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1. Introduction
The EU Marine Strategy Framework Directive states that 
the economy and energy efficiency in fisheries are critical 
components of the ecosystem-based approach to fisheries 
management [1]. It should be emphasized that energy 
efficiency, approaches, and studies that will protect the 
ecosystem have become of great importance [1-3]. Scientific 
awareness has also manifested itself in the institutional field; 
for example, International Maritime Organization (IMO) has 
enacted a new law that includes reducing carbon emissions 
from ships and providing energy efficiency technically and 
operationally [4].
This scientific study in this context examines the problem of 
fuel consumption, energy efficiency, and carbon emissions 
in the scope of fishing vessels. Researchers have significantly 
contributed to the fuel consumption and efficiency of fishing 
vessels. Individual voyage planning was studied by creating 

a decision tree model with the data obtained from fishing 
vessels [1], and statistical studies based on the product 
costs of fishing vessels were performed between specific 
dates [2]. The use of magnetic devices has been tried to 
provide energy efficiency [3], low-friction mesh technology 
is recommended [5], and fuel consumption is reduced by 
using a DC electric propulsion system [6]. As can be seen, 
studies are primarily focused on statistical approaches to 
improving existing equipment or approaches to reducing 
fuel consumption and increasing energy efficiency through 
weight reduction. In this study, the approach to solving the 
problem from a novel angle examines a different strategy 
for lowering fuel consumption and raising energy efficiency 
in fishing vessels.
For example, the search process of fishing vessels to find 
fish mass is one of the most important factors that increase 
fuel consumption and thus product cost [7,8]. Fishing 
vessels may need to scan fish for long periods to find the fish 

Abstract
In recent years, energy and fuel efficiencies have been considered in scientific studies. These parameters become extremely important 
in maritime, especially for fishing vessel activities. In this study, an innovative approach is proposed to reduce the fuel consumed by 
fishing vessels and carbon emissions to the environment during the fish exploration process. Key elements of the proposed approach are 
autonomous underwater vehicles (AUVs) and the application of swarm intelligence. With this approach, which can be considered a pioneer 
in maritime, the AUVs released from the fishing vessel find the school through the swarm intelligence behavior of Grey Wolves. In this 
article, the method is modeled as a simulation, and its applicability in the future is also discussed. In the present studies, the conventional 
fish search method and the proposed method were modeled, and the results were examined. When the obtained results are examined, 
it is seen that the proposed method increases the successful voyage rate by 2.94 times compared to the conventional method, while the 
distance covered in the exploration activity decreases by 8.61 times. The results demonstrated that the proposed innovative approach is 
an energy-efficient, cost-effective, and environmentally friendly solution that is also applicable and usable in the future.
Keywords: Energy efficient, Carbon emission, AUVs, Grey Wolf Algorithm, Swarm intelligence

Karadeniz Technical University, Sürmene Abdullah Kanca Vocational School, Trabzon, Türkiye

 Erhan Sesli

DOI: 10.4274/jems.2022.38247

An Energy and Fuel-effective Solution for School Exploration of 
a Fishing Vessel Through Swarm Intelligence Approach

https://orcid.org/0000-0002-0039-2927


169

Journal of ETA Maritime Science 2022;10(3):168-176

Draft
 Co

py

mass. One of the most important reasons is that the Sound 
Navigation and Ranging (SONAR) on board can observe a 
limited area. In scientific studies, effective SONAR distances 
are accepted between 100 and 1200 m bands [9-13]. 
Furthermore, it is necessary to consider that the SONAR 
device is positioned under the vessel and creates resistance 
during the vessel [14,15]. The resistance created has an 
additional direct effect on the increase in fuel consumption.
This scientific study, which includes a completely innovative 
method for reducing fuel consumption, presents unmanned 
vehicle technologies, which have become increasingly 
popular in recent years as an innovative solution for energy 
efficiency. The development of AUVs dates back to the 1960s. 
Over the years, hardware developments in this field (energy 
management, sensing technologies, etc.) have continued 
[16]. In recent years, studies and applications of autonomous 
underwater vehicles have become remarkable. Its use in 
polar regions, where obtaining data in ocean science and 
traveling with manned vehicles is extremely dangerous, is 
just one of the AUV applications [17,18]. Other applications 
include marine environment mapping applications [19,20], 
evaluation applications of dangerous situations that may 
arise at submarine oil and gas connection points [18], and 
military applications [20].
It is clear that the perspectives on the solution to the 
problem discussed in this study are limited.  For this 
reason, it is exciting that the study fills the gap in this field 
and contributes to the literature. The proposed method 
aims to detect the fish mass of a group of AUVs that the 
fishing vessel will release into the sea in a particular area 
in a short time, with a collaborative approach focused on 
swarm intelligence that mimics the hunting behavior of the 
grey wolf pack. Sharing the detected location information 
with the fishing vessel via AUVs enables the fishing vessel 
to achieve less fuel consumption, carbon emissions, and 
energy efficiency.
The flow order of the article is planned as follows. Section 
2 discusses the contributions of the article to the literature. 
Section 3 explains the method, Section 4 evaluates the 
studies and findings, and the results are discussed in Section 
5. 

