
34 
 

 

Subaraknoid kanama sonrası erken beyin hasarı 
Early brain injury after subarachnoidal hemorrhage 

 
Murat Ulutaş1, Haydar Sekmen2, Mehmet Seçer2, Soner Şahin3 

1Sani Konukoğlu Hastanesi, Beyin ve Sinir Cerrahisi Bölümü, Gaziantep 
2
Deva Hastanesi, Beyin ve Sinir Cerrahisi Bölümü, Gaziantep 

3
Derince Eğitim ve Araştırma Hastanesi, Beyin ve Sinir Cerrahisi Kliniği, Kocaeli

            Derleme/Review 

Özet 
Subaraknoid kanama, dünya nüfusu göz önüne 
alındığında en önemli morbidite ve mortalite 
nedenlerinden biridir. Geç komplikasyonların 
(tekrar kanama,hidrosefali,geç iskemik nörolojik 
defisit,elektrolit imbalansı) yönetimi,sonuçların 
daha iyi olmasını sağlayabilir. Fakat,serebral 
hemodinamiğin bozulması ,vasküler-nöronal 
apopitoz gelişmesi, genetik faktörler gibi 
patofizyolojik süreçler, önlenemeyen erken heyin 
hasarına yol açmaktadır. Bu makalede, 
subaraknoid kanama sonrası serebral kan akımının 
önemi ve erken beyin hasarına yol açan 
patofizyolojik mekanizmalar özetlenmiştir. 
 
Anahtar kelimeler: Subaraknoid kanama, serebral 
vazospazm, apopitoz, beyin yaralanmaları 
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Abstract 
Subarachnoidal hemorrhage is one of the most 
important causes of mortality and morbidity 
among the world’s population. Management of 
late complications (including rebleeding, 
hydrocephaly, late ischemic neurological deficit, or 
electrolyte imbalance) can improve outcomes. 
However, pathophysiological processes, such as 
deterioration of cerebral hemodynamics, 
development of vascular-neuronal apoptosis, and 
genetic factors that occur with the hemorrhage, 
lead to early brain injury that cannot be 
prevented. In this review, the significance of the 
cerebral blood flow after subarachnoidal 
hemorrhage and pathophysiological mechanisms 
that lead to early brain injury are summarized. 
Key words: Subarachnoid hemorrhage, cerebral 
vasospasm, apoptosis, brain injuries 
İngilizce kısa makale başlığı: Subarachnoid 
hemorrhage 

İletişim (Correspondence): 
Uzm. Dr. Haydar Sekmen / Derince Eğitim ve Araştırma Hastanesi, Beyin ve Sinir Cerrahisi Kliniği, Kocaeli 

Tel: 05366989953 / E-mail: dr_haydarsekmen@hotmail.com 

 



35 
 

                                                                                  

Introduction 

Brain tissue cannot store energy, and its 
source of energy must be provided by 
continuous blood flow. After subarachnoidal 
hemorrhage caused by aneurysm (aSAH), 
pathophysiological processes including 
cerebral vasospasm, narrowing of the major 
cerebral arteries, and deterioriation of 
autoregulation in the arterioles triggered by 
hemoglobin and its products, cause morbidity 
and mortality (1-4). Vasospasm occurs after a 
SAH 67% of the time (5) and it is biphasic. 
Classically, the acute phase occurs within 3-4 
hours, progresses rapidly, and can improve 
spontaneously; the chronic phase begins 
within 3-5 days and reaches its maximum on 
day 6-8, improving in about 14 days (6). 
Rebleeding, one of the most important 
complications of intracranial aneurysm 
bleeding, can be prevented by early detection 
and surgical management (7,8). Despite all 
prophylactic and therapeutic trials, vasospasm 
remains a problem that can be a cause of late 
neurological deficit (9). 
The incidence of a SAH is 1 in 10,000 annually 
(10). Of these, 11% die before being admitted 
to the hospital, and 40% die within the first 4 
weeks (11). In 50% of the survivors, lifetime 
memory and cognitive dysfunctions develop 
(12). This high rate of mortality and morbidity 
cannot be attributed only to vasospasm. The 
sudden fall in cerebral blood flow (CBF), 
increase in intracranial pressure (ICP), damage 
to the blood-brain barrier, cerebral edema, 
deterioration in microcirculation 
autoregulation, and apoptosis, any of which 
occur in the first 72 hours, result in early brain 
injury (2,13-19). In this literature review, the 
significance of CBF after SAH and the 
pathophysiological mechanisms that lead to 
early brain injury are discussed. 
 
