelet - LHH GLRLM Run 
Entropy, 
30. wavelet - LLL first order 
Entropy, 
31. wavelet - LLL GLRLM Run 
Entropy, 
32. wavelet - LLH GLRLM Run 
Entropy, 
33. wavelet - LLH firstorder 
Entropy, 
34. wavelet - LHH GLSZM Small 
Area Emphasis, 
35. wavelet - HLH GLCM IMC2, 
36. wavelet - LHL firstorder 
Entropy, 
37. wavelet - LHL GLDM 
Dependence Entropy.

24. wavelet - HLH GLDM Dependence 
Entropy, 
25. wavelet - HLL GLDM Dependence Entropy, 
26. wavelet - LLL GLSZM Zone Entropy, 
27. original GLRLM Run Entropy, 
28. wavelet - LLL GLCM MCC, 
29. wavelet - LHL GLSZM Zone Entropy, 
30. wavelet - LHH GLSZM Zone Entropy, 
31. wavelet - HHH GLDM Dependence Entropy, 
32. wavelet - LHL GLRLM Run Entropy, 
33. wavelet - LLL GLCM Difference Entropy, 
34. wavelet - HHL GLRLM Run Percentage, 
35. wavelet - HLH GLSZM Zone Entropy, 
36. wavelet - LLH GLCM MCC, 
37. wavelet - HHL GLCM Inverse Variance, 
38. wavelet - HLL GLSZM Zone Entropy, 
39. wavelet - LHH GLSZM Small Area 
Emphasis, 
40. original GLCM Difference Entropy, 
41. wavelet - LHH GLRLM Run Entropy, 
42. original GLCM Sum Entropy, 
43. wavelet - LHL GLSZM Small Area 
Emphasis, 
44. wavelet - HLL GLCM IMC, 
45. wavelet - HLL GLRLM Run Entropy, 
46. wavelet - LHL firstorder Entropy, 
47. original shape Sphericity, 
48. wavelet - LHH GLCM Joint Entropy, 
49.wavelet - HLH GLCM IMC2.

26. wavelet - HLL GLDM Dependence Entropy, 
27. wavelet - HHL GLDM Dependence Entropy, 
28. wavelet - LLH GLRLM Run Entropy, 
29. wavelet - HLH GLDM Dependence Entropy, 
30. wavelet - LLL GLSZM Zone Entropy, 
31. wavelet - LLL GLRLM Run Entropy, 
32. wavelet - LLH GLRLM Long Run Emphasis, 
33. wavelet - LHL GLSZM Zone Entropy, 
34. original GLSZM Small Area Emphasis, 
35. original GLRLM Run Entropy, 
36. wavelet - LHH GLSZM Zone Entropy, 
37. wavelet - HHH GLRLM Short Run Emphasis, 
38. wavelet - LLH GLCM Sum Entropy, 
39. wavelet - LLL GLCM Difference Entropy, 
40. wavelet - HHH GLDM Dependence Entropy, 
41. wavelet - LHL GLRLM Run Entropy, 
42. wavelet - HLL GLSZM Zone Entropy, 
43. wavelet - LLL GLCM MCC, 
44. wavelet - HLH GLSZM Zone Entropy, 
45. original GLRLM Long Run Emphasis, 
46. wavelet - LLL GLCM Sum Entropy, 
47. wavelet - HHL GLCM Inverse Variance, 
48. original GLcm Difference Entropy, 
49. wavelet - LHH GLRLM Run Entropy, 
50. wavelet - LHH GLSZM Small Area Emphasis, 
51. wavelet - LLH GLCM MCC, 
52. wavelet - HLL GLRLM Run Entropy, 
53. wavelet - LHL GLSZM Small Area Emphasis, 
54. wavelet - LHH GLCM Joint Entropy, 
55. wavelet - HLL GLCM IMC2, 
56. wavelet - LLH GLCM Joint Entropy, 
57. wavelet - HLH GLSZM Small Area Emphasis, 
58. original shape Sphericity, 
59. wavelet - HLL GLSZM Small Area Emphasis.

