
A New Approach to Analysis of Clinical Data and 
Prognostication for Patients with Hepatocellular Carcinoma, 
Based Upon a Network Phenotyping Strategy (NPS) 
Computational Method

Objectives: There is a multi-component nature of the influences on HCC progression but integrating them has been difficult.
Network phenotyping strategy (NPS) integrates all multi-component relationship facets of HCC progression and aims to lead to a 
new way of understanding human HCC biology.
Methods: We converted baseline patient demographics, tumor characteristics, blood hematology and liver function test results, 
consisting of values of 17 standard clinical variables, collected time-coherently at the index visit, into a graph-theoretical data 
representation.
Results: These data were analyzed by NPS, which processes the patient parameter values together with their complete relation-
ships network. NPS identified 25 disease-progression ordered HCC phenotypes. Clinically relevant NPS results are a) Portal vein 
thrombosis incidence during HCC progression stratified into 5 narrow ranges; b) NPS identified patients according to aggressive, 
slow and intermediate tumor growth sub-types; c) Personalized prognostication of mortality was achieved by the 25 NPS pheno-
types, independently optimized for respective phenotype sub-cohorts.
Conclusion: The NPS results were implemented as an internet application (https://apkatos.github.io/webpage_nps), where input of 
17 clinical parameters provides the patient phenotype, phenotype-characteristic average mortality and personal survival estimate.
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There has always been an awareness of the multiple 
component nature of the various influences on HCC 

growth (MTD) and invasion (PVT),[1-5] but we have hitherto 
not been able to integrate them well. Therefore, we used a 
Network Phenotyping Strategy or NPS,[6] which is designed 
to analytically process the integrated multi-component re-
lationship facets of HCC seen in patient data, to guide us 
to a new way of understanding human HCC biology. NPS 
is derived to identify the stage of HCC disease at its actual 
“biological” duration during the index visit, at the point 
when the patient data were collected, by analyzing time-
coherent relationship networks between personal clinical 
variable values. This novel non-statistical processing of ex-
tended clinical information in the patient data leads direct-
ly to consideration of HCC as a dynamic process, resulting 
in data-driven objective characterization of HCC stages and 
eventually, to better personalized outcome predictions.
To achieve this, a new principle of clinical data processing 
has been formulated. Instead of the standard statistical 
assumption, that HCC impacts patients more or less simi-
larly, we analyzed HCC dynamics. NPS extracts information 
about the biological time of patient HCC, encoded in the re-
lationship between coherently observed values of multiple 
variables. This allows the assigning of patients to objective 
progression-ordered clinical HCC stages, with earlier stages 
having good outcomes, whereas later clinical stages have 
poorer outcomes. This replaces the conventional outcome 
prognosis using an unknown future clinical state into gain-
ing insight about the stage and prognosis from the known 
history of the patient’s disease, encoded in the known per-
sonal biology at the patient index visit, as seen through the 
clinical variable relationship networks.
To achieve this, a new form of patient data, represented as 
K-partite graphs, was used. In these graphs, where relation-
ships are not neglected, variable values are vertices, and 
disease progression time is captured by topology of value 
relationships, encoded by edges, connecting the patient’s 
simultaneously observed data value vertices. Important-
ly, “prototype” data relationship network topologies are 
completely different in the earliest and latest HCC stages. 
That gives HCC dynamics monitored by the decrease of 
influence of early stage prototype-reflected biology and 
increase of influence of late stage prototype-reflected biol-
ogy, both independently or in combination. The main dis-
covery of this integrated approach to clinical data process-
ing is that disease progression is not continuous. Instead, 
HCC patients emerged as naturally grouped into clinically 
well-separated groups with characteristic ratios of early 
and late stage biology contributions. We could then start 
applying the new objective causal stages of HCC to gain 
new insights into the role of interesting factors, relevant for 
diagnosis, treatment and prognosis for HCC. 