2. Contributions to the Literature
It is possible to list the contributions of this scientific study 
to the literature as follows:
⦁ A system model has been proposed that will make fishing 
vessels cost-effectively and emit less carbon in a shorter 
time. 
⦁ In the proposed system model, one of the maritime 
applications is integrated through autonomous vehicle 

technologies, one of the popular technologies of recent 
years.
⦁ The application of school detecting through a collaborative 
approach with AUVs, current technology in the maritime 
field, is proposed for the first time.
⦁ It was achieved that the AUV group reached a solution 
using a model inspired by nature. It has been a pioneer 
study in this area.

3. Material and Methodology
The school search process is analyzed with a focus on swarm 
intelligence, which proposes a solution that will provide 
cost-effective and less carbon emission. A simulation model 
was developed for the solution. The swarm is made up of 
AUVs, and each AUV is a member of the swarm. Swarm 
intelligence was created by mimicking the natural herd 
behavior and hunting methods of grey wolves. Mirjalili et al. 
[21] proposed and used grey wolf pack hunting behavior for 
the first time to solve an optimization problem. An objective 
function is needed in conventional optimization problems to 
reach the solution. In this approach, the objective function is 
nothing more than the instantaneous distance of the AUVs, 
defined as the wolf pack, to the school. In the simulation 
studies, the wolf pack leadership hierarchy and hunting 
behavior were modeled and integrated into each individual, 
and an artificial wolf pack consisting of underwater AUVs 
was obtained. AUVs released from the fishing vessel have 
been enabled to find the fish school in a cost-effective and 
eco-friendly way. Figure 1 depicts the applied scenario.
In this section, the method of the scientific study is 
explained. Figure 1 shows the main elements used in the 
study: AUVs representing swarm individuals, the grey wolf 
algorithm used for swarm intelligence, evaluations in terms 
of applicability, assumptions for simulations, constraints, 
and conditions.

Figure 1. Applied scenario for the study
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3.1. Autonomous Underwater Vehicles
AUVs have started to be used in most maritime applications 
as developing technology in recent years. AUVs are equipped 
with high-resolution cameras, pressure, temperature, 
proximity, and chemical sensors to collect data while 
performing tasks [17-20]. They obtain the necessary 
information using the sensor fusion they have. The figure 
below shows an AUV used in these studies (Figure 2).

Figure 2. ABE autonomous vehicle [19]

Designs for AUVs in scientific studies and applications are 
being developed and made available in various mobility, 
size, and speed configurations. Designed and developed 
AUVs used in scientific studies can have length values 
between 0.92-10.44 m and speed values in the range of 0.2-
41.67 m/s. The length of AUV designs, similar to biological 
creatures, ranges from 0.09-2.5 m and the maximum 
rotation angle per second varies in the range of 6.84-670 
deg/s [22]. Considering the designs, developments, and 
scientific studies, it appears that AUV applications resemble 
biological creatures and can move like them in the near 
future. This circumstance suggests that the proposed method 
and the simulated studies will be applicable soon. Another 
aspect to investigate is the communication between AUVs 
with swarm intelligence and the management of detection 
processes for fish school detection. Thus, the feasibility of 
this simulated study should be discussed.
When the detection and verification of fish swarms are 
examined, conventionally utilized SONAR can be seen 
as a natural solution. Image recognition can also be 
accomplished by equipping AUVs with high-resolution 
cameras and using image processing and deep learning 
applications [23]. Another issue is the communication 
of AUVs with each other. In detecting a school of fish, 
AUVs must constantly communicate with each other and 
determine their distance from each other. There are three 