GLCM: Gray level co-occurrence matrix, GLRLM: Gray level run length matrix, GLSZM: Gray level size zone matrix, ID: Inverse difference, IMC: 
Informational measure of correlation, MCC: Maximal correlation coefficient
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exponential, Softmax, and Gaussian (only available for 
RBF networks), and error function (sum of squares, cross 
entropy)], in these models by evaluating input, output 
data, and sub sample proportions11. Hyperparameter 
tuning was made with early-stopping algorithm11. 
Then, a neural network search was performed for each 
outcome in three sample size configurations. Figure 2 
summarizes how automated ANN were trained, tested, 
and validated. Most accurate networks were retained for 

each experiment and outcome. Most efficient networks 
results are presented with area under the curve (AUC) 
(95% confidence intervals; lower and upper bounds)26,27. 
In receiver operating curve analysis, AUC >0.85 and 
p<0.01 is considered a validated classifier neural network. 
TIBCO Statistica version 13.5 (TIBCO Software, Palo Alto, 
CA) was used for statistical analyses and neural network 
training.

Figure 2. The diagram explains how automated artificial neural networks were trained, tested, and validated. Early-
stopping hyperparameter tuning allows train neural networks faster, allowing training of thousands of neural networks in 
a short time.
AUC: Area under the curve, MLP: Multilayer perceptron, RBF: Radial basis function
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RESULTS
Patient’s Characteristics
This study included 221 patients (mean age, 54±11 

years); of them, 220 (99%) were women. Clinicopathologic 
characteristics of the patients are presented in Table 1. 

Feature Selection Results
The interobserver mean Dice coefficient values were 

as follows: between observers 1 and 2, 0.81±0.08 (0.80-
0.82); for observers 1 and 3, 0.80±0.10 (0.79-0.82); and 
between observers 2 and 3, 0.73±0.11 (0.71-0.74). 

The results of the resampled image features were not 
presented due to lower performance on ICC, CoV, VIF, 
LASSO analyses, and multivariate diagnostic models.

CoV, VIF, and LASSO regression analyses were 
performed separately in all three experiments (Figure 
3). Of the 851 radiomic features, 611 were extracted from 
three segmentations with ICC values >0.75 and then 
included in a CoV analysis: 93 in the first experiment, 118 in 

the second experiment, and 136 in the third experiment. 
E-Table 3 presents an exact number of participants and 
outcome events for each analysis.

In the VIF analysis, other features were excluded from 
the models (Figure 4) and features showing collinearity-
multicollinearity were excluded, resulting in 37 features 
in the first experiment, 49 in the second experiment, and 
59 features in the third experiment (Table 2, E-Figure 2). 

In the correlation analysis, for all SC ‘r’   for the first and 
second experiments, the radiomics features were not 
successful. In the third experiment, all SC ‘r’   were <0.40, 
and p<0.01 for 12 predictors for TN breast cancer. 

LASSO regression was used for regularization, and the 
analysis results for each outcome are shared in Table 3. 

Diagnostic Prediction Model Results

From the three experiments, each of 12 neural 
networks contained four multivariable binary classifier 
models (Table 4). Confusion matrix and detailed 

Figure 3. Evaluation of interobserver correlation coefficient (ICC) for original and filtered images. The first boxplot comes 
from the original image features, and only 46 features show high reproducibility (ICC >0.75). However, wavelet-HHH and 
wavelet-HLH features demonstrated higher reproducibility. Features from these filters have better reproducibility (80 
and 79 features, respectively).
ICC: Interobserver correlation coefficient
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performance metrics are presented for Luminal A in 
the E-Table 4, for Luminal B in the E-Table 5, for HER2-
enriched in the E-Table 6, and for TN in the E-Table 7. 
In the validation (hold-out) set, the model trained for 
Luminal B in the first experiment and Luminal A in the 
second experiment reached AUC of 0.87 (0.73-0.99) and 

0.87 (0.73-0.99), respectively. These findings indicate 
a high accuracy (>0.80) for Luminal B, HER2-enriched, 
and TN models in the first experiment; all models in the 
second experiment; and HER2-enriched, and TN models 
in the third experiment.