Methods

Clinical Data
4802 HCC patients were identified from our previously 
published study[7, 8] who had a complete set of values for 
17 standard baseline clinical parameters at initial clinical 
presentation, with tumor size and number and presence or 
absence of PVT, based on their initial CAT scan measure-
ments and who also had known survival data. The 17 clini-
cal parameters were chosen based upon baseline routine 
clinical data that is collected to evaluate any newly-pre-
senting HCC patient and are in 3 groups: A), Demographics 
that included age, gender and HBV/HCV status; B), tumor 
characteristics, that included maximal diameter (MTD), 
tumor uni- or multi-focality, portal vein thrombosis (PVT) 
presence/absence and serum α-fetoprotein (AFP) levels; C), 
serum liver parameters and blood counts, including levels 
of albumin, total bilirubin, INR, ALT, AST, ALKP, GGT, Hb and 
platelets. This work for analysis of de-identified and dis-
eased HCC patients was exempted from written informed 
consent. ITA.LI.CA database management conforms to Ital-
ian legislation on privacy and this study conforms to the 
ethical guidelines of the Declaration of Helsinki. Approval 
for the study on de-identified patients was obtained by the 
Institutional Review Board of participating centers. 

Mathematical Methods
NPS determines information about patient time of disease 
duration at index visit, τp from topology of 17-partite graph 
Γ(τp), representing all levels of the time-dependent relation-
ships between all 17 personal coherently observed values 
(Fig.1). In Γ(τp), each diagnostic variable is represented by a 

Figure 1. 17-partite graphs Γ(τx) for three patients (p, q and r) at dif-
ferent stages of HCC. Ovals - individual clinical variables. Circles in 
ovals - vertices, representing variable values or intervals of each in-
variable. Vertices are naturally ordered: values, typically observed at 
earlier disease stages are on the outside and values observed typi-
cally at late stages are on the inside ends of each partition. Solid cir-
cles - vertices, representing observed values of respective variables 
for the patient. Lines - network of relationships between coherently 
observed values of all variables. Figure demonstrates the change of 
patient’s Γ(τx) topology when HCC progresses from early (patient p) 
through intermediate (patient q) to late (patient r) stages.
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partition (ovals in Fig.1). The partition contains the specific 
set of graph vertices, each representing consecutively or-
dered intervals of values, covering the entire physiological 
range of that variable. These intervals are defined by the 
heterogeneity in the histogram of the variable values, ob-
served in the general HCC population. 

The personal network of time-coherently observed data 
relationships is then represented by the network of edges 
(lines in Fig.1), connecting the vertices in each partition, rep-
resenting the observed values of 17 variables. The position 
of the connected vertex within the complete ordered set of 
vertices in a variable partition encodes the “first-order”, val-
ue-based, disease progression information, capturing if the 
observed value of one variable belongs to “early” or “later” 
stages of the disease. Edge connections of that variable val-
ue to remaining 16 observed variable values, represented by 
vertices in other partitions, captures the clinical context of 
the “earliness” or “lateness”, seen by the value of the single 
variable. The “shape/topology” of this network thus directly 
carries the personalized contextual information about τp, de-
fining the disease progression stage.

NPS determines the τp from τx by computation, derived 
from 2 fundamental mathematical theorems, one showing 
that obtaining the best possible τp value requires maximiza-
tion of Fisher information of the data,[9] and another show-
ing that this is achieved by quantifying the differences in 
topologies between patient Γ(τp) and 17-partite prototype 
graphs.[10] By specific method of finding these prototype 
topologies, NPS gains the most of new clinical content and 
explanatory transparency. 

