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1. Introduction
Maritime transportation is the basis of the world trade and 
commerce. Approximately 80% of all goods are transported 
by river, sea, and ocean. The global cargo shipping market 
was valued at $11.36 billion in 2021, and it is expected 
to reach $16.43 billion by 2029. This corresponds to a 
compound annual growth rate of 4.72% during the forecast 
period of 2022-2029 [1]. According to United Nations 
Conference on Trade and Development [2], shipping is 
responsible for more than 80% of the globe’s trade, and 
the total contribution of the industry to the global economy 
is estimated at 3% of the globe’s gross domestic product. 
In addition to the market insights such as market value, 
growth rate, market segments, geographical coverage, 
market players, and market scenario, the market report 
supported by the Data Bridge Market Research team also 
includes in-depth expert analysis, import/export analysis, 
pricing analysis, production consumption analysis, and 
PESTLE (PESTLE stands for political, economic, social, 
technological, legal, and environmental) analysis [3].

The maritime delivery market is divided into regions, 
each of which represents an important part of the entire 
market. The Mediterranean Sea is an important maritime 
and commercial route, containing 87 ports of various sizes 
and strengths servicing local, regional, and international 
markets. The Asia-Pacific region is considered the 
manufacturing hub for automotive companies. Regionally 
and globally, China holds the largest market share for 
cargo shipping. There are 34 major and more than 2000 
minor ports in China. All the 926 ports in the United States 
are essential to the nation’s competitiveness, as 99% of 
overseas trade travels through them. The Middle East and 
Africa are also expected to show augmented growth in the 
market. Improved port connections and a greater emphasis 
on modernizing and expanding existing ports have boosted 
the amount of trade in this region [4].
A. P. Moller-Maersk [5], Mediterranean Shipping Company 
[6], China COSCO Shipping [7], and CMA CGM Group [8] are 
the key players whose market share in terms of deployed 
capacity exceeds 10%. Hapag-Lloyd, ONE, Evergreen, Yang 
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Ming, Pacific International Lines, and Hyundai [2] complete 
the top 10 deep-sea container shipping lines, with a market 
share greater than 2% (but less than 9%; the shipping lines 
are listed in descending order). According to the review 
of maritime transport, published by the United Nations 
Conference on Trade and Development in 2019, three major 
alliances account for nearly 87% of the cargo shipped on the 
transpacific route, 98% of the Asia-Europe trade, and about 
80% of the containership capacity deployed globally [2].
Cargo shipping is a means of transportation used to 
convey commodities, goods, cargo, etc., from a seaport 
to a destination through vessels, cargo ships, and others. 
Shipping is the cheapest means of transportation per ton. 
It is preferred due to its economic and environmental 
friendliness in long-distance transportation. Increasing 
orders for the import/export of manufactured goods, the 
transportation of raw materials in bulk, and affordable 
food items fuel the demand for waterborne freight 
transportation. The expansion of the global supply chain, 
the liberalization of trade policies, and technological 
advancement in waterborne shipping have propelled the 
trade of intermediate and manufactured products and 
significantly reduced coordination and transportation costs. 
To maximize the potential of maritime transportation, it is 
necessary to plan efficient tours. Typically, a tour consists 
of one or more hubs, which serve as a starting point, and 
many ports, which function as local destinations for cargo 
delivery. A route comprised of tours should be divided as 
rationally as possible between feeder ships (medium-sized 
freight ships) and route-based tours (having a minimal 
length and being covered by a minimal number of feeders). 
The efficient tour has the smallest length possible, expressed 
in either distance or time units (or both). Minimizing the 
tour length is a transportation optimization problem 
[9]. This is a version of the traveling salesman problem 
applicable to cargo shipping [10], where feeder ships must 
be freighted at the hub, deliver their cargo, and return to 
the hub (in addition, they can be re-freighted with cargo at 
some ports heading toward the hub). Recent studies have 
investigated different approaches to solving this problem, 
including deterministic, meta-heuristic, and market-based 
approaches [9,11]. However, heuristic-based approaches 
that offer greater advantage in computational efficiency 
are the cutting edge in rational routing [12]. Only a few 
exact method approaches have been introduced in recent 
years [13]. Therefore, heuristics with their combinations 
(metaheuristics) and extensions (matheuristics) are 
typically sufficient for route optimization tasks.

2. Literature Overview and Motivation
An exact solution to the traveling salesman problem 
routes efficient tours. Such routing minimizes the cost of 