Table 3. Selected predictor radiomics features analyzed by LASSO regression in three sample size configurations.
Outcomes Luminal A Luminal B HER2+ enriched Triple-negative

Experiment 1

Intercept 9.967 -7.655 11.24 9.760
Model l 0.005 0.006 0.002 0.002
% Deviation 0.082 0.091 0.085 0.139

Predictors 4-6, 9-13, 15,16,18, 21-
25, 28, 31, 34-36

3-6, 8-12, 15, 18, 19, 21-
23, 25-27, 29, 31, 35, 36

1, 6, 8,9, 11, 12, 14-17, 21, 
24-26, 28, 29, 33-37

3, 5, 7, 9, 11, 13-17, 19-
24, 26, 28, 29, 34, 37

Experiment 2

Intercept 24.28 22.34 27.12 -45.10
Model l 0.008 0.007 0.005 0.005
% Dev 0.117 0.160 0.183 0.186

Predictors
1-4, 9, 12, 14-17, 19, 23, 
25, 28, 29, 33, 34, 41, 
43, 49

1, 4, 5, 8, 9, 12, 16, 17, 19, 
23, 28, 29, 33, 34, 36, 
38, 40, 43, 47, 49

1-3, 8, 9, 11-14, 21, 23, 
26-29, 33, 36, 39, 42-44, 
47

1, 7, 9, 10, 12, 14, 15, 27, 
28, 33-35, 41-43, 47

Experiment 3

Intercept -117.0 35.93 -18.59 -0.853
Model l 0.009 0.006 0.008 0.011
% Dev 0.152 0.239 0.166 0.252

Predictors
1, 5, 6, 12, 15, 17, 20, 23, 
24, 30, 32-34, 36, 39, 
44, 45, 48, 53, 54, 59

1, 4, 7, 11-13, 17, 21, 23, 
26-28, 32, 34, 36, 39, 
43, 45, 47, 58

1, 3-6, 9-11, 13, 15, 18, 19, 
21, 34, 35, 43, 44, 47, 53, 
58, 59

5, 6, 16, 17, 25, 26, 35, 
37, 38, 47, 58

The most remarkable point about in the first configuration predictors is that all shape features are eliminated, and no feature without wavelet filters 
can pass the precision stage. Only eight features were extracted from the original image in the over 1 cm3 and over 2 cm3 configuration (Experiments 2 
and 3). Only one of these is the shape feature (Sphericity). LASSO: Least absolute shrinkage and selection operator, HER2: Human epidermal growth 
factor receptor 2

Figure 4. Heatmaps for the stable features before variance inflation factor analysis for three sample size configurations. 
The heatmap created for collinearity evaluation after features were eliminated due to interobserver agreement and high 
variance showed that there were the least stable features in the first configuration (A), and most of them were collinear. 
While the number of stable radiomics features increased in the second (B) and third (C) configurations, the collinearity 
decreased (heatmaps in detail for each experiment; https://github.com/MBE-hub/Breast/tree/master/Breast/4.Heat%20
Maps).
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All data used in this study, the results of the analyses, 
and the trained neural network codes were shared 
publicly on GitHub (https://github.com/MBE-hub/
Breast). 

DISCUSSION
Based on the results of the present study, neural 

networks may predict molecular subtypes of breast 
cancer over 1 cm3. Compared with previous studies, the 
present study evaluated the stability of radiomic features 
using the Dice similarity index, ICC, and CoV; the VIF was 
used to eliminate highly collinear features.

Currently, a minimally invasive approach is the most 
prevalent in medical practice5. Contrast-enhanced 
examinations are also considered an intervention5,20. 

Therefore, we focused on ADC radiomics as an alternative 
to invasive imaging modalities. Chen et al.14 offered that 
ADC radiomics provided a more accurate diagnosis than 
DCE MRI radiomics. Unlike previous studies, the present 
study performed all breast cancers without limiting 
lesion size9,10,13-16,22,23,35. Experiment 2, which included over 
1 cm3, showed the best accuracy. In the first experiment, 
fewer pixels were segmented in small lesions, affecting 
the stability of the radiomics feature. Experiment 3 has 
a relatively limited sample size, and the validation set 
proportion was set to 30% to overcome this challenge 
and prevent overfitting.

