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1. Introduction
Indonesia, a maritime nation consisting of an archipelago 
where two-thirds of its territory is water, is facing distinctive 
challenges. Economic activities within the country 
heavily rely on maritime transportation routes, resulting 
in significant maritime traffic, as noted by Arfian [1]. This 
congestion presents operational complexities for ships, 
frequently leading to accidents resulting in both material and 
human losses. From 2019 to 2022, a considerable number 
of maritime accidents occurred in Indonesia, as documented 
by the National Transportation Safety Committee (KNKT 
[2]). Among these incidents, 28% involved ship fires or 
explosions, followed by ship sinkings (27%), ship collisions 

(23%), ship groundings (12%), and miscellaneous incidents 
(10%). Ship collisions are particularly concerning due to 
their notable ramifications, including loss of life, vessel 
damage, and environmental hazards like oil spills, as noted 
by Yulianti [3]. Additionally, ship collisions have the 
potential to trigger subsequent accidents such as sinkings, 
fires, and explosions. According to data from the Naval Base 
Command and Control Center (Puskodal) and investigations 
conducted by KNKT, seven ship accidents were recorded in 
the Sunda Strait from 2007 to 2019, with collisions being the 
most prevalent, contributing to four of these accidents.
The Sunda Strait is one of the most important straits in 
Indonesia because it is located on the shipping route 
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Abstract
Ship collisions represent a significant category of maritime accidents with far-reaching consequences that cause damage to the involved ship 
and neighboring vessels. This poses a threat to the marine environment, leading to potential oil spills and the triggering of additional maritime 
accidents. Therefore, predicting the frequency of ship collisions by identifying the contributing factors is crucial as an initial step in preventing and 
mitigating their occurrence. Causation probability refers to the likelihood of events resulting from a ship collision. The contributing factors to ship 
collisions include weather conditions, technical failure, insufficient resources, navigation errors, human error, and the failure of other vessels. The 
Bayesian Network (BN) machine learning method is capable of predicting ship collisions. This method delineates the relationships among diverse 
and complex random variables in the form of a diagram grounded in conditional probability theory. It considers both categorical and continuous 
variables. The prediction of ship collisions through the application of the BN involves the use of a dynamic discretization algorithm, which offers 
advantages over static discretization. In this research, the causation probability of ship collisions in the Sunda Strait, Indonesia was predicted. This 
endeavor is necessary because of the distinct characteristics inherent to each geographical area, which implies the likelihood of varying causation 
probabilities across regions. The resulting predictive model for the likelihood of ship collisions in the Sunda Strait, Indonesia, derived from the 
implementation of the BN with the dynamic discretization algorithm, yields causation probabilities of head-on collision at 2.74x10-4, overtaking at 
9.84x10-4, and crossing at 8.41x10-5. The model demonstrated an overall accuracy of 94.74%.
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categorized as the Indonesian Archipelagic Sea Lane (ALKI) 
I from south to north with a high-density traffic route from 
Java Island to Sumatra Island, mostly traversed by passenger 
ships. As one of the straits traversed by ALKI I, the Sunda 
Strait has the widest shipping lane in the south with a 
distance of 52 nautical miles, while the narrowest shipping 
lane corridor in the Sunda Strait is located in the northern 
part with a distance of 2.2 nautical miles. The narrowness of 
this shipping lane is caused by several navigation hazards, 
such as reefs, shallows, and shipwrecks. The increase in the 
number of ships traversing the Sunda Strait, categorized as 
ALKI, prompted the Indonesian government to implement 
Traffic Separation Scheme-TSS on July 1, 2020 (Figure 1).
The noteworthy impact of ship collisions has spurred 
the International Maritime Organization to institute 
regulations specifically addressing this issue, known as The 
International Regulations for Preventing Collisions at Sea 
1972 (Collision Regulations/COLREGS). These regulations 
serve as the guiding framework for all ship operational 
processes, mandating that ship crews have a comprehensive 
understanding of the established rules. Despite stringent 
adherence to these regulations, the practical reality is that ship 
collisions remain unavoidable because of other contributing 
factors. According to KNKT investigation reports, three 
primary factors stand out as the causes of ship collisions 
in Indonesia: human factors, technical factors, and weather 
factors. This underscores the necessity for regulations 
aimed at preventing ship collisions to be complemented by 
understanding the additional factors that contribute to such 
accidents. As a proactive measure to prevent and mitigate 
ship collisions, it becomes imperative to predict them 
through the identification of the contributing factors.
Several machine learning methodologies, including Decision 
Tree, Random Forest, Naïve Bayes, Bayesian Network 
(BN), Ensemble Bagging, and XGBoost. A comprehensive 

