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Abstract
Indonesia as the largest maritime country, which dense shipping activities that increase the risk of ship accidents, especially in strategic areas 
such as the Sunda Strait. Extreme weather, such as storms and strong winds, increases this risk and requires special attention to improve shipping 
safety. This study aims to identify high-risk areas for ship encounters in the Sunda Strait, known as the Critical Collision Zone (CCZ). The CCZ 
is determined through ship trajectory prediction analysis using the Bi-GRU method and clustering with the DBSCAN algorithm. Trajectory data 
is obtained from Automatic Identification System (AIS) information and weather data. AIS data includes the position, speed, and direction of the 
ship in real time. Its integration with weather data allows for the formation of a more accurate trajectory. After the CCZ is identified, the probability 
of an encounter is calculated using the Monte Carlo Simulation method. The results show that the weather data-based prediction model performs 
better in identifying the CCZ, as indicated by lower MAE and MSE values and higher silhouette coefficients. These metrics improve the accuracy 
of identifying risky areas and estimating the probability of ship encounters in the Sunda Strait.
Keywords: Automatic Identification System (AIS), Critical Collision Zone (CCZ), Ship Encounter, Ship Trajectory, Weather

1. Introduction
Indonesia, as the world’s largest archipelagic country with the 
second-longest coastline, plays a crucial role in international 
maritime trade. The Sunda Strait, one of the busiest shipping 
lanes in Indonesia, connects the Indian Ocean and the Java 
Sea, serving both domestic and international maritime 
transportation. The high volume of vessel traffic in this 
region increases the risk of ship encounters, particularly 
due to extreme weather conditions such as storms and 
strong winds. According to the Central Statistics Agency 
(BPS), the number of ship arrivals in Indonesian waters 
significantly increased in 2022, directly impacting the 
probability of maritime accidents. Reports from the National 
Transportation Safety Committee (KNKT) recorded 115 
ship accidents over the last five years, highlighting the need 
for enhanced maritime safety measures.
To address navigation risks, the Traffic Separation Scheme 
(TSS) has been implemented. However, conventional ship 
trajectory models still struggle to incorporate both the 

sequential nature of Automatic Identification System (AIS) 
data and real-time environmental factors, reducing prediction 
accuracy. Various prior studies have attempted to improve 
ship trajectory prediction and encounter risk estimation.
To address navigation risks, the TSS has been implemented. 
However, conventional ship trajectory models still struggle 
to incorporate both the sequential nature of AIS data and 
real-time environmental factors, reducing prediction 
accuracy. Various prior studies have attempted to improve 
ship trajectory prediction and encounter risk estimation. 
For instance, Spyrou-Sioula et al. [1] demonstrated that 
incorporating AIS-based weather routing enables vessels to 
avoid hazardous routes and select safer alternatives, thereby 
preventing cargo losses due to extreme weather conditions. 
Han et al. [2] applied the Density-Based Spatial Clustering 
of Applications with Noise (DBSCAN) clustering algorithm 
to analyze ship movement patterns, revealing that this 
technique effectively identifies dense traffic areas prone to 
accidents. Vukša et al. [3] utilized Monte Carlo Simulation 
(MCS) to estimate ship encounter probability, proving its 
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ability to process complex AIS datasets and assess maritime 
accident risk using Bi-LSTM models.
Despite these developments, existing approaches have 
limitations. Traditional statistical or clustering methods 
often fail to capture the sequential, non-linear dynamics 
of ship movement. Moreover, deep learning models such 
as Bi-LSTM or Transformer-based predictors have not 
fully incorporated weather data for dynamic encounter risk 
modeling. Unlike those, our approach integrates weather 
information with a Bidirectional Gated Recurrent Unit (Bi-
GRU) network for sequential learning, applies DBSCAN for 
spatial risk identification, and leverages MCS to simulate 
probabilistic encounters. This hybrid framework is designed 
to improve predictive accuracy while supporting proactive 
risk management.
This study aims to: (1) develop a Bi-GRU-based trajectory 
model incorporating AIS and weather data, (2) identify 
Critical Collision Zones (CCZs) using DBSCAN, and (3) 
estimate encounter probability through MCS. The proposed 
model not only advances predictive capability but also 
contributes to maritime safety planning by providing a 
data-driven assessment of navigational risks in complex sea 
routes like the Sunda Strait.