Cerebral blood flow and acute 
pathophysiological changes  
In experimental models of SAH, a rise in ICP is 
observed along with a sudden fall in CBF and 
cerebral perfusion pressure (CPP) in many 
trials (15,20-22). Following SAH, CBF 
autoregulation is damaged and its level has 

been shown to be a significant factor affecting 
mortality, apart from the ICP and Cerebral 
Blood Pressure (CBP) (2,4,15,20,23). In the 
experimental trial of Jackowski et al, there was 
no significant change in CBF, but there was a 
20% fall in CBP; in SAH, groups, together with 
deterioration in perfusion pressure and 
cerebral autoregulation, there was a decline in 
CBF by up to 50% (15). In the experimental 
trial of Punnel  
et al, the rise in ICP and the fall in CPP that 
occurred following SAH were less important in 
terms of outcome than the fall in CBF in all 
three models (20). It is suggested that 
ischemia is caused by the sudden fall in CBF 
and acute vasospasm rather than the amount 
of bleeding, but the pathophysiology is not 
fully explained (20,21,24,16,25). In clinical 
practice, transient loss of consciousness is 
accepted as a possible protective mechanism. 
It occurs when aSAH results in a decline in CBF 
together with a rise in ICP. 
Following SAH, the injury that occurs with the 
pathophysiological mechanisms is called early 
brain injury (17,19,24,26). The sudden fall in 
CPP and rise in ICP subsides within minutes 
(15,20,21,23,27,28). The roles of CBF falling 
below baseline (2,4) and acute microvascular 
endotelial dysfunction when endotelial 
vascular width control is lost (30) in early brain 
injury are thought to be more significant than 
changes in CPP and ICP (15,20,21,28). 
Moreover, following SAH, vascular endothelial 
growth factor, oxidative stress, activation of 
the inflammatory cytokines (tyrosine kinase 
and its substrate, mitogen activation protein 
kinase), disruption of the blood-brain barrier, 
and development of cerebral edema all play a 
role in the pathophysiology of early brain 
injury (17,31-34). Contributing to the 
development of such injury are: expansion of 
cortical depolarization from widespread 
neuronal ion hemostasis impairment during 
the early phases of SAH (16,42); impairment of 
the neuronal, endothelial, and vascular 
smooth cell intracellular hemostasis of calcium 
ion, which plays an important role in the 
etiology of vasospasm (7,65); and impairment 
of hemostasis of ions such as magnesium (42) 
and sodium (81). 
The significance of nitric oxide (NO) and 
endothelin-1 is well known in the etiology of 
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acute vasospasm, ischemia, and CBF changes 
that occur after experimental SAH (27,29,40-
46). Oxyhemoglobin from the erytrocites in 
the subarachnoidal space plays an important 
role in the development of vasospasm by 
reducing the biological activity of NO (1,29). 
As in the acute stage of SAH, the equilibrium 
between NO and nitric oxide synthase (NOS), 
which ensures vasodilation, is disrupted 
(29,47) while the level of endothelin-1, a 
strong vasoconstrictor, rises in CSF (42,46). In 
a trial in which NO is increased, acute 
vasospasm was reported to develop from NO 
insufficiency (43). The same research team 
also reported that NOS inhibitor had no effect 
on CBF in the first half hour, but after one 
hour, it caused a fall in CBF, suggesting that 
NO caused a biphasic change from the loss in 
its vasodilation effect (29). A biphasic change 
exhibited by NO is thought to be the cause of 
the sudden fall and slow rise in CBF after SAH. 
In experimental and clinical trials involving 
microdialysis, a rise in the lactate/pyruvate 
ratio and glutamate concentration showed 
ischemia existed soon after SAH (19,25). 
Furthermore, a marker of neuronal damage, 
neuron specific enolase, reportedly rises in the 
first 24 hours of aSAH, and is found to be 
associated with the amount of bleeding in the 
subarachnoidal region and the bad 
neurological state during admission (48,49). In 
the experimental trial, astrocyte and 
oligodendrocyte cell deaths were shown in 
addition to the neurons in the first 24 hours, 
and these cell deaths were shown to be 
related to the sudden fall of CBF and its 
duration (18,50). 
EARLY VASCULAR CHANGES 
The inflammatory response created by the 
erytrocyte degradation products surrounding 
the vascular structures in the subarachnoidal 
space, endothelial damage, disruption of the 
paranchymal vascular autoregulation, and 
decrease in internal vessel diameter also 
contribute to the development of ischemia 
(32). Vasospasm is not a vessel narrowing 
from simple muscle contraction, but is known 
to be a proliferative vasculopathy and is 
accompanied by disruption of the blood-brain 
barrier (15,51,33,52,53). In animal models, 
great and small vessels become spastic 
minutes after SAH (15,52,53) and 