literature review conducted by Chen et al. [4] systematically 
compared analytical approaches to assess the probability 
of ship collisions, including those based on historical data, 
Fault Tree Analysis (FTA), and BN modeling. Their study 
revealed that BN is the most effective method for estimating 
the likelihood of ship collisions. This conclusion finds 
support in the work of Hasugian et al. [5], which underscores 
the suitability of the BN methodology for discerning cause-
and-effect relationships among factors influencing maritime 
accidents.
Research on ship collisions utilizing BNs has traditionally 
emphasized categorical variables while overlooking the 
impact of continuous variables, such as wind speed, wave 
height, and ship length, in contributing to these incidents. 
Although some studies have incorporated continuous 
variables, their use of static discretization algorithms, 
converting continuous variables into predefined categories, 
has been prevalent. An illustrative instance was observed 
in the study conducted by Zamzuri and Isa [6], wherein 
wind speed and wave height variables were discretized into 
categorical variables with predefined categories.
Fenton and Neil [7] posited that static discretization 
algorithms can compromise the accuracy of a model, which 
limits its applicability to real-world scenarios. To overcome 
these limitations, dynamic discretization algorithms offer 
a solution by analyzing continuous variables within BNs 
without requiring transformation into predefined categories. 
The modeling framework employing the BN method, 
coupled with dynamic discretization algorithms, articulates 
the intricate relationships among random variables through 
a diagram based on conditional probability theory. This 
method not only accommodates categorical variables and 
integrates continuous variables seamlessly into the modeling 
process.
Ship collision incidents can be broadly classified into two 
categories: collisions between ships and stationary objects 
and collisions involving two or more moving ships. This 
study specifically focused on the latter category, focusing 
on collisions among multiple moving ships. The main 
objective is to predict the probability of such ship collisions 
in the Indonesian context. This prediction can be assisted by 
applying a BN employing a dynamic discretization algorithm. 
After deriving the prediction outcomes and determining the 
pivotal factors contributing to the incidence of ship collisions, 
the resulting model can be effectively utilized for calculating 
the causation probabilities (Pc).  Causation Probability refers 
to the likelihood of events resulting from ship collisions. 
Karlsen and Kristiansen [8] outlined that the contributing 
factors to ship collisions include natural elements, technical 
malfunctions, insufficient resources, navigation errors, 
human errors, and the failure of other vessels.Figure 1. Ship trajectories along the Sunda Strait
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Earlier investigations on the frequency of ship collisions in 
Indonesia relied on default values derived from IWRAP, 
which were determined by analyzing the causation 
probability in the Akashi and Dover Straits. Nevertheless, 
Montewka et al. [9] asserted that causation probability values 
should be customized according to the particular conditions 
of the studied waters, as each region possesses distinct 
characteristics, conditions, and cultures. Consequently, this 
study employs BN modeling to characterize and compute 
the causation probability in Indonesian waters, with a 
specific focus on the Sunda Strait as a case study. Numerous 
research studies have investigated the risk of ship collisions. 
For instance, the works of Nurmawati et al. [10], Sutrisno 
and Dinariyana [11], and Wuryaningrum and Handani [12] 
delved into ship collision risk analysis, employing default 
Pc values from Fuji and Shiobara [13] and Macduff [14]. 
These studies posit that the Pc values derived from analyses 
of the Akashi and Dover Strait can be universally applied. 
In the context of analyzing ship collisions in the Sunda 
Strait, several studies, including Pratiwi et al. [15], Arfian 
et al. [16], and Sukma et al. [17], utilized Pc values derived 
from modeling, employing the FTA modeling method. The 
modeling methodologies used in these studies entailed the 
determination of influencing factors and their respective 
probabilities, primarily referencing existing literature 
rather than relying on historical data from Sunda Strait 
accidents. Furthermore, investigations by Mulyadi et al. [18] 
and Purnomo et al. [19] applied the BN method to model 
causation probability. However, these studies adopted a 
simplified approach to BN modeling due to limited reference 
data, underscoring the need for subsequent development and 
updating based on the latest available data and the creation 
of more intricate networks, tasks that will be undertaken in 
the present study.
The novelty of this research, compared to previous studies, lies 
in the use of a BN model to capture the complex relationships 
between various factors influencing ship accidents, with an 
approach that adjusts causation probability values based on 
the specific conditions of the studied waters. This approach 
is in contrast to previous research, which often relied on 
default values or values derived from other regions without 
specific consideration of local characteristics. This research 
aimed to elucidate the application of BN for modeling 
the determinants of ship collisions and deriving Pc values 
for various collision scenarios (head-on, overtaking, and 
crossing) in Indonesian waters. Subsequently, these values 
were used to calculate the frequency of ship collisions in the 
Sunda Strait. The selection of the Sunda Strait as the focal 
area for this study was predicated on its status as the second-
largest area in Indonesia with a notable history of ship 
collisions. Moreover, the strait experiences a considerable 

volume of ship crossings, transporting numerous passengers 
daily. Therefore, a meticulous analysis of the ship collision 
frequency in this region is imperative to uphold safety 
standards and mitigate the potential losses resulting from 
ship collisions.

2. Materials and Methods
2.1. BN
BN is one of the simple Probabilistic Graphical Models built 
from graph theory and probability theory, and it serves as 
a well-established machine learning method by utilizing 
conditional probability as its foundation. In its development, 
the BN method, which is a BN consisting of both categorical 
and continuous variables, was developed [7]. A BN consists 
of two main parts: a qualitative part in the form of a 
graphical structure called a Directed Acyclic Graph (DAG) 
and a quantitative part in the form of a set of conditional 
probabilities. Figure 2 depicts the structure of the BN, which 
consists of nodes and edges, where  X j    represents a categorical 
variable and  Z k    represents a continuous variable. If an edge 
from node  X l    points to node   X j    then  X l    is referred to as the 
parent and   X j   is the child of  X l   . Nodes without parents are 
called root nodes, while nodes without children are referred 
to as leaf nodes Korb and Nicholson [20].
In constructing a BN model, key assumptions should be 
considered. First, the network graph structure is directed and 
acyclic, facilitating the understanding of causal relationships 
among variables. Second, conditional independence is 
assumed, meaning that each variable is independent of 
others given its parent variables. Complete information 
on variable relationships is presumed to be available, 
facilitating risk estimation. The variables depend solely on 
their parent variables, without considering other variables 
in the network. The independence of parameters implies 

Figure 2. Example structure of a Directed Acyclic Graph (DAG) 
for a BN
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that they are unrelated unless determined by the network 
structure. Finally, unmeasured confounding factors were 
assumed to be absent. Adhering to these assumptions 
improves the interpretation of the results, leading to more 
accurate conclusions about the variable relationships.