different methods used for AUV communication in the 
literature. These are radio frequency (RF), acoustic, and 
optical wireless communication [24,25]. The channel model 
in water is unlike the channel model in the air for RF signals. 
In water, the signal becomes weaker, so the communication 
distance decreases. The distance can be increased by 
extending the wavelength, but then the communication 
speed will decrease [24]. Studies have been conducted on 
Underwater Wireless Sensor Networks using RF signals 
[26,27]. Conversely, acoustic communication provides a 
low data rate (around kbps) over long distances (around 
20 km), and they have a high cost and bulky transceiver 
[25]. Furthermore, optical wireless communication offers 
the advantages of low cost, a small volume of transceiver 
hardware, a fast communication speed, and the ability to 
establish a medium distance connection (at the level of 10 
m).
Working with RF signals for the proposed scenario can 
be an obstacle. In contrast, factors such as the cost-
effectiveness of acoustic communication and the need for 
bulky transceivers may create disadvantages. But optical 
wireless communication has a cost-effective structure, 
small volume of transceiver equipment that can reduce 
energy consumption, fast communication speed, and ability 
to establish a medium-distance connection. Thus, it can be 
considered a viable solution for AUV to AUV and AUV to 
vessel communication.
This analysis showed that the simulated work is applicable 
in the future.

3.2. Grey Wolf Algorithm for Swarm Intelligence
In the applied scenario, each of the AUVs released from 
the fishing vessel is considered an individual with swarm 
intelligence. Grey wolf pack hunting behavior was chosen 
as swarm behavior. This is because it converges easier and 
faster in optimization problems [28]. It is assumed that the 
AUVs have the necessary sensor hardware to mimic the wolf 
pack hunting behavior.
Grey wolves are predators at the top of the food chain in 
nature. They live in groups of 5-12 wolves and have a strict 
leadership hierarchy among themselves, as shown in Figure 
3 below. The first layer is the α layer, which is formed by male 
and female wolves with the highest leadership degree; they 
are responsible for decisions such as deciding to hunt, sleep, 
and get up. In the second layer, the β layer, individuals are 
responsible for helping other wolf pack members and other 
tasks. The third layer is the δ layer. Members of this layer 
are responsible for protecting the packing area, warning 
the wolf pack of any danger, and caring for injured pack 
members. The last layer of hierarchy is ω, whose members 
must submit to all other wolf pack members [21,29].
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The hierarchical model mentioned acts a crucial role in 
the hunting behavior of the grey wolf pack. Primarily, grey 
wolves seek and track their prey. Then the α wolves direct 
the other wolves to surround the prey. After that, α wolves 
order the β and δ wolves to attack. When prey tends to flee, 
wolves that feed from the rear of the prey continue to attack 
and capture their prey. The behavior of grey wolves in this 
hunt has been mathematically modeled [21,29]. 
If the number of members of the grey wolf pack is K, the 
search area is d, and ith wolf’s position can be defined as:  
​​P​ i​​  =  ​(​P​ i1​​ , ​P​ i2​​ , ​P​ i3​​ , …, ​P​ id​​)​​. According to the mathematical 
model, the best solution is considered the solution of the 
α wolves. The second and third best solutions are β and δ 
wolves, respectively. The remaining candidate solutions are 
the solution of ω wolves.
The mathematical model of grey wolves’ siege behavior of 
prey is as follows (equations 1 and 2 as below):

​​D ⃗ ​=​|​C ⃗ ​. ​​P ⃗ ​​ p​​ (t)-​P ⃗ ​(t)|​​				                                   (1)

​
​​P ⃗ ​​ p​​ (t + 1 )   =  ​​P ⃗ ​​ p​​ (t )  − ​A ⃗ ​ . ​D ⃗ ​​			                                    (2)

Where t refers to the current iteration; ​​A ⃗ ​​ and​​ C ⃗ ​​ are the 
coefficient vectors; ​​​P ⃗ ​​ p​​​ is the position vector of the prey;  
​​P ⃗ ​​ denotes the position vector of the wolf pack. The c 
oefficient vectors ​​A ⃗ ​​ and ​​C ⃗ ​​ can be calculated as follows 
(equations 3 and 4 as below):

​​A ⃗ ​  =  2​a ⃗ ​ . ​​r ⃗ ​​ 1​​ − ​a ⃗ ​​					                  (3)