2. Materials and Methods
2.1. Data Preprocessing
The preprocessing criteria were carefully selected to enhance 
the quality and reliability of the AIS dataset, ensuring 
accuracy in ship trajectory modeling. Given the automatic 
nature of AIS transmissions, data can contain errors such as 
missing values, noise, or unrealistic values due to equipment 
malfunction or spoofing. This study focuses on key AIS 
dynamic parameters like Speed Over Ground (SOG) 
and Course Over Ground (COG), which are essential for 
modeling realistic ship behavior.
Several studies have noted that AIS data quality can vary 
significantly due to poor signal coverage, data transmission 
delays, and vessel configuration differences. In this study, 
outlier removal and quality filtering were conducted to 
ensure that only valid and realistic AIS records are used.
1. AIS data with SOG ≥30 knots are eliminated because 
values beyond this threshold often result from noise or 
incorrect signal calibration, as typical vessel speeds in the 
Sunda Strait are below this range [4].
2. Removing duplicate AIS data per ship ensures that each 
trajectory segment is representative of actual ship movement and 
avoids bias from duplicated or insufficiently sampled paths [5].
3. Excluding ships with AIS transmissions fewer than 20: 
Vessels with fewer than 20 AIS transmissions lack sufficient 
trajectory data for meaningful analysis [6].

4. Filtering ships with travel duration <4 hours: Ships with 
short travel durations may not provide sufficient movement 
variation for accurate trajectory predictions [7].
5. Filtering based on empirical speed ≥40 knots: This process 
cross-verifies dynamic SOG values with derived speed from 
positional change, removing cases that show inconsistent 
motion [4].
By implementing this rigorous preprocessing pipeline, the 
AIS dataset becomes more reliable and representative of 
actual vessel navigation patterns. While variables such as 
heading and rate of turn are retained, special emphasis is 
given to SOG and COG due to their central role in predicting 
position and estimating encounter probability. This approach 
minimizes the propagation of data uncertainty into the 
predictive model and enhances the robustness of trajectory 
simulations.

2.2. Ship Trajectory Prediction Using Bi-GRU
Bi-GRU is a Recurrent Neural Network model that is 
specifically designed to process sequential data and has the 
ability to consider information from the past and future [8]. A 
Bi-GRU was employed to predict ship trajectories based on 
historical AIS data. The model was selected for its capability 
to capture sequential dependencies in time-series data while 
considering both past and future contexts.
The Bi-GRU architecture consists of an input layer, a hidden 
layer, and an output layer. In the hidden layer, there are gates, 
namely, the reset gate and the update gate, which play a role 
in determining information from the input layer. The internal 
structure of the Bi-GRU model is shown in Figure 1.

2.3. Model Evaluation
Every prediction has an error, so the error rate in the 
prediction must be calculated to determine the accuracy of 
the created model. According to Azmi et al. [9], indicators 
such as Mean Square Error (MSE) and Mean Absolute Error 
(MAE) can be used to calculate prediction accuracy.
The average of the positive absolute error values   derived 
from all observational data is known as the MAE [9]. The 
formula for calculating MAE is written as follows (Equation 
1):

     
(1)

The average of the squared differences between the expected 
value and the observed value is known as the MSE[9]. The 
prediction accuracy increases as the MSE value decreases. 
The formula for calculating MSE is written as follows 
(Equation 2):
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(2)

where m is the number of ships, n is the number of AIS data 
per ship, yijk is the actual value and ijkŷ is the value of the 
predicted results.

2.4. CCZ Identification Using DBSCAN
To identify CCZs, the DBSCAN algorithm was applied 
to cluster high-density ship movements. DBSCAN is a 
density-based clustering method used to detect anomalous 
situations in spatial data by ignoring data noise. DBSCAN is 
designed for clustering large amounts of data. The DBSCAN 
algorithm takes two input parameters, namely Eps (ε) and 
MinPts. Eps is the maximum distance between two points 
to be considered neighbors, while MinPts is the minimum 
number of points required to form a dense region. DBSCAN 
identifies clusters as a collection of core points surrounded 
by a minimum number of other points (MinPts) within a 
certain radius [10].