maritime delivery. The traveling salesman problem is an 
NP-hard problem in combinatorial optimization [14]. An 
exact solution to the traveling salesman problem usually 
takes too long to be obtained because an exact algorithm 
performs reasonably fast only for small-sized problems 
[15]. Finding the exact solution becomes exponentially 
intractable as the number of ports (sometimes referred 
to as cities) is increased, starting with a few tens [11,14]. 
Heuristic algorithms produce approximate solutions far 
more quickly. The difference between an approximate 
solution and an exact solution is usually acceptable [12,16]. 
It is highly probable that an approximate solution given by a 
heuristic is at most 3% away from the optimal solution, even 
for large routing problems (with thousands of ports and 
cities) [11,17]. Meanwhile, heuristic algorithms immensely 
save computational resources equivalent to operational 
time [14,15]. Rerouting maritime delivery tours when it is 
urgent has a significant economic impact.
The genetic algorithm is one of the greatest heuristics since 
it allows for the discovery of tours whose length is practically 
close to the minimal length of the delivery [17,18]. Usually, 
it is faster than the algorithms of ant colony optimization, 
simulated annealing, and tabu search while maintaining 
the same accuracy [9,14,19]. For maritime cargo delivery 
using multiple tours covered by multiple feeder ships, the 
genetic algorithm inputs are a map of ports, a number of 
feeders, a population size, mutation operators, and a series 
of additional minor parameters. The map of ports is the 
two-coordinate location of ports that should be visited 
en route. The number of feeders defines the maximum 
number of tours by which the cargo can be delivered. The 
population size is the number of randomly generated tours 
to be processed by the algorithm. The mutation operators 
are intended to occasionally break one or more members of 
a population out of the local minimum space and potentially 
discover a better minimum space.
The crossover is a convergence operation designed to 
pull the population toward a local minimum [18,20]. The 
majority of genetic algorithms use single-point crossovers. 
Single-point crossover is a technique where the selected 
parent population, i. e., the two mating chromosomes, is cut 
at a randomly selected location known as the pivot point or 
crossover point. At this cut, the genetic information to the 
left (or right) of the point is swapped between the two parent 
chromosomes to produce two offspring chromosomes 
(children). This technique becomes more robust if each 
parent has its own pivot point. These pivot points are 
also selected at random. Then it is a 2-point crossover 
mutation, although it is sometimes still referred to as a 
single-point crossover (due to every parent is cut at a single 
point) [17,18,21]. A 2-point crossover mutation increases 
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performance of the genetic algorithm by accelerating 
convergence and shortening route lengths. Therefore, it may 
be expected that a more complex operation of crossover 
mutations can result in an even greater performance boost.
Therefore, the goal is to try a more complex crossover 
mutation to improve the performance of the genetic 
algorithm. This is believed to have a significant impact on 
the future rationalization of maritime transportation route 
design to improve maritime cargo shipping and delivery. To 
achieve the goal, the following six tasks need to be fulfilled:
1. Introduce and explain the variables and denotations 
used in the genetic algorithm for a maritime cargo delivery 
model.
2. Formalize the genetic algorithm using 2-point crossover 
mutations.
3. Suggest a more complex operation of crossover mutations 
based on the fact that multiple feeders are used for maritime 
cargo delivery.
4. Evaluate how the algorithm with the suggested crossover 
mutation operation performs in comparison with the 
known 2-point crossover mutation operation.
5. Explore the practical applicability and significance of 
the suggested crossover mutation operation in the genetic 
algorithm.
6. Conclude on the contribution to the field of genetic 
algorithms used in optimizing maritime cargo delivery. 
Outline a possible extension of the research.
The rest of this paper is organized as follows: A model of 
maritime cargo delivery is presented in Section 3. Section 
4 formalizes a genetic algorithm using a 2-point crossover 
mutation operator. The 2-point crossover mutation is 
additionally explained with a visual example. Section 
5 introduces our 3-point crossover mutation operator, 
accompanied by a visual illustration of the 3-point crossover 
mutation. The testing results for both 2-point and 3-point 
crossover operators are presented and analyzed in Section 
6. Our contribution is discussed in Section 7, whereupon we 
conclude with the main findings in Section 8.

3. Maritime Cargo Delivery Model
Denote by ​N​ a number of ports, from one of which every 
feeder starts its tour and ends up by returning to that port. 
By default, the port is assigned number 1 and is called the 
hub. The positions or coordinates of all ​N​ ports are known. 
These positions are naturally presumed to be flat because 
no ship can ascend or descend. For port ​k​, denote them by ​​
p​ k1​​​ (the horizontal position) and ​​p​ k2​​​ (the vertical position). 
Positions of all the ports are gathered in matrix

. 	 (1)

It is assumed that if a feeder must go from port ​k​ to port ​j​, 
without additional stops, then the feeder accomplishes it in 
a straight line. Therefore, the distance covered by the feeder 
from port ​k​ directly to port ​j​ (or in the opposite direction) is

by  and ​​ .	 (2)

Formally,

 . 	 (3)

It is quite natural to assume that the speed of every feeder 
heading for a port is (roughly) constant. 
Then these  ​​ N​(N − 1)​ _ 2 ​​   non-zero distances

 	
(4)

in (2) can be easily mapped into durations of the maritime 
cargo delivery. The durations can be subsequently mapped 
into the respective costs of the delivery. The general aim is 
to minimize such costs.

​​Denote by M​ max​​​  the number of feeders available to accomplish 
the delivery. Usually, there are at least two available feeders. 
Hence, ​​ ​​. However, an additional aim is to enable 
as less feeders as possible.

If feeder ​m​ visits either port ​j​ after port ​k​ or port ​k​ after 
port ​j​ (the direction here does not matter), then this fact 
is featured with a flag: ​​​​x​ kjm​​  =  1​​. To exclude repeated flags 
in the case when feeder ​m​ visits more than one port (apart 
from the hub), we assign ​​​​x​ jkm​​  =  0​​ if ​​​​x​ kjm​​  =  1​​ and ​​​​x​ kjm​​  =  0​​ 
if ​​​​x​ jkm​​  =  1​​. When feeder ​m​ leaves the hub to visit only port ​
k​ and then returns to the hub, we assign ​​​​x​ 1km​​  =  ​x​ k1m​​  =  1​. 
If feeder ​m​ does not visit port ​j​ after port ​k​ nor port ​k​ after 
port ​j​, then ​​​​x​ kjm​​  =  0​ (although ports ​k​ and ​j​ still can be 
included into the tour of feeder ​m​). So, each flag

 by  and  and 	  (5)

by a (current) number of feeders ​M​, where ​ ​​​. 
Henceforward, we have two first constraints. First, each of ​
M​ feeders only once departs from the hub:

.
 	