2.1.1. Estimation of probability values for nodes with 
categorical variables
BN involves estimating the probability values, starting with 
the determination of the prior probability values. The prior 
probabilities for categorical variables can be computed by 
utilizing straightforward probability functions, as outlined 
in the

            (1)

with  P (    X l (  j )     )    defining the probability of the occurrence of the 
l-th categorical variable or the probability of the parent node’s 
occurrence for variable  X j    where j = 1, 2, …,p and l = 1, 2, 
…, p with l ≠ j ,   n l (  j )      indicating the count of the occurrence 
of the l-th categorical variable, and n  representing the total 
count of all events [21].
The structure of a BN is built using a statistical approach 
known as conditional probability, which is defined as the 
probability of an event occurring based on other events that 
have already occurred. If analogized in terms of parent and 
child, the conditional probability of the child is obtained 
based on the conditions experienced by the parent earlier, 
Sari [21]. Conditional probability values for categorical 
variables are presented in Equation (2).

            (2)

with  X j    indicating the categorical child node with values j 
= 1, 2, …,p,  X l (  j )      representing the parent node of variable  
X j    with values l = 1, 2, …, p where l ≠ j, P ( X j   |  X l (  j )    )   defining 
the conditional probability of  X j    given the value of  Xl (  j )     , P ( X j  
,  X l (  j )    )   defining the joint probability of  X j    and  X l (  j )     , and P ( X l (  j )    )   
defining the probability value of the parent node [7].
The joint probability distribution is the probability of the 
simultaneous occurrence of all events. In a BN, the joint 
probability distribution for categorical variables is presented 
in Equation 3.

            (3)

With P ( X p−1   |    X p  )  defining the conditional probability of  X p−1    
given the value of  X p    and P ( X p  )   indicating the probability 
value of variable  X p    Fenton and Neil [7]. If additional 
information is available that, when event  X j    has occurred, 
there may be a change in the initial estimate regarding the 

likelihood of event  X l (  j )      occurring, the probability of the 
occurrence of event  X l (  j )      now is the conditional probability 
due to the occurrence of event  Xj    and is referred to as the 
posterior probability. The posterior probability calculation 
for categorical variables is as follows:

            (4)

with P ( X l (  j )     |    X j  )   defining the probability of  Xl (  j )      given the value 
of  X j    or the posterior of  X l (  j )      and P ( X l (  j )    )   indicating the prior 
probability of  X l (  j )      Fenton and Neil [7].

2.1.2. Estimation of probability values for nodes with 
contionous variables
The prior probability values for continuous variables in 
the BN follow the probability distribution of the data. The 
data distribution pattern must first be determined using a 
statistical goodness of fit test such as Kolmogorov-Smirnov 
test. This test is used to determine the deviation or the largest 
difference between the observed probability or empirical 
probability and the theoretical probability, Basuki et al. [22]. 
Conditional probability values for continuous variables in 
the BN are analogized in the form of parent and child, as 
found in the following:

            (5)

with  Z k    indicating the continuous child node with values k = 
1, 2, …, q,  Z m (  k )      representing the parent node of variable  Z k    
with values m = 1, 2, …, q where m ≠ k,  f (Z k   |    Z m (  k )    )  defining 
the conditional probability of  Z k    given the value of  Z m (  k )     ,  f 
(    Z 1  , … ,  Z k  , …  Z q   )    defining the joint probability, and f  ( Z m (  k )    )   
indicating the probability of the parent node. The values of 
the joint probability distribution for continuous variables in 
the BN can be expressed as follows: 

            (6)

With f (Z q−1   |    Z q  )   defining the conditional probability of  Z q−1    
given the value of  Z q    and f ( Z q  )   indicating the probability 
value of variable  Z q   , Fenton and Neil [7]. Bayes’ theorem is 
also used to determine the posterior probability values for 
continuous variables, as follows:

            (7)

With f (Z m (  k )     |    Z k  )  defining the probability of  Z m (  k )      given the 
value of  Z k    or the posterior of   Z m (  k )      and f  ( Z m (  k )    )   indicating the 
prior probability of  Z m (  k )     .
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2.1.3. Estimation of probability values for mixed variables
The probability of mixed variables in the BN can be 
differentiated into two cases, namely, when the continuous 
child node has a categorical parent node and when the 
categorical child node has a continuous parent node. The first 
condition can be explained using equation 11, and the second 
condition can be explained using Equation 8, Pati [23].

            (8)

            (9)

Then, the posterior probability for mixed variables can be 
expressed in two equations, adjusting to the two conditions 
mentioned earlier, as found in Equations (10) and (11).

