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Dünya ölçeğinde pandemiye neden olan şiddetli akut solunum sendromu koronavirüs-2 (SARS-CoV-2), 

günümüz itibariyle 6 milyondan fazla insanın ölümüne ve yüz milyonlarca insanın da hastalanmasına neden 

oldu (17.06.2022 tarihi itibariyle dünya geneli: 6.32 milyon ölüm ve 538 milyon hasta). SARS-CoV-2 

virüsünün bulaşmasından sonra pek çok savunma sistemi aktive olarak organizmayı korumaya çalışmakta ve 

savunma hattı oluşturmaktadır. İmmun sistemin önemli bir hücresi olan mast hücreleri de bu enfeksiyonda 

önemli işlevleri olan ve hastalığın seyrini etkileyen bir hücredir. Bu derlemede, mast hücresinin SARS-CoV-2 

virüsü ile olan karşılıklı etkileşimi ve bu hücrenin salgı ürünlerinin COVID-19 seyrine etkileri hakkında bilgi 

sunumu yapılacaktır. 
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Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which caused a worldwide pandemic, has caused 

the death of more than 6 million people and the illness of hundreds of millions of people as of today (as of 

16.06.2022, worldwide: 6.32 million deaths and 538 million patient). After the infection of the SARS -CoV-2 virus, 

many defense systems are activated and try to protect the organism and form a defense line. Mast cells, an essential 
cell of the immune system, also have important functions in this infection and affect the course of the disease. In this 

review, information will be presented about the interaction of the mast cell with the SARS-CoV-2 virus and the 

effects of this cell's secretion products on the course of COVID-19. 
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INTRODUCTION 

Severe acute respiratory syndrome coronavirus-2 
(SARS-CoV-2) causes a highly contagious 

respiratory disease called COVID-19. SARS-CoV-

2 enters the body primarily through the epithelial 

layer of the respiratory and gastrointestinal tract, 
but under certain conditions this pleiotropic virus 

can also infect peripheral nerves and enter the 

central nervous system (CNS). It is reported that an 

increasing number of COVID-19 patients also show 

neurological symptoms, and that SARS-CoV-2 can 

infect the nervous system under some conditions 

(1,2). 

Mast cells (MCs) are hematopoietic cells found in 
almost all vascularized tissues and synthesize and 

secrete a wide variety of biologically active 

products, including various cytokines and growth 

factors. MCs are one of the proinflammatory cells 

of the immune system. MCs are strategically 

located in tissues and organs that are directly or 
indirectly related to the external environment of the 

body, such as the skin, lungs, and intestines (1). In 

such tissues, they are predominantly subepithelial 

and closely associated with blood vessels. This 

location allows them to act as sentinels against 

tissue damage and pathogen invasion (2). The 

relationship between MC and blood vessels is 

optimal to enhance rapid recruitment of effector 

cells from the bloodstream and into adjacent 

tissues. This process is facilitated by the MC's 
production of endothelium-activated cytokine 

mediators such as tumor necrosis factor (TNF) and 

interleukin 1β (IL-1β), lipid mediators that facilitate 

vasodilatation, as well as a number of chemokines 

that promote selective recruitment of certain 

subsets of effector cells (3).  

Relation between Mast Cell and Viral Infection 

Mast cells are considered to be important protective 
cells for host defense against different pathogens. 

Their location on mucosal surfaces and their ability 

to activate multiple aspects of early immune 

responses enable these cells to make important 

contributions to immunity in different situations. 

The interactions of MCs with viruses and 

pathogenic products are complex and can have both 

harmful and positive effects. There are important 

evidences for MC mobilization, activation of 
effector cells and mobilization of dendritic cells 

following viral contamination. These cells are a 

major and important local source of type I and III 

interferons following viral loading. However, MCs 
are also known to cause inappropriate inflammatory 

responses, prolonged fibrosis, and vascular leakage 

associated with viral infections (3).  

Mainly, upon entry of the coronavirus into the body, 
the virus is attacked by cells of the innate immune 

system, including MCs commonly found in the 

nasal passage and lower respiratory tract (2). SARS-

CoV-2 can activate MCs in the respiratory tract in 

the initial phase of the disease. The severity and 

extent of the disease depend on the ability of the 

innate immune cells to stop viral and other 

infections. In vitro and in vivo studies have found 

that the number of MCs increases in viral conditions 
such as respiratory syncytial virus (RSV), rhinovirus 

(RV), reovirus, dengue virus (DENV), human 

immunodeficiency virus (HIV) and influenza (3). 

Hu et al (2012) showed that MCs play a direct role 

in viral infection by showing that MCs increase in 

the nasal mucosa, trachea and lungs in the early 

phase of infection with the H5N1 influenza virus in 

mice (4). MCs have important roles in many types 

of innate or adaptive immune responses, including 

making significant contributions to immediate and 
chronic IgE-related allergic disorders and enhancing 

host resistance to certain poisons and parasites (5). 