(6)

Second, each of ​M​ feeders only once arrives at the hub:

.
 	

(7)

Only one feeder can arrive at port ​j​, being not the hub, from 
only one port (which can be the hub). This constraint is 
expressed by an equality

 . 	 (8)
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Symmetrically, only one feeder can depart from port ​k​, being 
not the hub, toward only one following port (which can be 
the hub). This constraint is expressed by an equality

In addition to constraints (6)-(9), any subtour of a feeder 
should be eliminated with the following requirement:

 
by  and  	 (10)

with tour

 	 (11)

of feeder ​m​. The inequality in (10) means that if ​​Q​ m​​​ is a 
subtour of tour (11), then its ports are not connected into 
a closed loop owing to fact that at least one pair of ports 
are disconnected (it is that term ​​|​Q​ m​​|​ − 1​). Constraint (10) 
with (11) ensures that every feeder has a tour as a closed 
loop: it departs from the hub and arrives at it. Owing to this 
constraint, a feasible route of delivering maritime cargo is 
of closed loops only, where every loop is a feeder tour that 
starts at the hub and ends by returning to the hub.
The sixth constraint is determined by the capacity of the 
feeder fleet. Obviously, the feeder has a limit on the distance 
it can cover without a fuel refill. Denote this limit by ​​d​ max​​​. 
Therefore, inequality

  	 (12)

constraints the tour of every feeder. Herein, nevertheless, 
we do not define the shortest possible tour of the feeder. If 
a feeder is enabled for delivery, it must (and definitely will) 
visit at least one port, not the hub.
To optimize maritime cargo delivery, the sum of all the tours 
of the feeders is to be minimized. The respective objective 
function

 
	

(13)

is to be minimized subject to flags (5) and constraints (6)-
(12). The minimization is implied to be done over binary 
variables (5), along with trying to minimize the total number 
of feeders used in the tours. That is, the minimization 
objective is to find such

 
 	

(14)

and

 for  and  by 	 (15)

at which

  

 

.

	

(16)

The solution given formally as

 	
(17)

allows building a set of ​​M​​ *​​ the most rational tours of ​​
M​​ *​​ feeders. Sum (16) of these tours is the length of the 
shortest route to deliver maritime cargo and return to the 
hub. Nevertheless, the solution to this problem may not 
be unique. For example, there may be two shortest routes 
(whose lengths are equal), but one of them can be covered 
with a lesser number of feeders. Then the route covered by 
such feeders is usually accepted. An additional criterion 
to select a route should be formulated if both the shortest 
routes are covered by the same number of feeders.

4. Algorithm Using 2-point Crossover
There are usually at least a few tens of ports for delivery, 
so exact methods are intractably time-consuming to find 
minimal-length routes. The computational task is thus 
simplified to finding a route whose length is practically 
close to the shortest route length. An approximately 
minimal-length route is obtained by a genetic algorithm 
specifically designed for solving problem (16) subject to 
flags (5) and constraints (6)-(12) [20]. The primary steps 
of the algorithm are the random population generation, the 
currently best result evaluation, and mutations.
Let ​​H​ m​​​ be the number of ports that feeder ​m​ should visit after 
starting off port 1 (the hub), whereupon the feeder returns 
to the hub (so, the hub is not counted in this number). 
Consider a vector of ports that feeder ​m​ should visit in the 
order of the sequence of the vector elements (apart from 
the hub). So, this vector

 	
(18)

is a tour of feeder ​m​. Tours  of all feeders constitute 
a route of delivery (apart from the hub). This means that

 	
(19)
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due to

​
​ 	 (20)

is the set of all non-hub ports.
Before the genetic algorithm runs into the first iteration, 
tours  of feeders are randomly generated by breaking 

the set of non-hub ports (20). Each feeder has a series of 
such tours called chromosomes. Altogether, such a series 
of all the feeders constitute a population. Each element 
of the population is a route of delivery using ​M​ feeders 
represented as ​M​ respective chromosomes. For every route 
of the population, the following routine is executed during 
an iteration of the algorithm. First, the distance to the port 
following the hub is calculated as

 .	 (21)

Then, the remaining distances except the last one are 
accumulated into ​​d​ m​​​:

,  

for .	  (22)

Finally, the distance of returning to the hub is:

  ,  
.
	

(23)

To improve the selectivity of the best feeder tours, tours that 
violate condition (12) are expunged. Thus, if ​​​​d​ m​​  >  ​d​ max​​​ then 
the current accumulated distance ​​d​ m​​​ after (23) is increased 
using a factor  ​ 0 :​

 , . 	 (24)

Finally, sum

 

 

 	
(25)

is calculated and minimized over the population to obtain 
the currently best result. The sum in (25) is the fitness 
function of the genetic algorithm. A new population is 
generated based on four forms of chromosome mutation: 
flip, swap, slide, and crossover [20]. The crossover operator 
takes two chromosomes (without losing generality)

 	
(26)

and

 
,
	

(27)

whereupon they are either interchanged or merged. This 
is done using a merging probability ​​P​ merge​​​ given at the input 

of the genetic algorithm. If ​ , where ​θ​ is a random 
value drawn from the standard uniform distribution on the 
open interval ​​(0;1)​​, then chromosomes (26) and (27) as 
tours of two different feeders are merged into a single tour:

. 	 (28)

This allows us to decrease the number of feeders used to 
deliver maritime cargo. Otherwise, if ​ mergeP ​​ then each 
chromosome is cut into two random parts. If we leave ​​h​ 1​​​ 
first ports in the first chromosome, and ​​h​ 2​​​ in the second 
chromosome, the remaining parts are interchanged as 
follows:

 	
(29)

and

.
	