2.5. Encounter Probability Estimation Using MCS
MCS is a statistical sampling method for estimating solutions 
to quantitative problems by building models based on real 
systems [11]. Each variable is represented by a Probability 
Density Function, enabling the selection of random values 
across thousands of simulations, depending on system 
complexity. In this study, the MCS process begins with 
the formation of a pseudo-population that represents ship 
movements within the CCZ. This pseudo-population accounts 
for key factors such as the number of ships, movement 

patterns, and residual distributions derived from the trajectory 
prediction model. Ship samples are then randomly selected, 
and at each coordinate point, a random residual value is 
added according to the predefined distribution. By repeating 
this process, multiple trajectory simulations are generated, 
capturing the inherent uncertainties in ship movement 
predictions. To ensure realistic encounter risk assessment, 
a 1 nautical mile (nm) threshold was adopted based on 
international maritime safety standards and validated using 
empirical encounter data.

2.6. Anderson Darling
Anderson Darling (AD) is a goodness-of-fit test used to 
test whether data come from a particular distribution [12]. 
Anderson Darling is a modification of the Kolmogorov 
Smirnov test giving more weight to the tails of the 
distribution, thereby making it more sensitive to changes. 
This method is often used to assess normal, lognormal, 
Weibull, and other distributions [13]. The goodness of fit 
value is obtained based on the following calculation.

   
(3)

Where Xi is a cumulative distribution function based on 
a certain distribution, n is the number of samples to be 
tested. A low Anderson Darling test statistic value indicates 
the suitability of the distribution tofor the observed data. 
The selection of data distribution can be done with two 
approaches: one is based on the goodness of fit value, and 
the other is visually using a probability plot.

Figure 1. Internal Computing Structure of Bi-GRU

Bi-GRU: Bidirectional Gated Recurrent Unit
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Probability plotused in conjunction with AD to visually 
illustrate the fit of a distribution. This is done by checking if 
the data points follow a straight line produced by the expected 
distribution, thus indicating a good fit between the data and 
that distribution. Anderson-Darling gives better results for 
large datasets than other tests, and is very sensitive to small 
changes in the data [14].

2.7. Data Sources
This study utilizes secondary data, obtained from third-party 
providers rather than collected directly by the researchers. 
The AIS data were sourced from the Indonesian Navigation 
District (Disnav), and the weather data were obtained from 
the European Centre for Medium-Range Weather Forecasts. 
Both sources are widely recognized for maritime studies and 
are highly relevant to the objectives of this research.
The dataset covers vessel traffic in the Sunda Strait from 
May 1 to May 30, 2021, comprising data from 1,740 ships 
and over 3 million AIS messages. The weather data includes 
wave and wind parameters at regular time intervals across the 
same spatial area. AIS data are categorized into Static (e.g., 
MMSI, ship type), Dynamic (e.g., position, SOG, COG), and 
Voyage-Related information (e.g., ETA). However, in the 
Indonesian context, publicly accessible metadata is limited. 
For example, over 30% of the vessels in our AIS data lacked 
ship type information. Although supplementary databases 
such as Equasis or MarineTraffic could be used to enrich 
metadata using the MMSI field, access to such platforms is 
typically restricted or subscription-based.
Despite these limitations, the AIS dataset remains suitable 
for trajectory analysis because the study focuses primarily 

on dynamic movement parameters (SOG, COG, heading, 
etc.) rather than vessel classification. Additionally, a 
preprocessing strategy was employed to improve data 
reliability, as described in Section 2.1. These efforts 
ensure that the AIS data used in this study are accurate and 
representative of real-world vessel behavior under normal 
and adverse weather conditions.
AIS transmits three main types of data: (1) Static Data, 
which includes ship identification, dimensions, and type, 
(2) Dynamic Data, which contains real-time navigational 
parameters such as position, speed, and COG, and (3) 
Voyage-Related Data, which provides information on the 
ship’s current voyage, including destination and estimated 
time of arrival. Additionally, AIS supports Safety-Related 
Messages, which are manually transmitted alerts for 
emergency and navigational safety purposes.
In this study, 8 data variables and 4 weather data variables 
were used to model ship trajectories and assess encounter 
risk. The operational definitions of these research variables 
are detailed as follows (Table 1).
This study focuses on AIS-based ship movement data and 
four weather-related variables. Other environmental factors, 
such as visibility, time of day, and tidal currents, were not 
included due to data availability constraints. While these 
factors may influence ship trajectories, the selected variables 
represent widely accessible and commonly used indicators 
in maritime safety research. This limitation is acknowledged 
to clarify the study’s scope and potential areas for future 
research.