​
​C ⃗ ​  =  2 .  ​​r ⃗ ​​ 2​​​					                (4)

Where ​ ​​r ⃗ ​​ 1​​​ and ​ ​​r ⃗ ​​ 2​​​ are random vectors ​∈  ​[0, 1]​​; ​​a ⃗ ​​ is a linearly 
decreasing value from 2 to 0 depending on the iteration 
number and is calculated as follows (equation 5 as below):

​​a ⃗ ​  =  2​(1 − ​  t _ ​T​ max​​
 ​)​​				                                (5)

Where ​​T​ max​​​denotes the determined maximum iteration 
number. After the wolf pack has caught the prey, the other 
wolves surround the prey at the command of the α wolf. 
Then the α, β, and δ wolves start to approach the prey, and 
their position with the prey is calculated. The mathematical 
model of this situation is defined in the equations below:

​
​​D ⃗ ​​ α​​  =  ​|​​C ⃗ ​​ 1​​ . ​​P ⃗ ​​ α​​ − ​P ⃗ ​|​​			    	            (6)

​
​​D ⃗ ​​ β​​  =  ​|​​C ⃗ ​​ 2​​ . ​​P ⃗ ​​ β​​ − ​P ⃗ ​|​​	 		                          (7)

​
​​D ⃗ ​​ δ​​  =  ​|​​C ⃗ ​​ 3​​ . ​​P ⃗ ​​ δ​​ − ​P ⃗ ​|​​		  	                         (8)

​​​P ⃗ ​​ 1​​  =  ​​P ⃗ ​​ α​​ − ​​A ⃗ ​​ 1​​ .  ( ​​D ⃗ ​​ α​​ )​	 			            (9)

​
​​P ⃗ ​​ 2​​  =  ​​P ⃗ ​​ β​​ − ​​A ⃗ ​​ 2​​ .  ( ​​D ⃗ ​​ β​​ )​	 			          (10)

​​​P ⃗ ​​ 3​​  =  ​​P ⃗ ​​ δ​​ − ​​A ⃗ ​​ 3​​ .  ( ​​D ⃗ ​​ δ​​ )​	 			          (11)

​
​P ⃗ ​ (t + 1 )   =  ​ 

​​P ⃗ ​​ 1​​ + ​​P ⃗ ​​ 2​​ + ​​P ⃗ ​​ 3​​
 ____________ 3  ​​	 		                        (12)

​​​P ⃗ ​​ 1​​ , ​​P ⃗ ​​ 2​​ , ​​P ⃗ ​​ 3​​​ positions of the α, β, and δ wolves can be calculated 
using equations (6-11). Then next position of the wolf pack ​​
P ⃗ ​ (t + 1)​ is obtained by averaging, as shown in equation 
(12). Pseudo codes of the grey wolf algorithm can be seen 
in Algorithm 1.
In terms of applicability, to transfer swarm intelligence 
to individuals, each individual must be able to determine 
the distance between itself and the other individuals as 
well as the distance between itself and the school of fish. 
For the distance detection process between individuals, 
Underwater Optical Wireless Communication can be used 
for AUV2AUV communication, considering the underwater 
optical channel model [25,30]. Conversely, SONAR, image 
processing, and deep learning techniques can detect the 
fish school, including the distance between the fish school 
and AUVs. After these hardware features are equipped for 
individuals, the relevant algorithms with swarm intelligence 
are transferred to the individuals, and an artificial grey 
wolf pack that acts with swarm intelligence is obtained. In 
optimization problems, the best result is searched until a 
maximum number of iterations is reached. In the applied 
scenario, the best result is to provide the desired and 
predetermined distance of individuals to the school of fish. 
Therefore, the best distance is constantly updated during 
the search process to reach the desired value.
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Algorithm 1. Grey Wolf Algorithm [21]
1:

2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:

Initialize: The​​P​ i​​ (i = 1 , 2, …, K)​grey wolf population ​​
P​ i​​ (i = 1 , 2, …, K)​

Initialize: a, A, t=0, and C
Calculate the fitness of each search agent

Xα=the best search agent
Xβ=the second best search agent
Xδ=the third best search agent