 (30)

This is a 2-point crossover mutation. An example of a 2-point 
crossover operation over chromosomes

​​

and

​​

is shown in Figure 1.
For simplicity, the numbers of chromosomes (26) and (27) 
are taken as 1 and 2. It does not mean that there are only two 
feeders left or that only the first two feeders (of ​ ​) are 
subject to crossover mutation. Consequently, if the merging 
is done by ​ ​, single tour (28) is, generally speaking, a 
part of the route:

​
​ ​​ and ​​ ​. 

On the contrary,

​
​

only if ​M  =  2​ (i.  e., there are two feeders left before the 
2-point crossover operation). Therefore, the merged two 
chromosomes constitute a route of delivery (apart from the 
hub).

5. 3-point Crossover
If the maritime delivery service can afford to use three 
feeders or more, the crossover mutation can be made more 
complex. In this way, three chromosomes are simultaneously 
mutated by exploiting the interchange pattern of the 
2-point crossover operation. In certain cases, determined 
by random value ​θ​, the three chromosomes are merged into 
a single tour.
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Therefore, in a 3-point crossover mutation, without losing 
generality, the crossover operator takes three chromosomes 
(26), (27), 

	
(31)

whereupon they are either interchanged or merged.  

If  ​ ​ then chromosomes (26), (27), and (31) as tours 
of three different feeders are merged into a single tour

 .
 	

(32)

Otherwise, if ​  then each chromosome is cut into 
two random parts; having left ​​h​ 1​​​, ​​h​ 2​​​, and ​​h​ 3​​​ first ports in 
the first, second, and third chromosomes, respectively, the 
remaining parts are interchanged:

 	
(33)

and (30) and

.
	

(34)

An example of the 3-point crossover operation over 
chromosomes

​
​ ,

​​ ​,

​​

is shown in Figure 2.

Once again, the numbers of chromosomes (26), (27), and 
(31) taken as 1, 2, and 3 for the sake of simplicity do not 
mean that there are only three feeders left at all or that the 
3-point crossover operator takes only the first three feeders 
(of ​ ). If the merging is done by ​ ​​​, single tour (32) 
is, generally speaking, a part of the route:

 
and

 
.

On the contrary,

 	 (35)

Figure 1. An example of the 2-point crossover operation over two chromosomes
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only if ​M  =  3​ (i.  e., there are three feeders left before 
the 3-point crossover operation), so the merged three 
chromosomes constitute a route of the delivery (apart from 
the hub). It is easy to see that if ​M  =  4​ and the 3-point 
crossover operator merges three chromosomes, then ​M  =  2​ 
and further 3-point crossover operations cannot produce a 
route (35) of a single feeder by the merging. In general, if ​
M​ (or, before the algorithm starts, ​​M​ max​​​) is an even number, 
then the genetic algorithm using only the 3-point crossover 
operator cannot produce a route of a single feeder.

6. Testing
Denote by ​​μ​ 2-p​​​ the 2-point crossover operator. This operator 
is also associated with the corresponding algorithm using it 
for crossover mutations. Inasmuch as using only the 3-point 

crossover operator significantly confines the output of 
the genetic algorithm, we have to test the algorithm using 
both 2-point and 3-point crossover operators. Denote this 
algorithm by ​​μ​ 2,3-p​​​. In fact, algorithm ​​μ​ 2,3-p​​​ can be thought of 
as it contains ​​μ​ 2-p​​​.
Denote by

 	
(36)

the shortest route length found by ​​μ​ 2-p​​​ in ​​ ​​ iterations. 
Length (36) is compared to the shortest route length

 	
(37)

found by ​​μ​ 2,3-p​​​ in ​​ ​​ iterations. The percentage

Figure 2. An example of the 3-point crossover operation over three chromosomes
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(38)

will show either gain (if positive) or loss (if negative) of 
using ​​μ​ 2,3-p​​​ compared to ​​μ​ 2-p​​​. The percentage

 	
(39)

will show either gain (if positive) or loss (if negative) in 
computational speed of using ​​μ​ 2,3-p​​​ compared to ​​μ​ 2-p​​​.
We test both ​​μ​ 2-p​​​ and ​​μ​ 2,3-p​​​ for 10 to 150 ports randomly 
scattered. Positions of all the ports are in matrix (1), which 
is generated as

 	 (40)

by
,  	 (41)

and an operator ​Θ​(N,  2)​​ returning a pseudorandom ​N × 2​ 
matrix whose entries are drawn from the standard uniform 
distribution on the open interval ​​(0;1)​​. Matrix (40) is 
identical for both ​​μ​ 2-p​​​ and ​​μ​ 2,3-p​​​ in every instance, and 
we generate 400 such maritime cargo delivery problem 
instances (i. e., the test is repeated for 400 times) for every ​
N​. The maximal number of iterations is 8000, whereas the 
algorithm’s early stop condition is used, by which (a run of) 
the algorithm is stopped if the shortest route length does 
not change for 400 iterations (a one 20th of the maximal 
number of iterations). The remaining parameters are:

, , ,	 (42)
and

 	
(43)

where function ​ψ​(x)​​ returns the integer part of number ​x​.