Table 1. Research variables

Variable Description
X1 Latitude Latitudes start at 0° from the Equator and end at 90° at the  North Pole and 90° at the South Pole.

X2 Longitude Lines of longitude that stretch from 0° on the prime meridian to 180° east and west

X3 SOG The actual speed of a ship relative to the earth’s surface

X4 COG The actual direction taken by a ship relative to the earth’s surface

X5 Heading The direction in which the ship’s bow is pointing, expressed in degrees from north

X6 NAV The ship’s navigation status, such as underway, anchored, or in an emergency condition

X7 ROT Rate of change of direction of the ship

X8 Datetime Time and date information recorded when AIS data is transmitted

X9 Wave direction The direction of origin of ocean waves approaching a point on the sea surface

X10 Wave period The time interval measured between two successive wave crests passing a fixed point.

X11 Wave height The vertical measurement of the distance between the crest of the highest wave and the trough of the lowest 
wave.

X12 Wind speed The speed of air movement measured at a certain height above sea level

Y1 Latitude prediction Latitude prediction results

Y2 Longitude prediction Longitude prediction results
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3. Results and Discussions
3.1. Preprocessing and Compilation of AIS and Weather 
Data
Data preprocessing aims to clean and align data, ensuring it 
is ready for further processing in the prediction model.

3.1.1. AIS Data Preprocessing
Preprocessing AIS data ensures that the data used in the 
analysis is clean, relevant, and in accordance with the research 
objectives. The preprocessing stages undertaken begin with 
the initial input of AIS data and proceed to further filtering, 
which results in a reduction in the number of ships and AIS 
data used in the analysis. The results of preprocessing on 
AIS data are shown in Table 2.
The initial AIS data for one month consisted of 3,216,862 
data points sent by 1,740 ships. After going through a filtering 
process based on speed variables and other characteristics, 
the amount of data used was reduced to 566,199 data points 
from 1,317 ships. This preprocessing eliminated about 
82.4% of the total initial data, leaving about 17.6% of the 
data relevant for analysis in this study.

3.1.2. Weather Data Preprocessing
Preprocessing weather data ensures that the analyzed data 
is clean and in accordance with research needs. Weather 
data for one month consists of 84,240 data points and has a  
missing value percentage of 82.05% in: wave direction, wave 
period, and wave variables. This condition requires proper 
handling of missing values   so that the analysis can be carried 
out accurately. The imputation method is used to overcome 
missing values  using a weighted average that considers 
the distance between location points, calculated  using the 
Haversine distance. Weather data after preprocessing is 
shown in Table 3.
Weather data, after preprocessing with the imputation 
method using weighted average, shows that missing values   

in the wave direction, wave period, and wave height variables 
have been filled with the appropriate estimated values. Each 
row in the weather data has a complete value; therefore, the 
percentage of missing values  reaches 0%. These results 
ensure that the data are ready for further analysis without 
any empty values   that can affect the accuracy of the study.

3.1.3. AIS and Weather Data Compilation 
Compilation of AIS data with weather data aims to combine 
the two types of data so that the analysis can provide more 
comprehensive results. This compilation process is carried 
out using the K-Nearest Neighbors (KNN) method, where 
each AIS data point is paired with the nearest weather 
data based on a combination of date, time, and geographic 
coordinates (latitude and longitude). The AIS dataset, 
including weather data, is shown in Table 4.
Table 4 shows the results of the compiled dataset from AIS 
data and weather data based on time and location using 
the KNN method. The weather data, which was originally 
limited to 84,240 data, became the same as the number 
ofmatched the number of AIS data, which was 566,199 
data. This shows that each ship point has the closest weather 
information at the appropriate time and location, so it can be 
used for further analysis.