            (10)

            (11)

with  Z k    indicating the continuous child node with values k = 
1, 2, …, q,  X j    indicating the categorical child node with values 
j = 1, 2, …, p,  Z m (  j )      indicating the continuous parent node for 
categorical variable and  X l (  k )      indicating the categorical parent 
node for the continuous variable.

2.1.4. Dynamic discretization algorithm
The dynamic discretization algorithm defines a continuous 
node as a simulation node. Suppose Z is a node with a 
continuous variable in the BN structure, where the range 
of Z is denoted by  ΩZ    and the Probability Density Function 
(PDF) of Z is denoted by fZ. The idea behind the dynamic 
discretization algorithm is to estimate the value of fZ by 
partitioning  ΩZ    into a set of intervals  ΨZ    = {wu} and defining 
the local constant function  ~ f Z    for the formed interval sets. 
This algorithm performs two main tasks: determining the 
optimal discretization set and determining the optimal values 
for the local function    ~ fZ    that approximates the actual value 
of fZ , Fenton, and Neil [7]. The use of a dynamic discretization 
algorithm can improve model accuracy compared to static 
discretization.

2.2. Confusion Matrix and Sensitivity Analysis
The confusion matrix serves as a structured table that 
presents the performance of a model or algorithm in a specific 
manner. In this matrix, each row represents the actual class of 
the data, and each column denotes the predicted class of the 
data (or vice versa), as described by Saputro and Sari [24]. 
A comprehensive elucidation of this matrix is presented in 
Table 1.

The four values in the confusion matrix can be utilized to 
compute the performance indicators of the classification 
models : accuracy, sensitivity, and specificity.  Accuracy = 
(TP + TN) / n, Sensitivity = TP / (TP + FN), and Specificity 
= TN / (TN + FP).
Sensitivity analysis is a method used to determine the 
sensitivity of a model to changes in parameters. The main 
advantage of sensitivity analysis is its ability to assess model 
accuracy when applied to a real system. By experimenting 
with changes in parameters within variables, one can identify 
where the most significant changes occur. Sensitivity analysis 
was performed by altering the prior probability distribution 
of each node within the range of 0%-100%, Ahmadi and 
Manurung [25].

2.3. Frequency Analysis
The frequency analysis was conducted following the 
framework of the IALA Waterway Risk Assessment 
Program (IWRAP MK II). In this study, the examined 
frequencies encompass ship collision occurrences in the 
head-on, overtaking, and crossing scenarios. IWRAP is 
a comprehensive program designed to analyze various 
aspects of ship traffic movements. The proposed method 
takes into account factors such as hydrographic conditions, 
navigation channel usage, characteristics, collision risk, 
and other factors that influence navigational safety in 
specific waterways. Particularly beneficial for mapping ship 
movement geometries to illustrate traffic density and compute 
the number of potential candidate ships at risk of collision, 
this program is employed in our research to facilitate the 
calculation of the analyzed ship collision frequencies.
The computation of the collision frequency involves the 
use of geometric probability values, which were obtained 
through analysis facilitated by the IWRAP software, along 
with the causation probability derived from the conducted 
analysis. The mathematical model used to calculate the 
frequency is expressed as follows:

            (12)

In the given equation,  λ Col    denotes the frequency of ship 
collisions, NG represents the number of ships potentially at 
risk of collision, and Pc represents the causation probability. 

Table 1. Confusion matrix

Actual
Predicted

Collision No collision
Collision True Positive (TP) False Negative (FN)

No collision False Positive (FP) True Negative (TN)
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The geometric probability calculations for each type of ship 
collision were formulated as follows:

2.3.1. Head-on collision
A head-on collision is a type of ship collision that occurs 
at the bow section between two ships moving in opposite 
directions. Based on the “IWRAP Mk II Working 
Document: Basic Modeling Principles for Prediction of 
Collision and Grounding Frequencies” by Hansen [26], the 
value of geometric probability for sailing ships potentially 
experiencing head-on collisions along a specified route 
segment is modeled as follows:

            (13)

Where  N G  head−on   is the number of ships potentially at risk of 
a collision,  L W    is Segment Length (m),  P G    is the probability 
that two ships will collide in a head-on meeting situation,  
V i  (  1 )     is speed of the ship on route I (m/s),  V j (  2 )     is speed of the 
ship on route j (m/s),   V ij    is the relative speed between the 
vessels (m/s),  Q i (  1 )     and  Q j  (  2 )     is the number of passages per 
time unit for each ship type and size in each direction. Then 
to determine  P Gi,j   head−on   can use the following equation:

            (14)

Where  Φ (  x )    is standard normal distribution function,  
  μ ij    =  μ i  (  1 )     +  μj (  2 )         is the mean sailing distance between the two  

vessels,   is the standard deviation of the  

joint distribution, and  is the average vessel 
breadth.

2.3.2. Overtaking collision
Overtaking collision is a type of ship collision that occurs 
when a ship is behind another and moves at a higher speed 
with the intention of passing the ship ahead of it in the same 
lane and direction. For overtaking collisions, the number 
of geometric collision candidates for ships sailing along 
the route segment in direction (1) is expressed by equation 
(13) using the relative speed  V ij   =  V i  (  1 )    −  V j  (1)  ,  V ij   > 0 . The 
geometric probability of meeting [Equation (14)] becomes:

            (15)

For normally distributed variables, the mean value in 
equation (14) should be replaced by  μ ij    =  μ i  (  1 )     -  μ j  (  1 )     to handle 
overtaking.