Previous studies that assessed the molecular 
subtypes of breast cancer using an interobserver design 
did not evaluate the spatial overlap with the Dice 

Table 4. Artificial neural networks performance results of three experiments.

Outcomes Luminal A Luminal B HER2-enriched Triple-negative

Ex
pe

rim
en

t 1

Results 
AUC* 0.71 0.79 0.76 0.78
CI 95% lower 0.64 0.73 0.69 0.70
CI 95% upper 0.78 0.85 0.84 0.87
Acc (%) 64 77 84 90
Sen (%) 10 50 38 26
Spec (%) 96 91 93 97
PPV (%) 62 75 54 55
NPV (%) 64 77 88 92

Ex
pe

rim
en

t 2

AUC* 0.65 0.87 0.86 0.90
CI 95% lower 0.56 0.82 0.80 0.85
CI 95% upper 0.73 0.92 0.92 0.95
Acc (%) 65 84 86 94
Sen (%) 13 75 57 56
Spec (%) 100 89 92 98
PPV (%) 100 76 61 77
NPV (%) 63 88 91 95

Ex
pe

rim
en

t 3

AUC* 0.86 0.77 0.82 0.88
CI 95% lower 0.80 0.69 0.74 0.81
CI 95% upper 0.92 0.85 0.89 0.95
Acc (%) 83 76 87 96
Sen (%) 73 67 65 69
Spec (%) 90 81 91 98
PPV (%) 83 64 60 82
NPV (%) 83 83 93 97

HER2: Human epidermal growth factor receptor 2, AUC: Area under the curve, CI: Confidence interval, Acc: Accuracy, Sen: Sensitivity, Spec: Specificity, 
PPV: Positive predictive value, NPV: Negative predictive value. *All area under the curve p-values are <0.001. The first experiment had the largest 
sample size (n=221, 224 lesions), neurons trained with this data performed similarly to previous studies. Although the sample size was reduced, the 
high accuracy achieved in the second and third experiments may be associated with lesion size.
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coefficient9,10,13-16. However, the evaluation of spatial 
overlap is recommended27. Traverso et al.36,37 performed 
two studies based on cervix and rectal cancer using the 
Dice coefficient; the median Dice coefficient for the 
two observers was 0.73 and 0.75, respectively, which 
are similar to our results. The Dice coefficient provides 
a susceptible analysis as it depends on the pixel-to-
pixel overlap of segmentation36,37. Given the sensitivity of 
the Dice method, the agreement of segmentations was 
almost perfect in this study. Furthermore, as mitigating 
certain discrepancies has been a challenge, observers re-
evaluated the patients with a Dice coefficient   <0.50 (n=9) 
to avoid bias. 

In the present study, 72% of the radiomic features 
had ICC value >0.75. Using super-resolution ADC images, 
Fan et al.22 performed a radiomics analysis to predict the 
histologic grade and Ki-67 expression status of breast 
cancer and found that shape and first-order features had 
an ICC >0.7, and neighborhood gray tone difference in 
matrix features showed large variance, with a low mean 
ICC. Zhang et al.35 modelled multiparametric MRI to 
differentiate benign and malignant lesions from radiomics 
features and noted that all features had an ICC value of 
>0.75. Similarly, the present study included features with 
an ICC of >0.75. However, issues on reproducibility were 
raised due to not using an exclusion criterion for ICC25,38 
and not considering an interobserver assessment. 

The European Society of Radiology (ESR) has recently 
published a statement on the validation of imaging 
biomarkers and described the validation pipeline26. The 
first step of this pipeline offers to evaluate features with 
a CoV analysis, stating, “high precision (low variance) is 
considered mandatory for the validation.” Due to the 
novelty of this statement, none of the previous studies 
have used this analysis. In stability analysis, only 16% of 
features showed high stability even at the best condition 
(experiment 3: over 2 cm3 lesions). 

Parekh and Jacobs19 reported that multivariable 
models had increased AUC (9-28%). Therefore, in the 
present study, we used multivariable models. Given 
the emerging use of multivariable regressions in 
feature selection tasks, collinearity-multicollinearity 
has become an essential problem. Kim39 has described 
multicollinearity as a high degree of linear intercorrelation 
between predictor variables in a multivariable regression 
model. If collinearity is ignored, features on analysis 
become almost identical, thus increasing the relative 
error rate. In addition, features that better explain the 
model are ruled out due to the many identical features 
chosen. Although various methods have been defined, 
we preferred to eliminate features that show collinearity-

multicollinearity in this study, and features were stable 
in only 7% of this elimination. Previous studies have not 
reported VIF analysis9,10,13-16. 