However, it is known to affect many other 

biological processes, including the response of mast 

cells to bacteria and viruses, angiogenesis, wound 

healing, fibrosis, autoimmune and metabolic 

disorders, and cancerization. The potential functions 

of MCs in many of these settings are thought to 

reflect their ability to secrete with a broad spectrum 

of cytokines and growth factors, after appropriate 

activation by a range of immune or non-immune 
stimuli. These secretory products of MC are known 

to have autocrine, paracrine or systemic effects (5). 

When stimulated by allergens, MCs synthesize and 
secrete numerous pro-inflammatory and lipid 

mediators. Due to these secretion products, they 

have important functions in tissue inflammation and 

allergic reactions (7-10). MCs are an integral 

component of the immune system; they are known 

to have an active role in various infectious diseases, 

including bacterial and viral infections as well as 

fungal and parasitic diseases. Under the indicated 

conditions, their MCs are activated and once 

activated; these cells secrete a number of 
proinflammatory mediators. Some of the mediators 

produced from MCs can decompose microbial 

toxins and/or provide the recruitment of other 
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immune cells and phagocytic cells to the infection 
site (9,11-14).  

 

 
Figure 1. Pathophysiology of a Cytokine Storm. The 

early response to microbial invasion or tissue damage is 

characterized by the production of cytokines and the 

immediate induction of granulopoiesis leading to 

mobilization of neutrophils and monocytes. These 

events increase NK and T cell production of the 

proinflammatory cytokines (from reference No. 6). 

 
Mast cells can also be activated by cytokines such as IL-

33 and alarmins secreted in neighboring cells, such as 
endothelial cells infected by SARS-CoV-2/ACE2 

interactions. As a result of this activation, MCs secrete 

numerous mediators, including Type I interferon (Type I 
IFN) and Type III IFN (3). In viral diseases, MCs may 

serve as viral reservoirs, as in HIV21. Overall, the 

possible role of MCs in coronavirus infections remains 
unclear. Various observations suggest that their MCs 

express coronavirus receptors such as CD26. MCs are 

also thought to possibly contribute to coronavirus-
mediated inflammation in the lung (2). Moreover, MCs 

play a protective role at an early stage of coronavirus 

infection, while in later stages it is a critical factor of 
inflammation in the lungs. MCs and their 

proinflammatory products (cytokines, histamine, etc.) 

may play a role in exacerbating the disease (15). In 
addition, some cytokines secreted by other cells, such as 

T cells, damaged epithelial and endothelial cells (5) or 

even healthy forms of these cells (16), stimulate MC 
activation. MCs regulate the functions of immune cells 

such as dendritic cells, monocytes/macrophages, 

granulocytes, T cells, B cells and natural killer cells 
(NK). In addition, MCs facilitate the penetration of 

immune cells into the inflamed tissue by secreting MCs, 

chemokines, and other mediators that increase vascular 
permeability locally (17). 

SARS-CoV-2 and Nervous Tissue 

The brain is protected by various anatomical and 
physiological barriers, in particular the blood-brain 

barrier, which prevents harmful substances, including 
pathogens and pro-inflammatory mediators, from 

entering the brain. The blood-brain barrier consists of 

highly specialized endothelial cells, pericytes, mast 

cells, and astrocytes that form the neurovascular unit 

that regulates the permeability of the barrier and 

maintains the integrity of the CNS. Viral entry from 

the blood to the CNS is restricted by the blood-brain 

barrier, which forms a structural and functional 

barrier between the peripheral circulation and the 

CNS (19,20). The neurovascular unit (blood-brain 
barrier) serves as the gatekeeper of the CNS, which 

protects the brain by regulating cerebral blood flow 

and limiting the access of pathogens, leukocytes and 

toxic substances (21,22). 

Human neurotropic RNA viruses have evolved as 
opportunistic pathogens that can bypass the blood-

brain barrier and enter the CNS by a variety of 

mechanisms: paracellular transport, transcellular 

transport, transport via extracellular vesicles (Trojan 

horse traffic), via receptor-mediated endocytosis, or 

"Trojan horse" trafficking. SARS-CoV-2 is thought 

to utilize a similar pathway(s) to come through the 

barriers separating the brain from peripheral blood 
and gain entry to the CNS. Mediators such as 

cytokines and chemokines can bind to specific 

receptors on the brain microvascular endothelium, 

causing disruption of the blood-brain barrier, 

neuroinflammation and encephalitis. Disruption of 

the blood-brain barrier can break the tight junctions 

between endothelial cells, which pave the way for 

paracellular transmission of SARS-CoV-2 to the 

CNS (23). 