While (t<MaxIteration) do
For each search agent

Calculate the position of the current search agent by using 
Equation (12)

end for
Update the a, A, and C

Calculate the fitness of all search agents
Update the Xα , Xβ and Xδ

t= t+1
end while
Return Xα

3.3. Assumptions, Constraints, and Conditions for 
Simulation Domain
While various parameter values were selected in the 
simulation studies, other scientific studies were referenced, 
and some assumptions, rules, and constraints were created 
for the applied scenarios.
The simulation environment created for the scenarios 
assumes that the search and scanning activity is carried out 
in an area of 20x20 NM2. The movement of the fish school and 
the fishing vessel within this area is allowed in the applied 
scenarios. The speed of fishing vessel was determined as 
14.2 knots [31], and horse mackerel was taken into account 

for the speed of the school. The maximum speed of a horse 
mackerel is about 6 m/s [22]. In the simulation studies, 
the school speed was accepted as 6 m/s. Two scenarios 
were used in simulations. The first scenario is the fishing 
vessel surveying the school of fish in the designated area, 
and the second is the proposed approach. However, in the 
simulations, a search upper limit has been set for the fishing 
vessel; if the fishing vessel cannot find a school of fish within 
100 NM, the search for fish for that voyage is terminated. 
This was referred to as a failed voyage because any search 
activity beyond the specified limit would be illogical and 
inefficient.

4. Simulation Studies and Results
Simulation studies are performed using MATLAB® and a 
computer with Intel® Core™ i7-6500U CPU @ 2.5 GHz and 
8 GB RAM. In the study for the first scenario, the effective 
SONAR distance of the fishing vessel was determined as 
800 m [10]. The fishing vessel is assumed to maneuver by 
randomly changing one direction at 0.5, 1, 2, and 5 NM, 
and the fish shoal is assumed to maneuver by randomly 
changing one direction at 0.15, 0.3, 0.6, and 1.5 NM, 
respectively. Running the scenario 5000 times yielded the 
average distance values of the fishing vessel until it found 
the fish school, including the histograms it produced. Figure 
4 depicts the simulations run.
The Figure 4 shows the random displacement behavior of 
the fishing vessel and the school of fish and the point at 
which the vessel detects the school of fish. Some movements 
change direction randomly at 5 NM intervals of the fishing 
vessel and 1.5 NM intervals of the school. It is seen that 
the two elements encounter each other under the radar 
distance determined as 0.43 NM within the defined area.

Figure 4. One of the performed simulations belongs to 1st scenario
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Figure 5 depicts the histograms of the results obtained from 
5000 runs for the case where the fishing vessel maneuvers 
at 0.5, 1, 2, and 5 NM and the school at 0.15, 0.3, 0.6, and 
1.5 NM, respectively, by changing direction. When the 
histograms are examined, there is clear clustering in the 
80-100 NM range for each random change of direction 
distance, indicating that similar results were obtained in 
most of the simulations run on each graph. The main reason 
for clustering 80-100 NM is that a certain NM constraint is 
given to the simulation. The search has been called off if a 
school of fish is not found after 100 NM of exploration. Table 
1 presents the number of the successful voyage and giving 
up of the school within the determined distance constraint 
(100 NM) as a result of 5000 runs for each random change 
of direction distance.

Table 1. School finding distances under different change of 
direction range for 1st  scenario

Direction 
changing range 

of fishing 
vessel (FV) and 

school

Average 
finding 

distance 
[NM]

Number 
of giving 

up 

Number of 
successful 

voyages

Success 
rate [%]