morphological and functional changes begin 
(51). Friedrich et al showed deterioration in 
the endothelial cell lines, separation from the 
basal lamina in minutes, and onset of 
apoptosis in the endothelial nucleus 3 hours 
after SAH (54,55). It is reported that for 24 
hours, the degradation of lamina propria 
proteins continues (34,56) and, as evidenced 
by damage to the blood-brain barrier, an 
increase in the vessel permeability and 
cerebral edema lead to early brain injury (33, 
57,58). 
Potential growth factors such as platelet 
derived growth factor-AB (PDGF-AB), 
transformin growth factor-ß1, and vascular 
endothelial growth factor are released from 
the coagulum in the subarachnoidal space 
(57,59). In particular, PDGF, which is produced 
in high amounts in the trombus region, 
generates vascular and perivascular cell 
proliferation (57). Around 48 hours after SAH, 
infiltration of periadventitial inflammation 
cells reaches its maximum and, as cellular 
immunity turns into humoral immunity, it 
contributes to the development of vasospasm  
and early brain injury (60). 
Vasospasm, occuring in the acute stage of 
SAH, develops especially in the lamina elastica 
from the first hour, and then the changes 
taking place in the endothelium and media 
continues independently from those in the 
CBF (23). Though trials show that apoptosis 
(54), genetics (61), perivascular cellular and 
humoral factors (60), and enzyme activity 
changes (17) are causes of vascular wall 
pathologies, it is not obvious why the lamina 
elastica and endothelium are affected first. 
Early brain injury begins from the first 
moment of SAH, and the fact that this affects 
prognosis might not be preventable, but many 
experimental trials have found factors that 
inhibit vasospasm and ischemia. For example, 
vasospasm was improved or prevented by 
inhibiting the potential vasoconstrictor 
endotelin (42), NO donor (43), the mitogen 
activation protein kinase pathway (17), PDGF 
(57), or the agents that act upon the 
pathophysiological mechanisms such as 
statins, fasudil, erytropoetin, or sildenafil 
citrate (57). Though the factors relating to 
vasospasm are simultaneously activated, it is 
not clear why or how, with the deactivation or 
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activation of only one of them (while the 
pathophysiological proccesses continue), 
vasospasm is improved or cured. Despite the 
trials that attempt to find the mechanisms 
contributing to the development of 
vasospasm following aSAH and preventive 
agents, knowledge of the pathophysiology 
remains inadequate. For example, in clinical 
and preclinical trials, there was improvement 
in angiographical vasospasm treated with 
clazosentan, an endothelin receptor 
antagonist, but no improvement was seen in 
neurological outcome (8). When treated with 
the calcium channel antagonist nimodipin, 
improvement in functional outcome was 
achieved, but no effect on angiographical 
vasospasm was seen (87). Using magnesium, 
another calcium antagonist, vasospasm was 
improved in animal experiments, but had no 
effect on mortality (57). In patients with SAH, 
the relationship between the density of 
bleeding observed on CT and the risk of 
vasospasm formation is associated with the 
Fisher classification (64), but in our clinical 
practice, there is no relationship between the 
Fisher grade and the clinical stage of 
vasospasm. In a clinical trial concerning this 
condition, no significant relationship between 
the Fisher grade and vasospasm development 
was found (65). Therefore the role of genetics 
and apoptosis is gaining attention in VS. 
APOPTOSIS  
Apoptosis-related cell death begins in the first 
10 minutes of SAH (54) and is shown to be 
related to the early activation of the intrinsic 
pathway by caspase, activated by an increase 
in intracellular calcium ions (14,66). The 
extrinsic pathway of apoptosis takes place 
with the death receptors located on the cell 
surface (67). The process begins with 
activation of the tumor necrosis factor 
receptor family p53 (66, 68), a nuclear 
transcription factor induced by tumor necrosis 
factor alpha (69), and is related to ischemia 
through neuron, astrocyte, and 
oligodendrycyte death, blood-brain barrier 
damage, necrosis, and smooth cell 
hypertrophy in vascular walls and the spastic 
artery following SAH (18,57, 70, 71). Though it 
is reported that blood-brain barrier damage 
related to apoptosis develops in later stages 
(14), in various animal models, it is shown to 