In the "Trojan horse" strategy of neuroinvasion, the 
virus lurks inside innate immune cells that can infect 

neurons and glial cells, circulating across the 

permeable blood-brain barrier using specific 

chemokine receptors. Studies on West Nile Virus 
(WNV) show that cell adhesion molecules may play 

a role in facilitating the migration of peripherally 

infected leukocytes to the CNS (24,25). The virus 

can migrate within infected leukocytes that enter the 

CNS (25). Indeed, human immunodeficiency virus 

(HIV)-infected leukocytes, which cross the blood-

brain barrier, are one of the routes of spread to the 

CNS (26). HIV infects CD4+ T cells and uses the 

chemokine CCR5 as a co-receptor to enter the CNS 

(27). 

In addition to severe pneumonia, COVID-19 can 

cause various neurological disorders including 

damage to the neurovascular unit, disruption of the 
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blood-brain barrier, elevated intracranial 
proinflammatory cytokines, and endothelial cell 

damage in the brain (18). In the many SARS-CoV-2 

patients reported anosmia suggesting involvement of 

olfactory nerves in the early stages of the disease 

(28). It has been reported that ACE2 and TMPRSS2 

(transmembrane serine protease 2), which SARS-

CoV-2 uses as receptors to enter cells, are expressed 

by non-neuronal cells of the olfactory epithelium and 

olfactory bulbs in mice, non-human primates, and 

humans (29). It has been shown that neuropilin-1 
(NRP1) is abundantly expressed in respiratory and 

olfactory epithelium, and highly expressed in 

endothelial cells of small and medium vessels of the 

nasal cavity. NRP1-mediated transport of SARS-

CoV-2 virus has been demonstrated in the CNS of 

mice (30). Therefore, NRP1 in conjunction with 

ACE2 may also be used by SARS-CoV-2 as an 

additional receptor to enter the CNS via olfactory 

nerves (22).  
 

 
Figure 2. Schematic diagram showing that COVID-19 

can cause and exacerbate a neuroinflammatory response 

in the brain. (A) SARS-CoV-2, (b) SARS-CoV-2 infected 

brain and (C) neurovascular unit, damaged blood-brain 

barrier/loss of tight junction, and neuroinflammation in 

brain parenchyma (from reference 18). 

 

Mast Cell and COVID-19 

Mast cells are cells of the innate immune system and 
are involved in adaptive immune reaction, stroke, 

traumatic brain injury, systemic inflammatory 

diseases, neuroinflammatory diseases, and stress 

disorders. SARS-CoV-2 can activate 

monocytes/macrophages, dendritic cells, T 

lymphocytes, mast cells, neutrophils and cause a 
cytokine storm in the lung. COVID-19 can activate 

MCs, endothelial cells, neurons, and glial cells. 

SARS-CoV-2 infection can cause psychological 
stress and neuroinflammation, and accordingly, 

COVID-19 can induce MH activation, psychological 

stress, cytokine storm, and neuroinflammation 

(27,31). Studies report that stroke is associated with 

coagulopathy, antiphospholipid antibodies, and 

multiple infarctions in COVID-19 patients (32).  

Multiple cytokine release, also called “cytokine 
release syndrome (Cytokine Release Syndrome - 

CRS)”, is closely related to the development of 

clinical symptoms of COVID-19. For example, IFN-

γ can cause fever, chills, headache, dizziness, and 

fatigue; TNF-α can cause flu-like symptoms similar 

to IFN-γ, with fever, malaise, and fatigue. It may also 
cause cardiomyopathy, acute phase protein synthesis, 

lung injury and vascular leakage (33). IL-6 may lead 

to complement activation, vascular leakage, and 

coagulation cascade, revealing the characteristic 

symptoms of severe CRS such as intravascular 

coagulation (34,35). In addition, activation of 

endothelial cells may also be one of the hallmarks of 

severe CRS. Endothelial dysfunction causes capillary 

leakage, hypotension, and coagulopathy (36). 

Mast cells are activated by SARS-CoV-2 and can be 
activated. Although lately identified, MH activation 

syndrome (MCAS) is a chronic multisystem disorder 

with inflammatory and allergic features, usually due 
to acquired MC clonality, with an estimated 

prevalence of 17%. It has been suggested that drugs 

with activity against MCs or their mediators are 

beneficial in patients with COVID-19 (38). Although 

MCs can recognize viruses by mechanisms such as 

Toll like receptor and IgE-FcεRI, they also express 

angiotensin-converting enzyme 2 (ACE2), which is 

known as the main receptor for SARS-CoV-2. This 

condition defines that MCs can become a host for 

this virus. MCs also express several serine proteases, 

including tryptase, required for SARS-CoV-2 
infection (31). 