2.3.3. Crossing collision
Crossing collision is a type of ship collision that occurs 
between two ships moving in opposite directions relative 

to each other (at an angle between 10° < [θ] < 270°). The 
frequency of crossing collisions depends on the angle 
between two lanes. The geometric amount of crossing 
collision candidates for crossing waterways can similarly to 
Equation (13) be expressed as follows:

            (16)

Where  is the relative  

speed between the vessels and  D ij    defines the apparent 
collision diameter. The sinus term stems from the variable 
transformation when integrating over the area of the joint 
probability distribution. Note that, contrary to head-on and 
overtaking collisions, the distribution of the traffic spread 
is not relevant for crossing collisions, except for the sinus 
term of course. When the crossing angle approaches zero, 
the length of the crossing (or the time of the crossing) goes 
to infinity and hence does the number of collisions. For 
practical reasons, it is necessary to limit the crossing angle 
to an interval of, for example, 10° to 270°.
As mentioned  D ij    is the geometrical collision diameter. If it 
is assumed that ships can be approximated by rectangular 
shapes, then it can be shown that:

(17)

Where Li  is length of ship i , 𝐿𝑗 is length of ship j,  Bi  is 
width of ship i, Bj  is width of ship j.

2.4. Data Sources
The dataset used in this study encompasses ship collision 
incidents from 2009 to 2021, consisting of a total of 44 
collision cases involving two or more ships, resulting in 94 
ships being involved in these collision cases. Based on the 
analysis, 68 ships were classified as collisions, while the 
remaining 26 ships were considered as non-collisions. In 
the accident reports, these 26 ships were determined to be 
innocent because they were navigating in good condition at 
the time. If these ships had not encountered the colliding 
vessels, they would not have been involved in the collision. 
B ased on accident reports, innocent ships, namely, those that 
sailed in good condition or those that were stationary and 
then collided, were categorized as having no collision. The 
following gives a detailed account of the ship collision cases:
a. There is 1 case involving 3 ships, providing a total of 3 
data points.
b. There are 3 cases involving multiple types of accidents:
1. KMP Safira Nusantara faced a head-on collision with 
the LCT Sentosa Indah Sejati. Both ships, in a narrow 
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situation, changed course, causing KMP Safira Nusantara 
to experience a crossing collision with LCT Sentosa Indah 
Sejati. LCT Sentosa Indah Sejati overtook the ship in front, 
resulting in a collision (2 head-on data points, 2 crossing 
data points, and 1 overtaking data point).
2. KM Mochtar Prabu Mangkunegara faced a head-on 
collision with another ship but eventually avoided collision. 
KM Mochtar Prabu Mangkunegara then experienced a head-
on collision with KM Sinar Jimbaran (3 head-on data points).
3. MT New Global initially faced a crossing situation with 
KM Maju IX. MT New Global changed course to avoid a 
collision, resulting in an overtaking situation that made 
the collision more severe (2 overtaking data points and 2 
overtaking data points).
a. There were 39 cases involving 2 ships, providing a total of 
78 data points.
b. There is 1 case involving only 1 ship because the captain 
and the first officer of the opposing ship could not be 
questioned as they died in the accident, so data regarding the 
conditions at the time of the collision could not be obtained.

The ship accident data were sourced from multiple 
repositories, including the following (Table 2):
The factors causing accidents used in this research are 
limited to those found in the chronology of ship collisions 
in Indonesia, as recorded in the KNKT and Maritime Court 
reports only. All operational definitions and categorizations 
related to variables are sourced from KNKT investigation 
reports, reports on the results of the Shipping Court’s 
decision, COLREGS 1972, STCW, and decisions of the 
Minister of Transportation and Government Regulations 
(Table 3).
In this study, several dependent variables are treated as 
independent variables. One example is the ship dimension 
variable, which is influenced by length, breadth, draft, and 
Coefficient Block, as well as the maritime environment in 
which the ship operates. However, in this study, we assumed 
that this variable is independent of maneuver. This is 
because the selection of variables was constrained based on 
the accident chronology documented in the KNKT report.

Table 2. Link to data source

Data Source Link
Directorate General of Sea Transportation https://hubla.dephub.go.id/

Investigation reports on maritime accidents at the KNKT https://mahpel.dephub.go.id/web/putusan/s?y=&q=&c=tubrukan

European Center for Medium-Range Weather Forecasts (ECMWF) https://www.ecmwf.int/.

Table 3. Research variables

Variable Description
Y Collision The condition of a ship colliding with another ship

X1 Good seamanship Crew behavior or habit according to the sailor’s habits based on applicable regulations

X2 Crew competence Eligibility for certification by duty officers based on specified standards

X3 Crew leadership Conditions of doubt in decision making by duty officers due to limited information regarding 
conditions existing and/or non-existent agreement of duty officers on each ship

X4 Crew communication Communication between ships close to each other to agree on collision prevention measures

X5 Understanding ship 
characteristics 

The understanding of the officer on duty regarding the nature and capabilities of the ship in relation to 
maneuvering.

X6 Understanding environment  Understanding the water condition patterns of duty officers in relation to maneuvering

X7 Inexperience The watch officer’s term of office from the start of service in the same position on the relevant ship 
(<1 year)

X8 Capacity in decision making The ability of duty officers to make decisions to avoid critical conditions that cause collisions

X9 Crew health Health condition of the officers on duty

X10 Number of crew members Crew size based on ship tonnage and engine power

X11 Dual task Conditions where the duty officer is responsible for more than one workload.