FV (5NM), 
School (1.5NM) 84.62 3542 1458 29.16

FV (2NM), 
School (0.6NM) 88.08 3899 1101 22.02

FV (1NM), 
School (0.3NM) 90.21 4156 844 16.88

FV (0.5NM), 
School 

(0.15NM)
93.16 4410 580 11.60

According to Table 1, as the distance to change direction 
decreases, the number of successful voyages decreases, and 
the average distance traveled increases. While evaluating 
the conventional method, the best result obtained with this 
method was considered, i.e., it was assumed that the fishing 
vessel traveled an average of 84.62 NM at a time. Therefore, 
under the determined constraint, the success rate of the 
conventional method is 29.16%.
The second scenario, i.e., the primary proposed method 
in this study, is detecting school through AUVs. Like the 
first scenario, this scenario is modeled in the MATLAB® 
environment. The number of individuals is selected between 
5 and 12 in the Grey Wolf Algorithm. In this simulation, 
the number of individuals was kept to a minimum in 
terms of cost-effectiveness and was determined as 5. The 
search space boundaries, school speed, and the number of 
simulation runs remain unchanged from the first scenario.
In the second scenario, in any running process, the voyage 
is considered unsuccessful if any of the AUV individuals 
perform a search activity over 100 NM. After the unsuccessful 
voyage number is obtained, it is subtracted from the total 
number of runs, and the successful voyage number is 
calculated. Figure 6 presents the results of four different 
successful sample search activities based on simulation 
studies. It was initially assumed that an average school 
of fish moves at a speed of 6 m/s. The swarm intelligence 
approach designed for AUV individuals was revised under 
this condition, ​​a ⃗ ​​ expressed in equation (5). In optimization 
problems, ​​a ⃗ ​​  value is a number decreasing from 2 to 0 as 
the number of iterations increases. But in a real application, 
the iteration number makes no sense. Therefore, the fitness 

Figure 5. Histograms for different direction change range in the 1st scenario
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value should be related to a real parameter. In the applied 
scenario, fitness value is associated with the distance 
value of all AUVs to the target (school) and distances with 
each other in a cyclical process. Distances between AUVs 
are estimated through communication, whereas SONAR 
estimates distances to the school. In this study  the  ​​a ⃗ ​​  value 
was obtained, as shown in equation (13). ​​​As seen from the 
equation, the  ​​a ⃗ ​​  value decreases as it gets closer to target.

​​a ⃗ ​​​ = ​|fitness/ψ|​​                                                                            (13)

The fitness value mentioned in the above equation is the 
distance of the ith individual from the target. ​ψ​ is a coefficient, 
which was determined as 3750. Modeling experience 
and search space dimensions are important factors when 
determining this coefficient. The performances obtained 
in the experiments while determining the  ​ψ​ coefficient are 
shown in the graphic below (Figure 7).

In this study, a success rate of 86.58% and an average 
distance of 42.81 NM AUV per individual were found at 
​ψ = 3750​, as performed to determine the optimal value. ​​
This obtained value was used in the simulation studies. 
Figure 8 depicts the distance-number of success histograms 
for 5 AUV individuals resulting from 5000 runs for the 
determined ​ψ​ value. The density at 100 NM bin in the 
obtained histograms is due to the 100 NM maximum search 
constraint determined in the studies.
From the histograms, AUVs find the school of fish in the 25-
50 NM band with a considerable rate. The simulation results 
are obtained by accepting the school speed as 6 m/s. Table 2 
shows the performances obtained at different school speeds 
due to 5000 runs.

Table 2. Performances in different school fish speeds
School 
speed 
[m/s]

Average AUV 
distance 

[NM]

Successful 
voyages

Unsuccessful 
voyages

Success 
rate [%]

2 49.28 3554 1446 71.08

3 43.95 3894 1106 77.88

4 47.68 3897 1103 77.94

5 47.81 3817 1183 76.34

6 42.81 4329 671 86.58

7 44.9 4272 728 85.44

8 49.92 3940 1060 78.8

9 47.52 3917 1083 78.34

10 46.88 4088 912 81.67

Figure 7. Success rates and average trip distances under different 
ψ values

Figure 6. Some of the performed simulations belong to 2nd scenario
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When the table is examined, the success rate at 2-10 m/s 
school speeds is between 71.08 and 86.58%. AUVs travel 
the average distance varied between 42.81 and 49.92 NM. 
These results show that it can be used for school at speeds of 
2-10 m/s. Furthermore, as technology advances, the speed 
and maneuverability of AUVs will undoubtedly increase, 
enhancing their success rates. 

5. Conclusions and Recommendations
When the simulation studies and results are examined, it 
is found that a fishing vessel that performs fish exploration 
activities using the conventional method has a success rate 
of 29.4% in 5000 voyages and has covered an average of 
84.62 NM. This means that the conventional method has 
a low success rate. Conversely, the fishing vessel traveled 
423,100 NM in 5000 voyages. Since this situation increases 
fuel consumption, product prices will rise. And, long-
distance travel will naturally increase carbon emissions and 
cause environmental pollution. 
In the proposed method, 86.58% success was achieved 
in 5000 voyages in the simulations, and AUV individuals 
traveled an average of 42.81 NM. In these simulation results, 
the average covered distance is 9.82 NM since the fishing 
vessel moves only from the point where its initial position 
to the school point that the AUVs have found. Therefore, 
considering 5000 voyages, the total covered distance is about 
49,100 NM. As can be seen, the success rate increases 2.94 
times, while the distance traveled decreases by 8.61 times. 
Also, the distances covered by AUVs appear to be within 
the range they can travel with a full charge. Considering 
that these distances and AUV speeds will increase with the 