occur in 1 and 6 hours (13,31). In the early 
stages of the biphasic change, vasogenic 
edema alone (18) or together with cytotoxic 
edema in more recent studies (72,73) takes 
place and, as the result of damage to the 
blood brain barrier, a rise in ICP and fall in CBP 
lead to ischemia (32, 74). 
 
Vasospasm and genetics 
Clinical trials show that genetic predisposition 
is an important risk factor in developing 
vasospasm following SAH. Catecholamines are 
shown to cause vasopasm, and the incidence 
of acute vasospasm is high in patients with 
COMT-A alleles versus those with COMT-G 
alleles (75,76). 
Marshden et al showed that the eNOS gene, 
located on the 7q35-36 chromosome, is coded 
polymorphically (77), and in another trial, a 
single nucleotide polymorphism on the gene is 
found to be related to the development of 
vasospasm (78,79). In patients with the same 
gene polymorphism, there is not only a high 
risk of cerebral vasospasm, but an association 
with cardiovascular diseases such as coronary 
heart disease, atherosclerosis, hypertension, 
and aortic aneurysm (80,81). 
Haptoglobulin, located on 16q22, is coded as 
alpha and beta subunits (82). This gene can be 
coded as alpha1 or alpha 2, and the alpha 2 
subunit is shown to be associated with 
insufficient neutralization of free radicals 
related to hemoglobin, leading to increased in 
vitro inflammatory response (83). In clinical 
trials, Borsody et al examined the relationship 
between the haptoglobulin type and 
vasospasm in the patients with Fisher grade 3 
SAH (84). In transcranial follow up, patients 
with the haptoglobulin alpha 2 subunit were 
found to have an 87% risk of vasospasm. In 
cerebral angiography performed 3-14 days 
later, 17% were found with the alpha 1 
subunit and 56% with the alpha 2 or other 
subunits. 
Apolipoprotein E, a very low density 
lipoprotein located on the E 19q13k 
chromosome, has predominantly the epsilon 3 
subunit. Patients having the uncommon 
epsilon 4 subunit experience vasoconstriction 
from endothelin-1, alzheimer’s disease, and a 
predisposition to oxidative stress together 
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with functional and cognitive morbidity 
following aSAH (85,86). 
In clinical trial performed by Reuffort et al the 
ryanodine receptor gene polymorphism, 
which plays a role in the intracellular calcium 
hemostasis, was shown to possibly have a role 
in symptomatic vasospasm (87). 
Angiographical vasospasm observed after 
aSAH does not always lead to vasospasm and 
ischemia, and the amount of blood in the 
subarachnoidal space is not always 
proportional to the development of 
vasospasm. The reason could be attributed to 
the genetic discrepancies. 
 
Acute pathophysiological events occurring 
when CBF declines, along with oxyhemoglobin 
and endothelial damage following SAH, 
initiate vascular and neuronal damage before 
admission to the hospital. While it is well 
known that vasospasm and late neurological 
deficits affect morbidity and mortality, 
severity of the early brain injury and its effect 
on later stages are gaining significance. 
Although the pathophysiological processes in 
early brain injury are similar, genetic 
discrepancies and apoptosis are the morbidity 
and mortality factors that are gaining 
importance. In laboratory trials using subjects 
without genetic polymorphism, the effect of 
genetics on cellular damage and VS is being 
ignored. Therefore, more trials are needed to 
examine early brain injury and VS. 
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