First, we examined whether 17-partite prototype networks 
are different in the earliest and the latest HCC stages. The 
clinical characteristics of these extreme HCC stages are 
properties of the disease biology. We therefore needed a 
network-based clinical disease descriptor. Its construction 
is straightforward, as we overlayed all individual patient 
partite graphs into one 17-partite multigraph D. It con-
tains new clinical information through the multiplicities of 
edges between the variable values: they monitor the clini-
cal relevance of respective observed relationships, quan-
tified by high multiplicities of specific relationship edges 
in D. This reflects the functional preference for just some 
combinations of clinical value relationships over all other 
possibilities, caused by underlying HCC disease biology. We 
then formulated a “clinically ideal” feature of a networked 
marker of such HCC biology-determined topology proto-
type, since its identical copies will be found in D with high 
abundances. This clinical fact is translated into a “greedy” 
mathematical procedure by decomposing D into a minimal 
number of sub-multigraphs with identical multiplicities of 

all their edges. 

An advantage of this approach is that such decomposition 
is unique[11, 12] for any given disease multigraph D, which 
can be understood that we obtain “principal topology sub-
graphs”, potentially characterizing disease biology related 
markers in our data. For our 4802 patients, multigraph D 
is completely decomposed into 181 principal topology 
components, representing ~30 reduction in relationship 
dimensionality.

To find which of these 181 principal topology subgraphs 
characterize the earliest and the latest HCC stages, we ap-
plied the HCC specific adaptation of the general fact that 
outcome is significantly better for patients in earliest disease 
stages (HCC patients will be predominantly alive), compared 
to the outcome for patients in the latest HCC stages (patients 
will be predominantly dead, 63% in our cohort). We there-
fore looked for such principal topology prototypes in the set 
of 181, which, on one hand, share maximum relationship 
topology features with the most frequent topology features 
in the sub-group of surviving patients and simultaneously 
shared a minimal number of such relationships with the to-
pological features, typical for deceased patient subcohort, 
and vice versa. This identified topology prototypes Pm'(τmin), 
Pm'' (τmin) and Px' (τmax), Px'' (τmax).

We then used free energy information descriptors[13, 14] to 
independently quantify content Xp of Px (τmax) and content 
Yp of Py (τmin ) topology prototypes in a patient’s observed 
networked data Γ(τp). This results in [Xp,Yp] NPS charac-
terization of personal HCC stages in a 2-dimensional NPS 
map (Fig. 2). 

Figure 2. (a) Central panel: NPS 2-dimensional map of disease pro-
gression (see text for explanation of clinical meaning of horizontal and 
vertical axes). Each patient out of 4802 is represented by a point [Xp, 
Yp]. Right panel - histogram of patient density in the top-down direc-
tion of decreasing contribution of early HCC stage biology. Top panel 
- patient density in the direction of left-right direction of increasing 
contribution of latest HCC stage biology. Dotted lines - boundaries of 
HCC progression, separating patient sub-populations in respective 
NPS phenotype stages sT. (b) 3-dimensional histogram of patient 
population distribution in all 25 HCC NPS phenotype stages sT.
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For quantitative analysis and clinical interpretation of 
trends in the phenotype characteristics, we used the loga-
rithm of abundance of Py (τmin) in the patient data, which we 
call (personal) disease burden, DBp (τp). As the Xp and Yp are 
expressed in (normalized) logarithmic scale, DBp (τp)=Yp-Xp. 
From this definition follows that clinical burden has values 
between -1 and +1 and is negative for patients with data 
relationships consistent with dominance of early-stage 
markers and becomes positive for patients with data rela-
tionships showing dominance of late-stage markers. The 
mathematical details are presented in Appendix 1.

Results

HCC Phenotyping by NPS
We found common networked data relationship “proto-
type” biomarker patterns Py (τmin), characteristic for the ear-
liest stages of HCC, and other, completely different, com-
mon networked data relationship “prototype” patterns Px 
(τmax), characteristic for the latest stages. Different personal 
times from HCC disease onset are therefore observable by 
identifying the fractions of the early/late prototype rela-
tionship patterns in individual patient actual networked 
clinical baseline data. This permitted representation of HCC 
progression in a population as a 2-dimensional disease 
map, in which a patient is represented in the “HCC clinical 
progression plane” as a point, with coordinate Yp, given by 
the personal content of early-stage HCC prototype topol-
ogy (vertical axis) and by the content Xp of late-stage HCC 
prototype topology (horizontal axis), found in the patient’s 
networked data. 