3.2. Ship Characteristics
The analysis of the characteristics of ships passing through 
the Sunda Strait from May 1, 2021 to May 30, 2021 aims to 

Table 2. AIS data preprocessing stages

No Stages Number of 
ships

AIS data 
amount

1 Input AIS data 1,740 3,216,862

2 Eliminate data with SOG ≥30 
knots 1,737 3,212,055

3 Eliminate duplicate data for each 
ship 1,737 573,262

4 Eliminate ships with AIS data 
<20 1,340 568,510

5 Eliminate ships with travel <4 
hours 1,317 567,656

6 Eliminate data with empirical 
speed ≥40 knots 1,317 566,199

Table 3. Weather data after preprocessing

No Wave 
direction

Wave 
period

Wave 
height

Wind 
speed

1 179,4654 11,8968 1,3693 1,9334

2 179,4986 11,8659 1.3565 1,3667

3 179,2352 11,7715 1,3391 1,5820

4 178,5879 11,7487 1.3244 1.6272

5 177,5606 11,6754 1,3159 2,9260

2,881 90.9995 4.2245 0.2581 0.7522

2,882 91,6771 4,2210 0.2573 0.7185

2,883 92,3630 4,2182 0.2646 0.1997

2,884 92.6256 4,2138 0.2744 0.1625

2,885 92.6849 4,2055 0.2720 2,9414

84,236 164,0356 11,3876 1,2186 0.7987

84,237 164,3008 11,3604 1,2064 0.8433

84,238 164,3805 11,3357 1,1949 1,0780

84,239 164,2945 11,3253 1,1862 1,3776

84,240 164,2379 11,2994 1,1816 1,5518
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provide an overview of the variety of ships passing through 
the Sunda Strait. Ship characteristics include the type of ship 
shown in Figure 2 and the country of departure shown in 
Figure 3.
Figure 2 shows that the most dominant ship type is 
“Unknown” with a total of 465 ships, indicating many ships 
do not send ship type information. The second most common 
ship type is the Bulk Carrier with 174 ships, followed by the 
Container Ship with 101 ships. This indicates that the Sunda 
Strait is an important route for the transportation of large 
amounts of cargo, highlighting  import and export activity. 
Chemical and oil/products Tanker ships are also prevalent in 

the Sunda Strait, reflecting the demand for the transportation 
of chemicals and oil, thereby creating business opportunities 
for fuel providers and maritime security.
The distribution of flag states among vessels transiting 
through the Sunda Strait highlights its role as both a 
domestic and international maritime corridor. The high 
number of Indonesia-flagged vessels aligns with the 
country’s national maritime policies aimed at enhancing 
inter-island connectivity and domestic trade efficienc. 
Indonesia’s maritime connectivity policies focus on reducing 
logistics costs and improving trade flow between islands, 
which explains the significant presence of domestically 

Figure 2. Types of ships in the Sunda Strait

Table 4. Dataset AIS and weather data compilation

No Latitude Longitude SOG … Wave period Wave height Wind speed
1 -5,9302 106,1183 2.0 9,4526 0.7834 4,4977
2 -5,9299 106,1181 1.0 9,4526 0.7834 4,4977
3 -5,9291 106,1169 0.5 9,4526 0.7834 4,4977
4 -5,9294 106,1171 1.0 9,4526 0.7834 4,4977
5 -5,9283 106,1184 1.0 9,4526 0.7834 4,4977

566,195 -5,9742 106,1197 6.0 11,7166 1,0164 1.4459
566,196 -5,9787 106,1184 7.0 11,7166 1,0164 1.4459
566,197 -5,9818 106,1161 5.5 11,7277 1,0350 1,4905
566,198 -5,9785 106,1157 7.0 11,7277 1,0350 1,4905
566,199 -5,9602 106,1146 15.5 11,7277 1,0350 1,4905
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registered vessels in the strait [15]. Panama is one of the 
most commonly used flag states in global shipping, as 
shown by the number of Panama-flagged vessels transiting 
through the Sunda Strait. The widespread use of Panama’s 
ship registry is due to its open registration system, which 
allows ships from various countries to be registered under 
its flag. Similar patterns are also observed in Liberia and 
the Marshall Islands, which have become key flag states in 
international maritime activities. These flag states play a 
crucial role in global trade, as they are widely chosen for 
their flexibility and operational advantages. These findings 
confirm that the Sunda Strait plays a crucial role in both 
national and international maritime activities, reinforcing its 
importance as a key global shipping passage.