X12 Crew fatigue The mental condition of the ship’s watch officer refers to the time on duty during one watch (>14 hours)

X13 Situational awareness 
Awareness of duty officers to continuously obtain information about the surrounding environment and 

integrate it into their knowledge of the situation, analyze its impact, predict the situation in the near 
future and assess its impact on safety
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3. Results and Discussion
3.1. Predicting Ship Collisions using BN
The application of BN in predicting ship collisions involves 
a series of methodical stages. These stages comprise the 
development of the BN structure, the utilization of the 
dynamic discretization algorithm for continuous variables, 
the estimation of probability values for each node, the 
creation of a confusion matrix, the validation of the model, 
and the execution of the sensitivity analysis. The BN 
structure’s variable relationships are determined based on 
an understanding of the collision event sequence, which is 
informed by prior research and expert insights. The DAG 
construction for the BN applied to the Indonesian ship 
collision data was guided by these relationships, as depicted 
in Figure 3.
Before parameter estimation in the BN, the dataset was 
partitioned into training and testing data using an 80%:20% 
ratio. The next step is to estimate the prior probability. The 
calculation of prior probabilities is only performed on the 
root node, as presented in Table 4 for categorical variables 

and Table 5 for continuous variables. In addition, for other 
nodes, calculations were performed using conditional 
probability.

The calculation of the prior probability for continuous 
variables commences with the determination of the data 
distribution, setting the threshold value, and calculating the 

Table 3. Continued

Variable Description

X14 Visual observation 
Conditions affecting the visual detection of objects around the ship, influenced by weather, screen 

lights, and other distractions, as well as the ability or negligence of watch officers in visual observation 
duties

X15 Daylight Availability of sunlight when the ship is sailing

X16 Master presence on the bridge Availability of the captain for guard duty and leadership on the bridge of the ship

X17 Understanding navigation and 
communication signs 

The officer on duty’s ability to understand communication and navigation codes from other ships in 
the form of maneuvers, light signals, or sound signals

X18
Proper utilization 
of navigation and 
communication 

Navigation and communication tools for maneuvering and monitoring the movements of other ships

X19 Establish navigation and 
communication equipment Complete navigation equipment required for the ship

X20 Crew responsiveness Speed and timeliness when making decisions and taking action to avoid collisions

X21 The presence of the pilot Availability of guides on the ship bridge when sailing in mandatory pilot waters

X22 Maneuverability The ship’s ability to change its course to avoid collision

X23 Technical failure The ship’s engine was not working properly during the operation to avoid collisions.

X24 Ship type The type of ship involved in the collision case

X25 The type of water body The type of water where the ship collision occurred

Z1 Wind velocity Wind velocity at the time of collision with the ship

Z2 Wave height The height of the water waves at the time of collision with a ship

Z3 Ship length The horizontal distance between the leading edge of the bow height and the rear end of the stern height 
of the ship.

Z4 Ship breadth The horizontal distance between the outer sides of the hull skin was measured at the main deck line.

Z5 Ship draft The vertical distance between the waterline and the keel of the ship

Z6 Ship speed Ship speed at the time of collision

Figure 3. Ship collision DAG

DAG: Directed acyclic graph
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prior probability based on the data distribution pattern for 
each variable. The data patterns for each continuous variable 
suggest several potentially suitable data distributions, 
including lognormal, gamma, normal, and triangular 
distributions. The selection of the appropriate distribution 
for each continuous variable is determined through the 

Kolmogorov-Smirnov test. Calculating the prior probability 
of continuous variables using the dynamic discretization 
algorithm requires threshold values that facilitate the 
calculation process. The thresholds for each continuous 
variable were determined by dividing the data for the 
variable according to the categories of the ship-maneuvering 

Table 4. Prior probability of categorical variables

Variable Category Prior probability

Crew competence (X2)
Proper 0.760

Unproper 0.240

Ship communication (X4)
Good 0.533

Bad 0.467

Inexperience (X7)
Yes 0.267

No 0.733

Crew health (X9)
Fit 0.947

Unfit 0.053

Number of crews (X10)
Proper 0.893

Unproper 0.107

Sailing time (X15)
Day 0.307

Night 0.693

Master (X16)
Available 0.760

Not available 0.240

Understanding navigation and communication signs (X17)
Good 0.787

Bad 0.213

Navigation and communication equipment (X19)
Proper 0.960

Unproper 0.040

Pilot (X21)

Available 0.320

Charlie 0.013

Not available 0.227

Not required 0.440

Technical failure (X23)
Yes 0.027

No 0.973

Ship type (X24)

Tanker 0.173

Container 0.013

General cargo 0.227

Bulk carrier 0.027

Passenger ship 0.080

Ro-Ro 0.040

Fishing ship 0.067

Barge and tugboat 0.160

Others 0.213

Type of water body (X25)