We further showed that the distribution of patients in the 
NPS disease progression map is not uniform. Instead, pa-
tients with HCC are in this HCC clinical progression plane 
map tightly grouped into 25 well-separated sub-cohorts, 
within which patients are sharing most of their observed 
clinical feature relationships, with the frequency of their 
clinical differences decreasing exponentially from the most 
populated common HCC networked clinical profiles in the 
subgroup. This allowed us to identify 25 HCC NPS pheno-
types sT,s=1…25, which are automatically ordered accord-
ing to their characteristic disease progression stage (s=1 
being the earliest, s=25 being the latest stage), shown in 
Figure 2. 

We then examined the role of currently used clinical de-
cision-supporting factors, in particular of PVT in the full 
context of other data in the NPS results, identifying and 
characterizing new clinically relevant categories of PVT pa-
tients. For this purpose, we used the fact that NPS analysis 
resulted in objective (non-statistical) partitioning of the 
clinically heterogeneous HCC population into stage-spe-

cific phenotype sub-populations, sT. These are naturally or-
dered according to the increasing time from disease onset 
(or, equivalently, by the increasing disease burden) and, at 
the same time, patients in sT’s are “clinically normalized” 
to previously unachievable levels. We show evidence that 
sT’s represent non-empirical, most likely disease biology-
related stages of HCC. 

We computed both phenotype-characteristic disease bur-
dens  as the means of all personal disease bur-
dens for patients from each sT phenotype, as well as the 
phenotype characteristic mean values  of any 
clinical variable. Plotting Vs (τs)against DBs (τs) provided new 
clinical insights into HCC by revealing inter-dependencies 
between the overall disease burden and individual vari-
ables, as well as tools to validate that the sT’s are indeed 
ordered by the characteristic increasing time from disease 
onset. 

An example of such dependence, validating this order, is 
provided by plotting the phenotype-specific mortality as 
the function of specific disease burden, shown in Figure 3. 
The line fitted to this trend is a scaled Weibull cumulative 
distribution function[15] with a shape parameter equal to 
2. This function describes the proportionality of deaths in 
the population to a power of time, providing mathematical 
confirmation of the theoretically expected functional inter-
dependency. 

Figure 3. Relationship between the mean disease burden DB[s] 
and mean mortality for all 25 HCC NPS phenotype sub-populations 
sT,(s=1…,25)(circles). Least squares fit of the relationship by the 
Weibull function (lines).



113Carr et al., NPS for HCC / doi: 10.14744/jilti.2024.63935

Practical Example of using the NPS Web-
Implementation
For an individual patient, values of all 17 variables recorded 
within the index visit are collected and entered into the 
Web tool. First, the diagnosis NPS model computes the 
compliances [X,Y] of patient's networked input with the 
early and latest stage biomarkers and shows it graphically 
by the patient's dot in the www. map. It then uses the re-
sult to determine the patient’s sT phenotype. Assuming for 
example that the patient’s computed [X,Y] falls into the 12T 
phenotype region of the map, the web tool shows the per-
cent of deaths for patients in 12T in the training set. These 
mean mortality values are also shown in Table I: A patient 
from 12T have ~65% chance of death. 

For further personal mortality prognostication, the tool 
uses 2 pieces of additional clinical information. Firstly, we 
used follow-up information about time to death for sub-
group of training cohort patients in each phenotype, who 
died within the follow-up interval to determine the mean 
time to death characteristic of each phenotype. Figure 5 
shows that these mean times are inversely linearly related 
to the sT phenotype-characteristic mean disease burdens: 
patients who will die with the earliest stage HCC pheno-
types have on average ~ 2 times longer time to death than 
patients in the latest stage HCC phenotypes. HCC stage 
specific times to death are summarized in Table I. Thus, for 

our 12 T patient example, the mean time to death is about 
34 months.