Cytokine Storm and Mast Cell 

COVID-19 cytokine storm is a condition 
characterized by rapid proliferation and 

hyperactivation of T lymphocytes, macrophages and 

natural killer cells and overproduction of more than 
150 inflammatory cytokines and chemical mediators 

released by immune or non-immune cells (6,39). 

Cytokine storm associated with SARS-CoV-2 

infection, TNF-α, IL-6, interferon gamma-inducible 

protein 10 (IP-10 or CXCL10), chemokine, 

macrophage inflammatory protein -1α (MIP1-α) is 

characterized by high secretion of pro-inflammatory 
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cytokines such as ligand 2 (CCL2) and granulocyte 
colony stimulating factor (G-CSF), as well as C-

reactive protein and ferritin (40). Hyper-

inflammatory cytokine storms in most seriously 

symptomatic COVID-19 patients may be initiated by 

dysfunctional MCs of MCAS as an atypical response 

to SARS-CoV-2 rather than the normal response of 

normal MCs (38). 

Decreased total T lymphocytes, CD4+ and CD8+ T 
lymphocytes, NK cells, and increased 

proinflammatory Th17 cells and perforin have been 

reported in COVID-19 patients with leukopenia 

(41,42). Increased IL-6 level in COVID-19 patients 

can trigger Th17 cell differentiation and cause 
cytokine storm, pulmonary inflammation and 

dysfunction (41,43). Recovery of lymphocyte 

number to normal levels indicates clinical 

amelioration of COVID-19 patients (44). 
 

 
Figure 3. Mast cells can be activated by various stimuli 

due to different receptors on their membrane: These 

are proteins of the complement system (C3a, C5a), IgE, 

Toll-like receptors (TLR), receptors for IgG (FcγRI), 

prostaglandin E, viral proteins (hepatitis, HIV) ), 

bacteria, neuropeptides, TNF, and physical stimuli 

(from reference 37). 

 

Viral Infection and Mast Cell Activation 

Mast cells interact with the pathogen through a 
variety of natural surface pathogen recognition 

receptors (PRR) or cytosolic receptors that mediate 

its activation, degranulation, and release of different 

mediators (45). Following activation, released 
factors injury lung tissue, so using MC stabilizers to 

target MC mediators or restrict their degranulation 

can directly ameliorate SARS-CoV-2-related lung 

injury (46). 

Production of C3a and C5a and activation of the 

complement system have been observed in patients 
with COVID-19. Both components of complement 

can activate their MCs via receptors located on the 

cell membrane and cause urticaria-like lesions. 

Again, MHs also express IL-1 receptors and can also 

be activated by macrophages in the innate immune 

response process, which determines the release of 

mediators from their MCs and the formation of 

urticarial lesions (2,37).   

Mast cell cytoplasm contains approximately 50 - 200 
granules that store histamine, proteases, heparin, 

chondroitin sulfate, pro-inflammatory and anti-

inflammatory cytokines/chemokines released after 

activation (47,48). MCs can release pre-stored TNF-
α, histamine, and proteases from cytoplasmic 

granules by degranulation, and newly synthesized 

TNF-α and other cytokines and chemokines in the 

late phase of reactions (2,49). TNF-α activates E-

selectin expression from vascular endothelial cells 

(50). By targeting TMPRSS2, camostat mesylate 

(which is an inhibitor of TMPRSS2) can block the 

entry of SARS-CoV-2 into cells, blocking the spread 

and action of the virus (51); and camostat mesylate 

partially blocks the S-protein of SARS-CoV-2, 
preventing the virus from entering the lung (52).  

Suppression of mast cell activity by MC stabilizers 

can alleviate all the complications associated with a 
cytokine storm in SARS-CoV-2 infection. MC 

stabilizers prevent the release of histamine and 

related mediators by blocking MC degranulation. 

Studies have shown that MC stabilizers have the 

potential to improve patient survival and survival in 

wild-type mice in Dengue virus and influenza A 

virus models (10,53). They have broad efficacy in 

reducing inflammatory cytokine release from 

multiple cell types in SARS-CoV-2 infection, 

suggesting their potential benefit in reducing 

hypercytokinesia. The degranulation products of MC 
are known for their dominating role in starting an 

inflammatory reaction and cytokine storm in severe 

cases of SARS-CoV-2 (52,53). It results in acute 

respiratory distress syndrome, which facilitates the 

process of exacerbation of the disease and multi-

organ failure (54). It is of great importance to target 

mediators in the treatment process of the disease. 

Many drugs are available that target and block the 

activity of specific MC mediators, including TNF-α, 

leukotrienes, and MC proteases. Many drugs are in 
this group, including cromolyn, ketotifen, quercetin, 

and luteolin (45). 

As a result; MCs appear to play important roles in the 
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pathogenesis of SARS-CoV-2 virus and COVID-19 
disease, and blocking the activation and 

degranulation of these cells suggests that it will be a 

good step in the prognosis of this disease. 
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