advancing technology, the proposed approach is a suitable 
solution. AUVs can meet their energy needs through energy 
harvesting methods such as PV panels, small wind turbines 
mounted on the fishing vessel, or fusions, allowing AUVs to 
be charged on a fishing vessel. Consequently, the results of 
the simulation studies and the applicability of the proposed 
method clearly show that this approach can be used in 
the future. Moreover, the proposed approach can be used 
in applications such as military infiltration and submarine 
operations, with minor modifications and the destruction of 
enemy units.
Funding: The author received no financial support for the 
research, authorship, and/or publication of this article.

References
[1]	 F. Bastardie, J. R. Nielsen, B. S. Andersen, and O. R. Eigaard, 

“Integrating individual trip planning in energy efficiency - 
Building decision tree models for Danish fisheries,” Fisheries 
Research, vol. 143, pp. 119-130, June 2013.

[2]	 S. Jafarzadeh, H. Ellingsen, and S. A. Aanondsen, “Energy 
efficiency of Norwegian fisheries from 2003 to 2012,” Journal of 
Cleaner Production, vol. 112, pp. 3616-3630, Jan 2016.

[3]	 G. Gabiña et al., “Energy efficiency in fishing: Are magnetic 
devices useful for use in fishing vessels?,” Applied Thermal 
Engineering, vol. 94, pp. 670-678, Feb 2016.

[4]	 N.K. Im, B. Choe, and C. H. Park, “Developing and Applying a Ship 
Operation Energy Efficiency Evaluation Index Using SEEMP: 
a Case Study of South Korea,” Journal of Marine Science and 
Application, vol. 18, no. 2, pp. 185–194, 2019.

[5]	 C. Balash, and D. Sterling, “Prawn trawl drag due to material 
properties-an investigation of the potential for drag reduction,” 
in 2nd International Symposium on Fishing Vessel Energy 
Efficiency, Madrid, Spain, May 2012.

Figure 8. Distance-number of success histograms of each AUV individual (for 5000 runs)

AUV: Autonomous underwater vehicle



176

An Energy and Fuel-effective Solution for School Exploration of a Fishing Vessel Through Swarm Intelligence Approach

[6]	 Y. K. Son, S. Y. Lee, and S. K. Sul, “DC Power System for Fishing 
Boat,” Proc. 2018 IEEE Int. Conf. Power Electron. Drives Energy 
Syst. PEDES 2018, Chennai, India, December 18-21, 2018.

[7]	 J. Singh, K. Sarma, T. Kumar, S. K. Ahirwal, R. K. Raman, and V. 
Bharti, “Fuel and Energy Optimization Approaches in Fishing,” 
Food and Scientific Reports, vol. 2, pp. 53-56, Feb 2021.

[8]	 O. C. Basurko, G. Gabiña, and Z. Uriondo, “Energy performance 
of fishing vessels and potential savings,” Journal of Cleaner 
Production, vol. 54, pp. 30-40, 2013.

[9]	 J. Uranga et al., “Detecting the presence-Absence of bluefin 
tuna by automated analysis of medium-range sonars on fishing 
vessels,” PLoS One, vol. 12, pp. 1-18, Feb 2017.

[10]	 P. Brehmer, S. Georgakarakos, E. Josse, V. Trygonis, and J. Dalen, 
“Adaptation of fisheries sonar for monitoring schools of large 
pelagic fish: Dependence of schooling behaviour on fish finding 
efficiency,” Aquatic Living Resources, vol. 20, pp. 377-384, Feb 
2007.

[11]	 J. Uranga et al., “Detecting the presence-absence of North 
Atlantic albacore tuna by automated analysis of medium-range 
sonars on fishing vessels,” Collective Volume of Scientific Papers 
ICCAT, vol. 76, pp. 75-84, 2020.

[12]	 S. Vatnehol, H. Peña, and N. O. Handegard, “A method to 
automatically detect fish aggregations using horizontally 
scanning sonar,” ICES Journal of Marine Sciences, vol. 75, pp. 
1803-1812, Sep-Oct 2018.