Secondly, using the www tool, we can further personal-
ize the mortality prediction by using 25 independent NPS 
dead/alive optimized prognosticating models, one for 
each sT out of the 25. The input clinical data for 12T patient 
from our example are automatically re-submitted into the 
12th NPS dead/alive prognostication model, resulting in 
newly computed {xD,yD} coordinates for the patient, which 
are again shown in second NPS map with only two regions.  
If the 12T patient NPS result {xD,yD} is in “alive” region, we 
can expect that he/she is in the smaller ~35% surviving 
subgroup in this phenotype. By consulting Table I for 12T, 
the reasonable survival time prognosis for this patient thus 
will be more than 34 months. For a patient with computed 
“dead” prognosis, 34 months will be typical time to death. 
Supplementary Figure 12 shows Kaplan-Meier curves for 
patients, classified as “alive” or “dead” by the HCC stage-
specific NPS mortality prediction models.

PVT Phenotypes
Portal vein tumor thrombus in HCC is a manifestation of ag-
gressive biology and poor prognosis (1-3) and is generally 
an exclusion criterion for several treatments, such as liver 
transplantation (4, 16) due to poor outcomes. It is also asso-
ciated with poor liver function and high tumor recurrence 
rates after treatment. We therefore analyzed the group 
within this large cohort of non-surgical HCC patients who 
had PVT, searching for possible useful prognostic subsets.

First, we determined the characteristic PVT incidence 

 in every phenotype sT and plotted it against 
corresponding DBs (Fig. 4a). It is clear that [PVT]s is a non-
continuous function of disease burden. The 25 primary sT 
phenotypes form 5 broader groups, shown by differently 
colored boxes, each with well-separated range of practi-
cally progression-independent [PVT]s percentages.

The explanatory insight into this different behavior of a 
major negative prognostic factor is provided by projecting 
the constituent basic phenotypes from every PVT group, 
shown by colored arrows in Figure 4b. The content of the 
Px (τmax) in each patient profile is shown on the horizontal 
(X) axis. The HCC progression in the respective PVT pheno-
types proceeds vertically, top-down, in the respective col-

Table 1. A patient from 12T have ~65% chance of death

 1T 2T 3T 4T 5T 6T 7T 8T 9T 10T 11T 12T 13T 14T 15T 16T 17T 18T 19T 20T 21T 22T 23T 24T 25T

Mean TtD >60 56 56 53 41 49 43 47 59 47 48 34 45 42 39 43 47 34 33 37 29 33 36 27 28 
[months] 
Mortality 0.0 33.2 42.4 44.9 47.6 52.3 43.9 58.7 60.4 59.3 70.0 64.6 56.5 61.8 70.7 65.2 68.8 71.2 80.8 75.9 77.8 87.0 81.6 82.4 88 
[%]

Figure 4. (a) Relationship between the mean disease burden DB[s] 
and mean PVT incidence for all 25 HCC NPS phenotype sub-popula-
tions sT,(s=1…,25). Boxes - patients with specific NPS HCC phenotype 
stages, constituting the five PVT phenotypes. (b) Projection of HCC 
progression in respective PVT phenotypes. Arrows are colored as the 
boxes in Fig. 4a.



114 Journal of Inonu Liver Transplantation Institute

umns of the sT fundamental phenotypes (The fluctuations 
in the last 2% PVT phenotypes are explainable as “noise”).

The meaning of vertical top-down progression 
1T→2T→4T→6T→8T→11T of the fundamental pheno-
types sT in the green PVT group is that, on average, those 
patients have a small constant content of the “bad” Px (τmax) 
relationship markers (x-coordinate is not changing in the 
progression). This shows that gradual disappearance of the 
“good” Py (τmin) relationship features as HCC goes from top 
(early) to down (later) stages exclusively monitors the HCC 
progression in this sequence of sT’s.