The comparison of performances of ​​μ​ 2-p​​​ and ​​μ​ 2,3-p​​​ is 
presented in Table 1, where the percentage of violations of 
the longest possible tour constraint (12) is shown in two 
separate columns for ​​μ​ 2-p​​​ and ​​μ​ 2,3-p​​​, regardless of  whether

​
​​ 	 (44)

or

​
​​ ​​.	 (45)

The percentage of occurrences of (44), (45) is roughly the 
same for ​​μ​ 2-p​​​ and ​​μ​ 2,3-p​​​. Every instance of 10 to 25 ports 
has been solved by violating the constraint. This is because 
the longest possible tour length (43) is relatively too 
short, and the maritime cargo delivery problem is likely to 
have no solution by such a constraint. Then, the maritime 

delivery service will enable one of the few feeders capable 
of covering longer distances, whereupon the solutions for 
10 to 25 ports become feasible. For 30 to 40 ports, more 
than a half of the respective solutions have been revealed 
infeasible as well. As previously stated, the infeasibility is 
rectified by having less “distant” feeders: as the number of 
ports increases, the minimized number of feeders drops (see 
Table 2), and therefore the number of feeders that violate the 
tight constraint drops as well. The maritime cargo delivery 
problems of 90 ports and more have no infeasible solutions. 
The number of infeasible solutions for 55 to 85 ports is 
negligible. Moreover, considering just algorithm ​​μ​ 2,3-p​​​,  
there is only 1% of the longest possible tour constraint 
violations for 55 ports, whereas the ​​μ​ 2,3-p​​​-solutions to 
maritime cargo delivery problems of 60 ports and more are 
all feasible. 
The computational speed is also an important property of 
the algorithm. Measured in the number of iterations taken to 
achieve a stable route (approximately the shortest length), 
this metric allows us to determine whether modifying 
the algorithm speeds up convergence. Table 3 shows the 
comparison of computational speeds based on (44) and 
(45) from Table 1, along with percentage (39). 
The percentage of the longest possible tour constraint 
violations shown here similarly to that in Table 1 allows 
making complete visual comparisons. In general, if gain (38) 
is positive, i. e., using both the 2-point and 3-point crossover 
operators shortens the delivery route, algorithm ​​μ​ 2,3-p​​​ takes 
up to 10% more iterations to outperform algorithm ​​μ​ 2-p​​​ 
(it is over 13% for 70, 75, 90, 100, 110 ports, and it is over 
16% for 55 ports). On the contrary, if using both the 2-point 
and 3-point crossover operators lengthens the delivery 
route, algorithm ​​μ​ 2-p​​​ takes roughly between 2% to 8% more 
iterations to outperform algorithm ​​μ​ 2,3-p​​​ (it is over 18% for 
45 ports, and it is over 10% for 50 ports). Therefore, if we 
gain in the delivery route length, we may probably lose in 
computational speed and vice versa. Some exclusions in 
this test, however, exist. Thus, algorithm ​​μ​ 2,3-p​​​ outperforms 
algorithm ​​μ​ 2-p​​​ both by shortening the route length and 
decreasing the number of iterations for 10 and 15 ports 
(where every route is infeasible, though), and for 120 ports. 
In contrast, algorithm ​​μ​ 2,3-p​​​ fails to shorten the route length, 
simultaneously increasing the number of iterations for 30 
and 75 ports (where ​​g​ iter​​  <  0​ in both columns). 
A typical example of the solution to the maritime cargo 
delivery problem of 60 ports obtained by algorithm ​​μ​ 2-p​​​ is 
shown in Figure 3. Although the algorithm produces the 
feasible solution after 1475 iterations (not passing even a 
fifth part of 8000), the tour of one of the four feeders is not 
perfect-there is an intersection between ports 23, 11 and 
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43, 60, although the length of the sequence 23, 43, 11, 60 
here is obviously shorter. The lengths of the feeders tours 
are

61.8107, 96.2493, 120.7262, 122.0094	 (46)

(note that these values are rounded). The solution to this 
problem obtained by algorithm ​​μ​ 2,3-p​​​ is much better (Figure 
4). The algorithm produces the feasible solution after 1879 
iterations (by 27.3898  % more that ​​μ​ 2-p​​​), but the route is 

Table 1. Comparison of performances of ​​μ​ 2-p​​​ and ​​μ​ 2,3-p​​​ along with the percentage of violations of the longest possible tour constraint

​
​​ρ ̃ ​​ Σ​ * ​ ​(​μ​ 2-p​​)​​ > ​​ρ ̃ ​​ 

Σ
​ * ​ ​(​μ​ 2,3-p​​)​​​ Violations 

of (12) in ​​​ 
ρ ̃ ​​ Σ  

​ * ​​(​μ​ 2-p​​)​​​​

​
​​ρ ̃ ​​ Σ​ * ​ ​(​μ​ 2-p​​)​​ < ​​ρ ̃ ​​ 

Σ  
​ * ​​(​μ​ 2,3-p​​)​ Violations 

of (12) in ​​​ 
ρ ̃ ​​ Σ​ *   ​​(​μ​ 2,3-p​​)​Occurrences, 

% ​
​​ρ ̃ ​​ Σ ​ * ​​(​μ​ 2-p​​)​​

​
​​ρ ̃ ​​ Σ ​ * ​​(​μ​ 2,3-p​​)​​ ​ ​ Occurrences, 

% ​
​​ρ ̃ ​​ 

Σ  
​ * ​​(​μ​ 2-p​​)​​​​

​
​​ρ ̃ ​​ 

Σ  
​ * ​​(​μ​ 2,3-p​​)​ ​ ​

Overall 
average 47.431 458.1736 439.855 4.1138 % 46.9914 437.4499 455.7348 -4.2375 %