Open sea 0.493

River 0.467

Coastal 0.040
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ability variable, namely good and limited. The thresholds are 
cut-off values representing the median between the good and 
limited categories for each variable. The threshold values are 
then used to determine the prior probability of continuous 
variables using the PDF of each distribution of continuous 
variables. The obtained prior probability values for each 
continuous variable are presented in Table 5.
Next is to calculate the conditional probability. The conditional 
probability values for each child node are calculated using 
equation 2. The joint probability for categorical child nodes 
with categorical parent nodes is accomplished through the 
utilization of Equation 3. Conversely, for categorical child 

nodes with continuous parent nodes, the determination 
is performed using equation 10. The final step involves 
computing the posterior probability. In the context of this 
study, posterior probability denotes the altered value following 
the acquisition of new information from the evidence set, 
constituted by the real-world data pertaining to each variable 
associated with the ship collision events. The computation 
of posterior probability for categorical variables is executed 
through Equation 4, whereas for mixed variables, equation 
11 is employed. The outcomes of parameter estimation for 
each node, which have been acquired, yield a BN structure 
accompanied by probability values assigned to each node, as 

Table 5. Prior probability of continuous variables

Variable Units Distribution Parameter Prior probability

Wind velocity (Z1) Knot Triangular
a = 0.1 
m = 4.5 

b = 17.50

 f (Z ≤ 8.26)  = 0.6226 
 f (Z > 8.26)  = 0.3774 

Wave height (Z2) Meter Lognormal
μ = -0.509
σ = 0.779

 f (Z ≤ 0.7)  = 0.5779 
 f (Z > 0.7)  = 0.4221 

Ship length (Z3) Meter Lognormal
μ = 4.315
σ = 0.661

 f (Z ≤ 101.9)  = 0.6808 
 f (Z > 101.9)  = 0.3192 

Ship breadth (Z4) Meter Gamma
α = 4.257
β = 3.691

 f (Z ≤ 16.8)  = 0.6183 
 f (Z > 16.8)  = 0.3817 

Ship draft (Z5) Meter Gamma
α = 3.301
β = 2.003

 f (Z ≤ 6.15)  = 0.5223 
 f (Z > 6.15)  = 0.4777 

Ship speed (Z6) Knot Normal
μ = 6.811
σ = 2.878

 f (Z ≤ 6.35)  = 0.4363 
 f (Z > 6.35)  = 0.5637 

Figure 4. BN model of ship collision causes
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depicted in Figure 4.
Figure 4 illustrates the configuration of the BN designed for 
ship collision scenarios. In this BN structure, the probability 
values are derived from joint probability calculations, 
forming the foundation for predictions when evidence 
pertaining to a collision case is identified to acquire posterior 
probability values. The construction of the BN structure is 
grounded in the training data, with the resultant probability 
values indicating a probability of 0.67 for a ship collision 
and a probability of 0.33 for no collision. The collision 
probability of 0.67 and the non-collision probability of 0.33 
are derived from the sample data used to develop the BN 
model, which includes 68 ships that experienced collisions 
and 26 ships that did not (as explained in subsection 2.5). 
These results do not imply that the overall probability of 
a collision is 0.67. Instead, 0.67 represents the probability 
of a collision based on the causative factors identified 
from the sample data. Therefore, to calculate the causation 

probability, adjustments were made based on the number 
of ships passing through the Sunda Strait after obtaining 
this model.
Model validation was performed to evaluate the performance 
of the proposed classification model. Testing data consisting 
of 19 data points, is used to calculate the performance of the 
BN model by predicting ship collisions. The model accuracy 
was 94.74%. The sensitivity reached 100%, indicating that 
all ships involved in collisions were correctly predicted. 
The specificity is 80%, indicating that 20% of the ships not 
involved in collisions are incorrectly predicted as being 
involved, but this can serve as anticipation to avoid collisions.
The tornado diagram is presented in Figure 5 to illustrate the 
sensitivity analysis, where the diagram includes the top 10 
scenarios that contribute the most to increasing or decreasing 
the probability of collision with a change of ±100% for each 
scenario. Figure 5 illustrates that the occurrence of a collision 
scenario is most influenced by the watch officer failing to 
perform duties in line with good maritime practices, making 
poor decisions, being slow to take evasive action, the ship 
not experiencing engine failure, and possessing good ship-
maneuvering abilities.
Based on the tornado diagram above, the right side is the area 
of increasing target probability values, whereas the left side 
is the opposite. The bar chart shows the impact of changes 
in the condition probabilities listed above on changes in the 
target probability values. The green and red bars indicate 
that the probability values of the listed conditions are 
increasing and decreasing, respectively. If the green bar is on 
the right side of the baseline, then the collision probability 
value will also increase. Conversely, if the green bar is on the 
left side, then the collision probability value will decrease. 

Figure 5. Tornado diagram

Figure 6. Mapping of traffic density in Sunda Strait waters by 
IWRAP MKII
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There exists a scenario with a change in the probability 
values of collisions that contradicts theoretical expectations, 
specifically, the scenario of technical failure with a “yes” 
category. Increasing the probability of this scenario from 
2.7% to 100% results in a decrease in the probability of ship 
collisions from 68.9% to 43.5%. This discrepancy arises 
because of the limited data for the technical failure scenario 
with the “yes” category, which causes the sensitivity analysis 
results for this scenario to be suboptimal.