Thus, the patients from green PVT cohort present with 
minimal and constant evidence of the “bad” HCC biology, 
related to the latest HCC stages. The patients from blue 
PVT subgroup present with a larger constant content of 
the “bad” Px (τmax) than the green PVT subgroup. Thus, the 
biological heterogeneity of blue PVT patient subgroup is 
higher than that of the green PVT patient subgroup. The 
yellow PVT patient subgroup contains even larger constant 
evidence of their “bad” biology than the blue PVT subgroup 
(and of course much higher than green PVT subgroup). 
The same holds (with some noise, which is relatable to the 
dominancy of Px (τmax) and minimal content of Py (τmin ) for 
brown and red PVT subgroups.

In summary, each PVT subgroup has a constant, charac-
teristic increase in content of Px (τmax), which defines the 

constant frequencies of occurrence of PVT in them. The Px 
(τmax) contains the relationships between values of 17 vari-
ables, which are characteristic for late stages of HCC. This 
is responsible for the increase of PVT pincidence in the se-
quence of the 5 PVT groups, progressing from green to red. 
This is an example of an important function of NPS, because 
its results are not statistical, but derived from functional 
clinical first principles, they are hypothesis-generating, di-
rectly providing information for designing validation trials. 
For using this result in our practical example, we identify 
the patient 12T phenotype in Figure 4a, assigning him to 
“brown” group with 18-20% incidence of PVT.

Discussion
The novelty of NPS methodology in clinical analytics origi-
nates from integrating all the patient- and time-coherently 
observed relationships between multiple clinical variable 
values into K-partite graph-based processed input. Simul-
taneously, new clinical content in NPS results becomes 
available since we integrated the appropriate tools of 
discrete mathematics, general physics and theoretical in-
formatics to obtain the implementable and completely 
scalable functional, non-statistical mathematical process-
ing of this “new” information in “old clinical data”, without 
encountering the “complexity catastrophe” that would be 
encountered by conventional methodologies. 

Another novel feature of NPS approach is change of its 
founding clinical principle from conventional frequentist’s 
paradigm of average impact of disease on any patient to 
determining the personal time of disease duration τp at the 
index clinical visit when the data are collected. This enables 
explicit characterization of  disease as a dynamic process 
using apparently “static” clinical data. Here we show by 
characterizing the HCC progression that networked rela-
tionships between coherently observed values of multiple 
informative clinical variables encode enough information 
about the personal disease progression history for NPS to 
extract τp from their topology.

This is mainly due to the existence of networked data re-
lationship “prototype” biomarker patterns Py (τmin), char-
acteristic for the earliest HCC stages, and completely dif-
ferent, common networked data relationship “prototype” 
biomarker patterns Px (τmax), characteristic for the latest 
HCC stages. Different personal times τ_p from HCC disease 
onset are therefore observable by identifying the contri-
butions of the early/late topology prototype relationship 
biomarker patterns to the patient’s actual networked clini-
cal baseline data. This result allows the representation of 
the HCC dynamics as a 2-dimensional disease progression 
map, in which a patient is represented as a point [Xp, Yp], 

Figure 5. Relationship between the mean disease burden DB[s] 
and mean time to death (in months) for all 25 HCC NPS phenotype 
sub-populations sT,(s=1…25). sT = labels above the results, mean 
time to death = labels below the results. See also Table 1.
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with coordinates, given by the personal content of early-
stage HCC prototype topology (vertical axis) and content 
of late-stage HCC prototype topology (horizontal axis), 
found in the patient’s integrated and networked data.

The results of these NPS data processing steps represent 
discoveries of new clinical features, providing new insights 
into HCC biology or allowing formulation of new testable 
hypotheses about HCC biology. We identified 25 objec-
tively defined HCC phenotypes sT, each with clearly dis-
tinguishable clinical characteristics, which determine the 
τs-defined order of these stages (from s=1 to s=25). The 
main discovery of NPS is that the disease burden, imposed 
upon the patient by HCC stage sT, is not continuous, but 
proceeds by stepwise transitions between “clinically stable” 
disease stages. 