​N​

10 23 162.5074 154.4293 4.9709 100 11 160.9161 168.1438 -4.4916 100

15 36.75 245.8067 230.9942 6.026 100 31.25 224.9417 234.6612 -4.3209 100

20 40 313.768 295.4183 5.8482 100 28.25 330.7839 343.0468 -3.7072 100

25 51 425.7302 400.6392 5.8937 100 26.5 412.3405 428.5109 -3.9216 100

30 57 525.7586 503.0035 4.328 98.75 36.25 486.4183 512.1281 -5.2855 98.75

35 53.5 590.9274 573.517 2.9463 84.5 43.75 540.8242 561.0292 -3.736 84.5

40 51 583.5659 562.5897 3.5945 59.5 49 544.3362 558.5648 -2.6139 60

45 52 518.0818 499.4493 3.5964 27.75 48 474.4119 491.0923 -3.516 28.5

50 52 454.3131 433.8998 4.4932 12.5 48 446.6779 469.3174 -5.0684 10.75

55 49.75 429.9538 413.2041 3.8957 1 50.25 415.2039 436.668 -5.1695 1

60 47 426.2364 408.5017 4.1608 0 53 397.0233 421.1186 -6.069 0

65 47.5 427.1261 407.691 4.5502 0 52.5 402.2233 422.0906 -4.9394 0

70 50.5 422.2514 404.6076 4.1785 0.25 49.5 405.5613 426.0908 -5.062 0

75 39 428.1851 404.5786 5.5132 0.25 61 410.862 429.2739 -4.4813 0

80 47.75 436.9097 421.5664 3.5118 0 52.25 409.9417 431.4875 -5.2558 0

85 46.75 444.7619 427.6235 3.8534 0.5 53.25 431.4437 448.2362 -3.8922 0

90 49.75 452.3774 434.3581 3.9832 0 50.25 433.1648 452.6187 -4.4911 0

95 45.75 455.9687 437.1885 4.1187 0 54.25 435.0251 457.0975 -5.0738 0

100 55.75 470.2506 448.7076 4.5812 0 44.25 443.5044 462.9149 -4.3766 0

105 50 468.1526 452.0036 3.4495 0 50 450.2579 470.5579 -4.5085 0

110 48.75 478.6923 459.2945 4.0523 0 51.25 460.0941 481.9455 -4.7493 0

115 44 483.7243 470.5481 2.7239 0 56 470.3821 488.3825 -3.8268 0

120 48.5 494.7954 476.7706 3.6429 0 51.5 475.815 490.2046 -3.0242 0

125 44.5 507.5657 487.6522 3.9233 0 55.5 483.5862 500.2591 -3.4477 0

130 53.25 512.0419 493.1712 3.6854 0 46.75 492.2423 512.2915 -4.073 0

135 41 520.7821 499.6678 4.0543 0 59 501.1695 515.4461 -2.8487 0

140 60.75 522.946 506.7323 3.1005 0 39.25 503.2026 524.0261 -4.1382 0

145 37.75 537.827 518.1812 3.6528 0 62.25 515.1312 535.2688 -3.9092 0

150 51.25 546.0285 529.8046 2.9712 0 48.75 528.5614 543.8372 -2.8901 0
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5.1186  % shorter. Besides, the shorter route consists of 
three feeders whose tour lengths are

120.2504, 132.2812, and 127.7488	 (47)

being roughly equal and not much longer than the longest 
tour in (46). This means that the maritime delivery service, 
apart from the shorter route in Figure 4, spares here a 
feeder. Moreover, the lengths of the four feeders tours (46) 
are more unequal than the lengths (47). This additionally 
rationalizes the occupation of the three feeders.
As the longest possible tour constraint (12) is made looser, 
i. e. the longest possible tour length becomes not so short, 
the percentage of violations of constraint (12) in both 
​​μ​ 2-p​​​ and ​​μ​ 2,3-p​​​ becomes significantly lower even for a few 
tens of ports. Thus, if

	  (48)

instead of (43), then this violation rate is about 50  % for 
15 ports, but it is 0 for 20 ports or more. The percentage of 
occurrences of (44), (45) is still roughly the same for ​​μ​ 2-p​​​ 
and  ​​μ​ 2,3-p​​​, although the occurrence of (44) is a little bit more 
probable (just it is in Table 1). The violation rate by (48) for 
10 ports is less than 100%, but it is not less than 90 %. If

 	
(49)

then there are almost no violations for 15 and 10 ports. 
Furthermore, it is much more probable at (49) that the gain 
by (38) will appear positive.
Consequently, half of routes could be made shorter while the 
2-point crossover operator is solely used. On the contrary, 
half of routes could also be made shorter while both the 
2-point and 3-point crossover operators are solely used 
(embedded in the corresponding algorithm ​​μ​ 2,3-p​​​). The best 

decision here is to run both ​​μ​ 2-p​​​ and ​​μ​ 2,3-p​​​ simultaneously (in 
parallel), whereupon the shortest route length is

	  (50)

and the respective route is selected according to (50).