3.2. Causation Probability and Frequency Analysis
The causal probability (Pc) was calculated based on a BN 
model that was adjusted according to the annual traffic 
volume of ships. Therefore, the conditional probability 
values for each combination of scenarios are proportional 
to the conditional probability values for the actual 
conditions that occur. In the calculation of probabilities for 
each state, the data are separated into data for ships that 
have experienced collisions and data for ships that have 
not experienced collisions. Probability calculations are 
performed separately for these segmented data, followed by 
the accumulation of probabilities. Upon completion of the 
probability calculations, akin to the methodology employed 
in modeling a BN classification model, the subsequent step 
involves determining the joint probability using a consistent 
approach. Table 6 presents a succinct overview of the 
resulting Pc values (Pc analysis) corresponding to each 
category of collision.
In this research, to apply the obtained Pc values, a ship 
collision frequency analysis was conducted in one of 
Indonesia’s waters, the Sunda Strait. To perform this analysis, 

Automatic Identification System data on ship movements 
in the Sunda Strait in 2022 were required. The data were 
processed to create a mapping of ship density in the Sunda 
Strait to understand the distribution of ship density along 
each existing route. This step was necessary to determine 
the frequency values for each type of ship collision. In this 
process, data processing was performed with the assistance 
of the IWRAP MKII software to map the water density, 
shipping traffic distribution, and frequency values of each 
type of ship collision. The density mapping results in 
IWRAP MKII are displayed below.
From the mapping and density distribution analysis of 
shipping lanes in the waters of the Sunda Strait, the 
frequencies of ship collisions for each collision type were 
acquired as follows.
The results indicate that the total frequency of ship collisions 
is approximately 0.025 collisions/year, but according to the 
historical data quoted, there have been 4 collisions in 12 years 
(0.33 collisions/year). The very large differences between the 
obtained results and the actual data could occur because the 
causation probability used to calculate the frequency of ship 
collisions is obtained based on certain factors, so it does not 
rule out the possibility that there are other factors that also 
influence the causation probability and ultimately influence 
the frequency of ship collisions. The findings of the analysis 
reveal that in the Sunda Strait, the frequency of ship collisions 
exhibits that the causation probability for head-on collisions 
is notably higher than that for overtaking and crossing 
collisions. The following are the causation probability values 
obtained from the research and other regions.

Table 6. Frequency values of ship collisions in the Sunda Strait

Collision type Pc default IWRAP Pc analysis Frequency (Pc default IWRAP) Frequency analysis
Head-on 5x10-5 2.74x10-4 0.004 0.0219

Overtaking 1.1x10-4 9.84x10-6 0.002 0.000179

Crossing 1.3x10-4 8.41x10-5 0.0046 0.003

Table 7. Causation probabilities from literature studies

Location Pc (x10-4) Comment References
Dover Strait 5.18 Head-on: no traffic separation MacDuff [14]

Dover Strait 3.15 Head-on with traffic separation MacDuff [14]

Dover Strait 1.11 Crossing: no traffic separation MacDuff [14]

Dover Strait 0.95 Crossing with traffic separation MacDuff [14]

Orsund, Denmark 0.27 Head-on Karlson et al. [27]

Japanese Strait 0.49 Head-on Fuji and Mizuki [28]

Japanese Strait 1.23 Crossing Fuji and Mizuki [28]

Japanese Strait 1.10 Overtaking Fuji and Mizuki [28]

Great Belt, Denmark 1.30 At bends in the lanes, the Pedersen et al. [29]
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The BN model for calculating accident causation probabilities 
has broad potential applications across various regions, not 
limited to just the Sunda Strait, provided that the values of 
condition variables and traffic density are adjusted according 
to the specific characteristics of the region. This adjustment is 
necessary to ensure that the BN model provides accurate and 
contextually relevant analyses. Thus, this model can serve as 
an effective tool for understanding and mitigating accident 
risks in various waterways by accounting for variations in 
environmental conditions and maritime activities.

4. Conclusion
The conclusions from the analysis regarding the BN 
modeling for estimating Pc values for each type of ship 
collision to calculate the frequency of ship collisions in the 
Sunda Strait are as follows:
⦁ In conclusion, the implementation of the BN using the 
dynamic discretization algorithm yielded an accuracy of 
94.74%, sensitivity of 100%, and specificity of 80%. The 
predominant factors contributing to ship collisions are good 
seamanship, decision-making, preventive timing, technical 
failure, and maneuverability.
⦁ Based on the analysis and BN modeling, the causation 
probability values obtained for the Sunda Strait are as 
follows: Pc Head-on, Pc Overtaking, and Pc Crossing are 
2.74 x 10-4, 9.84 x 10-6, and 8.41 x 10-5, respectively, with a 
model accuracy of 93.75%.
⦁ The frequency of ship collisions in the Sunda Strait for 
each type of collision (Head-on, Overtaking, and Crossing) 
using the default Pc values from IWRAP is as follows: 0.004 
collisions/year, 0.002 collisions/year, and 0.0046 collisions/
year, respectively. Meanwhile, based on the BN modeling 
results, the frequency values are 0.0219, 0.000179, and 
0.003 collisions/year, respectively. 
The research findings offer practical recommendations, 
emphasizing the importance of ship crew members fulfilling 
their duties in line with good maritime practices, possessing 
the ability to make sound decisions, acting promptly and 
accurately to avert collisions, conducting regular inspections 
and maintenance of ship engines, and maintaining good 
maneuverability to mitigate the potential for ship collisions.  
The study acknowledges limitations due to data constraints, 
which result in some unavailable combinations in conditional 
probability calculations. As a result, the BN model may not 
be applicable to certain ship collision scenarios. Future 
research should address these limitations by expanding the 
dataset and/or involving expert opinion to encompass all 
potential collision scenarios for more robust and optimal 
outcomes.
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