[13]	 P. Brehmer, T. Lafont, S. Georgakarakos, E. Josse, F. Gerlotto, 
and C. Collet, “Omnidirectional multibeam sonar monitoring: 
Applications in fisheries science,” Fish and Fisheries, vol. 7, pp. 
165-179, Aug 2006.

[14]	 A. Mandru, and F. Pacuraru, “The effect of appendages on ship 
resistance,” in IOP Conference Series: Materials Science and 
Engineering, vol. 1182, pp. 1-10, 2021.

[15]	 R. Sharma and O. P. Sha, “Hydrodynamic design of integrated 
bulbous bow/sonar dome for naval ships,” Defence Science 
Journal, vol. 55, pp. 21-36, Jan 2005.

[16]	 D. R. Blidberg, “The development of autonomous underwater 
vehicles (AUV); a brief summary,” Ieee Icra, vol. 6500, p. 12, 
2010.

[17]	 G. Griffiths, and K. J. Collins, “Proceedings of the Masterclass in 
AUV Technology for Polar Science at National Oceanography 
Centre,” Southamphton, England, March 28-30, 2006.

[18]	 R. B. Wynn et al., “Autonomous Underwater Vehicles (AUVs): 
Their past, present and future contributions to the advancement 
of marine geoscience,” Marine Geology, vol. 352, pp. 451-468, 
June 2014.

[19]	 C. R. German, D. R. Yoerger, M. Jakuba, T. M. Shank, C. H. 
Langmuir, and K. ichi Nakamura, “Hydrothermal exploration 
with the Autonomous Benthic Explorer,” Deep Sea Research Part 
I: Oceanographic Research Papers, vol. 55, no. 2, pp. 203-219, Feb 
2008.

[20]	 E. Bovio, D. Cecchi, and F. Baralli, “Autonomous underwater 
vehicles for scientific and naval operations,” Annual Reviews in 
Control, vol. 30, pp. 117-130, 2006.

[21]	 S. Mirjalili, S. Mohammad, and A. Lewis, “Grey Wolf Optimizer,” 
Advances in Engineering Software, vol. 69, pp. 46-61, March 
2014.

[22]	 F. E. Fish, “Advantages of aquatic animals as models for bio-
inspired drones over present AUV technology,” Bioinspiration 
and Biomimetics, vol. 15, Feb 2020.

[23]	 S. Liawatimena et al., “Drones computer vision using deep 
learning to support fishing management in Indonesia,” IOP 
Conference Series: Earth and Environmental Science, vol. 426, 
2020.

[24]	 S. Li, W. Qu, C. Liu, T. Qiu, and Z. Zhao, “Survey on high reliability 
wireless communication for underwater sensor networks,” 
Journal of Network and Computer Applications, vol. 148, pp. 
102446, Dec 2019.

[25]	 H. Z. Zhaoquan Zeng, and Shu Fu, “A Survey of Underwater 
Optical Wireless Communications,” IEEE Communications 
Surveys & Tutorials, vol. 19, pp. 7-21, 2018.

[26]	 N. Ilyas et al., “AEDG: AUV-aided efficient data gathering routing 
protocol for Underwater Wireless Sensor Networks,” Procedia 
Computer Science, vol. 52, pp. 568-575, 2015.

[27]	 G. Han, X. Long, C. Zhu, M. Guizani, Y. Bi, and W. Zhang, “An 
auv location prediction-based data collection scheme for 
underwater wireless sensor networks,” IEEE Transactions on 
Vehicular Technology, vol. 68, pp. 6037-6049, April 2019.

[28]	 Z. M. Gao, and J. Zhao, “An improved Grey Wolf optimization 
algorithm with variable weights,” Computational Intelligence 
and Neuroscience, vol. 2019, 2019.

[29]	 Z. J. Teng, L. L. Lv, and L. W Guo, “An improved hybrid grey wolf 
optimization algorithm,” Soft Computing, vol. 23, pp. 6617-6631, 
2019.

[30]	 L. Johnson, R. Green, and M. Leeson, “A survey of channel models 
for underwater optical wireless communication,” 2013 2nd 
International Workshop on Optical Wireless Communications 
(IWOW), Newcastle Upon Tyne, UK, October 21, 2013.

[31]	 S. H. Kim, C. K. Lee, and S. M. Lee, “Estimation of maneuverability 
of fishing vessel considering hull-form characteristics,” Journal 
of Marine Science and Engineering, vol. 9, 2021.