7. Discussion of the Contribution
Our contribution to the field of genetic algorithms consists 
in the suggested 3-point crossover operation over three 
chromosomes followed by a confluence with 2-point 
crossover mutations and a two-branched algorithm to 
obtain the shortest route length (50). This two-branched 
algorithm does not have practical limitations unless the 
maximal number of available feeders is 2. The practical 
applicability and significance of the suggested crossover 
mutation operation (involving both 2-point and 3-point 
crossover mutations) can be illustrated by an example 
generated for 15 ports by (49) implying a looser longest 
possible tour constraint (Figure 5). The longest possible 
tour length is 186. The route by ​​μ​ 2-p​​​ whose length is  

​​​ρ ̃ ​​ Σ​ *  ​​(​μ​ 2-p​​)​  =  211 . 6745​ consists of two feeders tours 
whose lengths are 135.2037 and 76.4708. The route by ​ 

​μ​ 2,3-p​​​ whose length is ​​​ρ ̃ ​​ Σ  ​ * ​​ (​μ​ 2-p​​)​  =  183 . 4649​ consists of a 
single feeder tour. Therefore, the maritime delivery service, 
apart from the 15.376  % shorter route, spares here a 
feeder. It is noteworthy that these results are obtained by 
​​I​​ *​​(​μ​ 2-p​​)​  =  482​ and ​​I​​ *​​(​μ​ 2,3-p​​)​  =  454​ (by the maximum of  
8000 iterations and the early stop condition of 400 
iterations). Amazingly enough, the same results are obtained 
by setting the maximum at 800 iterations and the early 
stop condition at 40 iterations, where ​​I​​ *​​(​μ​ 2-p​​)​  =  122​ and 
​​I​​ *​​(​μ​ 2,3-p​​)​  =  94​ (the difference between the past iterations 
is the same). The gains in Table 1 are noticeably less than 
the gain in this example, but Table 1 shows the results of 
the worst-case scenario when the longest possible tour 
constraint (12) is very tight, as given by (43). It is expected 

Table 2. The average number of feeders ​​M​​ *​​ by  ​​μ​ 2-p​​​  and  ​​μ​ 2,3-p​​​

​N​ 10 15 20 25 30 35 40 45 50 55

​​M​​ *​​ by ​​μ​ 
2-p

​​​ 2.42 4.09 5.3875 6.7525 7.5375 7.655 6.98 5.66 4.7 4.1325

​​M​​ *​​ by ​​μ​ 
2,3-p

​​​ 2.32 3.9325 5.275 6.6 7.4975 7.64 6.9175 5.64 4.6925 4.1775

​N​ 60 65 70 75 80 85 90 95 100 105

​​M​​ *​​ by ​​μ​ 
2-p

​​​ 3.6325 3.5225 3.16 3.045 3.0175 2.9725 2.96 2.775 2.6925 2.4025

​​M​​ *​​ by ​​μ​ 
2,3-p

​​​ 3.74 3.44 3.19 3.045 3.0025 2.995 2.9475 2.8125 2.62 2.42

​N​ 110 115 120 125 130 135 140 145 150

​​M​​ *​​ by ​​μ​ 
2-p

​​​ 2.305 2.1375 2.095 2.0325 2 2.0225 2 2 2

​​M​​ *​​ by ​​μ​ 
2,3-p

​​​ 2.3425 2.18 2.07 2.0525 2 2.02 2 2.025 2
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Table 3. Computational speed of ​​μ​ 
2-p