Applicability of this NPS result in diagnostic clinical prac-
tice stems from the fact, that there are significantly large 
sub-populations of HCC patients in each sT HCC stage phe-
notype. 

Applicability of this NPS result in prognostic clinical prac-
tice stems from disease progression-defined ordering of 
the NPS phenotypes. If we determine that patient is in HCC 
stage sT at baseline, then the NPS phenotype ordering indi-
cates that the disease progression for that specific patient 
will be either stable disease or progression to (s+1)T stage 
or (possibly treatment-related) improvement to (s-1)T.

This set of τs-ordered HCC phenotype subsets also provide 
detailed insight into  HCC biology by allowing us to exam-
ine changes in the observable functional background and 
the presence of established risk and treatment-decision 
factors as a function of disease progression. We used the 
example of presence of PVT, a major negative prognostic 
factor for HCC. Therefore, clinical predictive factors for pres-
ence of PVT and identification of patient subgroups having 
PVT with differing survivals is a crucial part of HCC patient 
management. We hypothesize that this might be biologi-
cally related to the reported stem cell marker heterogene-
ity, which is open to experimental validation. So far, the 
main identified HCC patient risk factors for PVT develop-
ment include large (>5cm) HCC size, elevated AFP levels 
(>500 IU/mL), low serum albumin levels and male gender, 
while predominant prognostic factors include serum AFP 
and albumin levels and indices of inflammation.[17-19]

Our NPS may also help explain different survival outcomes 
for patients having the same treatment. This may be a re-
flection of known tumor heterogeneity and evolution that 
has derived from multiple studies of histopathology, tumor 
mutation burden and satellite instability. We know that 
tumors are not static in their composition. Our findings 
reflect that. There are likely multiple pathways to tumor 

growth, as well as changes in the pathways during various 
phases of growth of a tumor in an individual patient. Our 
τs-ordered stages reflect quantitatively the clinical obser-
vations of these events. It is also true than in most series, 
the percent of patients with PVT increases with MTD up to 
about 50%, but there are still about 30% of patients with 
large MTD >8cm without PVT.[20] Perhaps, the same stem 
cell that causes increasing MTD might also (with input from 
other factors) cause an increase in PVT. Or perhaps a pa-
tient’s HCC has different stem cells.

Conclusion
NPS uses a personal networked relationship-based char-
acterization of the patient clinical status, which is never 
partitioned (step 1). From these personal networks, NPS 
constructs the characterization of HCC disease, allowing a 
determination of prototype-networked biomarkers for ear-
liest and latest HCC stages (step 2). These 2 steps result in 
the possibility of characterizing the personal disease pro-
gression stage at baseline, by determining compliance of 
patient actual clinical data network with early-stage proto-
type networked biomarker (compliance descriptor Y) and 
with final stage prototype networked biomarker (compli-
ance descriptor X). Patient HCC progression is then defined 
by the [X, Y] stage point in the 2D-HCC progression map 
(step 3). This map directly shows that HCC disease appears 
to be stable in 25 clinically relevantly large sub-populations 
of patients 1T… 25T. The stable HCC disease of a patient 
in stage sT progresses to different stage rT only after the  
accumulation of a critical amount of new personal relation-
ships, which will change the 2 personal compliances [X, Y] 
of the personal networked profile to those in another phe-
notype rT, which is different from sT. Further improvement 
of clinical insight into HCC biology can be obtained in fu-
ture by integrating additional coherently acquired patient 
data with our 17 by the NPS approach, which can seam-
lessly integrate new types of clinical data.

Appendix: https://jag.journalagent.com/jilti/abs_files/JILTI-63935/
JILTI-63935_(1)_JILTI-63935_(0)_Appendix_(son).pdf
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