These results offered that radiomics features stability 
related to lesion size. The number of stable features 
increased with increasing lesion size. Despite the decrease 
in sample size in the second and third experiments, an 
increase in the Spearman correlation coefficient value, 
with an increase in the number of significant predictors, 
indicates a relationship between radiomics features 
stability and lesion size.

For validated biomarkers, the third item of the ESR 
statement pipeline requested that the p-value be <0.01 in 
the correlation analysis26. In the univariate analysis, a few 
radiomics features were validated in this study (E-Figure 
2). Furthermore, their correlation coefficients were weak 
since LASSO regression was used for regularization in the 
current study23-25.

Sutton et al.10 have used the support vector machine, 
which included 38 features (mostly shape and contrast-
enhancement patterns) and found the accuracy for 
prediction of TN molecular subtype breast cancer at 
81%. This study used 851 features and found that all 
shape features, except for sphericity, are not stable in 
precision and accuracy. Moreover, sphericity could not be 
measured accurately, even in IBSI compliant software34.

Diagnostic prediction models will benefit the clinician 
in detecting HER2-enriched and TN tumors. Leithner 
et al.8 trained a TN ANN classifier with AUC =0.80 and 
68.2% accuracy in the validation set. However, their other 
classifiers presented accuracies at 38.7%-70.3%. In the 
present study, neurons trained above 1 cm3 configuration 
can estimate Luminal A, Luminal B, and HER2-enriched 
models with accuracy as high as that of the TN model; 
high specificity (>80%) was observed in the neurons in 
experiment 2, with moderate to high sensitivity (33%-
80%). 

The study has some limitations. The retrospective 
study design and single-center nature limit the 
generalizability of results. However, MR scans were 
performed with two different devices, and four different 
protocols and b-values in our center increased the 
potential diversity. For external validation, the cancer 
imaging archive was scanned, but without suitable data.

We used the manual segmentation method in this 
study because approximately 1/4 of our lesions were 
less than 1 cm3. In addition, a recent study showed that 
automatic segmentation is not a good option for small 
lesions40. Fortunately, automated segmentation methods 
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have made rapid progress21. Future studies with large 
datasets may focus on breast cancer molecular subtype 
discrimination using convolutional neural networks and 
automated segmentation methods. 

Using automated ANN minimizes human-induced 
bias17. However, the models created due to the weak 
linear relationship between predictors and outcomes 
reduce the network explainability. In the preliminary 
stage of the study, we also experienced machine learning 
methods such as support vector machines and K-nearest 
neighbors, and we attempted to train multiclass classifier 
methods such as gradient descent boosting and adaptive 
boosting. However, all these machine learning algorithms 
showed obviously lower accuracy than the models used 
in this study. 

Radiomics features extraction yields the best results 
on iso-voxel partitioned images. Therefore, this study 
used both raw data (highly interpolated) and 2.0 mm 
iso-voxel images. Contrary to expectations, raw images 
showed better performance in this study, which was 
not supported by the literature, thereby limiting our 
discussion8-10. Based on our findings, high interpolation 
and high slice thickness caused artificial homogeneity 
on the resampled images, making the model success 
not better than raw images. Future studies should aim 
to increase the stability radiomics features and model 
success. Especially for DWI and ADC, it is necessary to 
increase the matrix values, decrease the section thickness, 
and increase the signal-to-noise ratio. 

CONCLUSION
The stability of radiomics features is positively 

correlated to an increased lesion size. A diagnostic 
prediction model is a triaging and expediting the need 
for biopsy and/or for supporting histopathologic results 
in equivocal cases. However, while this prediction does 
not replace biopsy, it may require the triage of patients 
to be prioritized in radiology reporting, biopsy, and 
pathology reporting. The rapid and accurate triage of 
breast cancer molecular subtypes using imaging will be 
a potential development. 
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