​​​ and ​​μ​ 
2,3-p

​​​ compared by Table 1

​
​​ρ ̃ ​​ 

Σ  
​ * ​​(​μ​ 2-p​​)​ > ​​ρ ̃ ​​ 

Σ  
​ * ​​(​μ​ 2,3-p​​)​​ Violations of  

(12) in ​​​ 
ρ ̃ ​​ Σ  

​ * ​​(​μ​ 2-p​​)​

​
​​ρ ̃ ​​ Σ​ * ​ ​(​μ​ 2-p​​)​ < ​​ρ ̃ ​​ 

Σ  
​ * ​​(​μ​ 2,3-p​​)​​ Violations of 

(12) in ​​​ 
ρ ̃ ​​ Σ​ *   ​​(​μ​ 2,3-p​​)​​​

​
​
​
​I​​ *​​(​μ​ 2-p​​)​

​
​
​
​I​​ *​​(​μ​ 2,3-p​​) ​​g​  iter​​​ ​

​I​​ *​​(​μ​ 2-p​​)​​
​
​I​​ *​​(​μ​ 2,3-p​​)​​ ​​g​  iter​​​

Overall 
average 2697.546 2901.208 -7.4452 % 2946.626 2770.845 5.3356 %

​N​

10 455.3043 445.75 2.0985 100 448.8182 429.6591 4.2688 100

15 504.2177 469.034 6.9779 100 514.432 465.312 9.5484 100

20 559.3563 578.4125 -3.4068 100 559.928 534.736 4.4991 100

25 654.0049 693.3627 -6.018 100 667.056 664.92 0.3202 100

30 819.2763 869.0132 -6.0708 98.75 864.2414 995.4828 -15.1857 98.75

35 1065.969 1195.921 -12.1909 84.5 1134.354 1105.817 2.5157 84.5

40 1376.004 1440.702 -4.7018 59.5 1524.194 1395.393 8.4504 60

45 1510.132 1677.746 -11.0993 27.75 1888.138 1544 18.2263 28.5

50 1761.965 1827.675 -3.7294 12.5 2134.174 1920.245 10.024 10.75

55 1812.197 2113.233 -16.6116 1 2122.134 2007.119 5.4198 1

60 1853.048 2064.561 -11.4143 0 2367.212 2183.637 7.7549 0

65 2181.851 2410.127 -10.4625 0 2461.028 2287.552 7.0489 0

70 2224.693 2532.825 -13.8505 0.25 2658.274 2461.274 7.4108 0

75 2284.838 2598.961 -13.7481 0.25 2659.676 2739.721 -3.0096 0

80 2653.943 2814.316 -6.0428 0 2894.164 2685.094 7.2238 0

85 2722.597 3006.794 -10.4385 0.5 3114.459 2952.709 5.1935 0

90 2883.697 3291 -14.1243 0 3146.791 3064.135 2.6267 0

95 2996.233 3324.325 -10.9502 0 3447.094 3312.103 3.9161 0

100 3335.43 3772.412 -13.1012 0 3647.566 3520.439 3.4853 0

105 3648.702 3968.754 -8.7717 0 3831.799 3558.123 7.1422 0

110 3652.281 4178.803 -14.4163 0 4032.844 4017.762 0.374 0

115 4049.925 4203.404 -3.7897 0 4182.348 3811.094 8.8767 0

120 4269.557 4251.351 0.4264 0 4543.357 4164.734 8.3336 0

125 4130.184 4443.36 -7.5826 0 4535.119 4336.525 4.379 0

130 4586.281 4767.798 -3.9578 0 4677.566 4284.959 8.3934 0

135 4792.899 4928.614 -2.8316 0 4870.484 4669.73 4.1219 0

140 4957.222 5220.527 -5.3115 0 5216.717 4776.971 8.4296 0

145 5090.86 5475.712 -7.5597 0 5583.249 5081.49 8.9869 0

150 5396.156 5570.547 -3.2318 0 5724.94 5383.783 5.9591 0
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Figure 3. The solution of an instance with 60 ports by ​​μ​ 2-p​​​, where four feeders are used and ​​​ρ ̃ ​​ Σ​ 
*​ = 400.7957​
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Figure 4. A better solution of the instance with 60 ports in Figure .3 by ​​μ​ 2,3-p​​​, where three feeders are used and ​​​ρ ̃ ​​ Σ​ 
*​ = 380.2804​
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that the gain can be very significant if the constraint is 
looser, whether there are 10 ports or a few tens and more.
Along with minimizing the route length, the algorithm runs 
with the effect of the indirect minimization of the number 
of feeders. This is another side of maritime cargo delivery 
optimization, as maintenance of the feeder fleet is much 
more expensive. If the route consists of one or a few too-short 
feeders tours, then some tours may be accomplished by the 
same feeder (while some other feeder is accomplishing its 
longer tour), but this decision is made only by the maritime 
delivery service.
It is necessary to mention that, despite our model of 
delivering cargo is very simple, it reflects the delivery 
core-distance and capacity (capability). We also based 
our research on the fact that the positions of the ports are 
generated normally. This might be a tiny bias because, in 
reality, a maritime delivery service may be contracted to 
deliver from its hub to neighboring and distant ports that, in 
the aggregate, would not look like the center-based cluster 
shown in Figure 3 (Figure 4). However, we believe that this 
drawback is counterbalanced by our worst-case scenario 
consideration.

Another seeming deterrent is the computational speed 
that has been not improved. Indeed, algorithm ​​μ​ 2,3-p​​​ does 
not converge faster. Nevertheless, running both algorithms ​​
μ​ 2-p​​​ and ​​μ​ 2,3-p​​​ in parallel is strongly recommended (and it 
is perfectly possible using methods of parallelization of 
computing). Consequently, with paying attention back to 
Table 3, the computational speed herein is not slowed down.

8. Conclusion
We have presented a 3-point crossover operator to the 
genetic algorithm for solving a maritime cargo delivery 
problem formulated as a multiple traveling salesman 
problem. This operator returns slightly more complex 
crossover mutations, which in the confluence with 2-point 
crossover mutations shorten the delivery route in about 
50% of algorithm runs. However, this 2-point-and-3-point 
crossover algorithm does not shorten every route. To 
definitely increase the genetic algorithm performance, we 
have proposed to run both the 2-point crossover algorithm 
and the 2-point-and-3-point crossover algorithm in parallel 
and select the minimal length route. The route may be 
shortened by a few percentage points, but the resulting 
cost savings for maritime cargo delivery are substantial. 

Figure 5. The route by ​​ μ​ 2-p​​​ (left) shortened by 15.376 % by using ​​μ​ 2,3-p​​​  (the route at the right)
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Therefore, it is a significant contribution to the field of genetic 
algorithms, which are specifically used to optimize maritime 
cargo delivery. The impact of our contribution is obvious 
for policymakers and practitioners: the rationalization of 
maritime transportation route planning saves energy (fuel 
for ship feeders is saved), transport (feeders themselves are 
spared), and human (fewer seamen and service personnel 
are needed) resources.
Potential development of the research would be to test more 
complex mutations, including combinations of flip, swap, 
and slide, in addition to “pure” crossover [18]. We believe 
that complicated mutations may be acceptable if the mutated 
part of the chromosome is relatively small (i. e., the mutated 
chromosome is still “recognizable” compared to its parents). 
The question of how the mutation diversity influences 
algorithm convergence and the indirect minimization of the 
number of feeders is still open. Reducing this number and 
the equalization of the lengths of feeders tours do lead to an 
additional reduction in the cost of maritime cargo delivery.
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