3.2.1 Prediction of Ship Trajectory in Sunda Strait
Ship trajectory prediction is performed to understand ship 
movement patterns, with analysis using the Bi-GRU model 
to produce accurate predictions based on historical data.

3.2.2. Bi-GRU Hyperparameters
Systematic hyperparameter tuning allows the model to 
achieve a balance between accuracy and generalization 
ability, resulting in better predictions. The hyperparameters 
used in this study are shown in Table 5.

3.2.3. Ship Trajectory Prediction Results
The comparison between actual data and trajectory prediction 
results is shown more clearly, and this is achieved through 

tables and visualizations. The results of the ship trajectory 
prediction are shown in Table 6.
Table 6 shows that incorporating weather factors in ship 
trajectory prediction improves accuracy compared to 
predictions without weather. The comparison in Table 6 
indicates that the inclusion of weather data enhances trajectory 
prediction accuracy. On average, the positional error for 
latitude is reduced by approximately 50%, from 0.0054° 
(without weather) to 0.0027° (with weather). Similarly, the 
longitude error is reduced by 43%, from 0.0107° to 0.0061°. 
These findings confirm that integrating weather variables 
into the prediction model leads to smaller differences 
between predicted and actual positions, improving overall 
trajectory estimation. The ability to achieve higher accuracy 
in trajectory prediction is particularly critical in high-traffic 
maritime zones such as the Sunda Strait, where precise ship 
positioning can help mitigate navigation risks and prevent 
potential encounters. The comparison of actual data with 
the trajectory prediction results is shown in Supplementary 
Figure 1.
Supplementary Figure 1 shows a comparison between actual 
data and predicted ship trajectory results in the Sunda Strait 
for two ships with different MMSI. The predicted points 
using weather variables are closer to the actual track than the 
predictions without weather variables, indicating an increase 
in prediction accuracy on complex routes. These results 
indicate that the predicted AIS data can be relied upon for 
CCZ identification through clustering.

Figure 3. Country of origin of ship departures in the Sunda Strait
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3.2.4. Bi-GRU Model Performance
The performance of the Bi-GRU model will be evaluated 
using the MSE and MAE metrics to measure how well the 
model predicts the ship trajectory. In addition, loss and 
validation loss graphs are used to monitor the training and 
validation process, as well as to identify whether the model 
is overfitting or underfitting.
Supplementary Figure 2 shows the plots that compare training 
loss and validation loss for trajectory prediction with (orange) 
and without (blue) weather factors. The inclusion of weather 
data results in slightly lower loss values, indicating improved 
model accuracy. In the loss graph the loss value decreases 
drastically in the first few epochs, then stabilizes at a low 
value. This indicates that the model has successfully learned 
and minimized errors in the training data. In the validation 
loss graph, there is a significant decrease in the first few 
epochs followed by stability, both for models with and without 

weather data. There are no signs of increasing validation loss 
or significant differences between loss and validation loss, 
which means that the model does not experience overfitting 
and can generalize well. This shows that the model is effective 
at learning data patterns and can be relied on to proceed to 
feature extraction for Bi-GRU modeling to improve the 
accuracy of ship trajectory prediction.
Table 7 presents the evaluation metrics for the Bi-GRU 
trajectory prediction model, comparing results with and 
without weather variables. The MAE represents the absolute 
difference between predicted and actual ship locations, 
measured in degrees (°) of latitude and longitude. This metric 
provides a direct interpretation of the typical positional error 
in trajectory prediction. Meanwhile, the MSE quantifies the 
squared positional differences before averaging, making it 
more sensitive to large deviations. Unlike MAE, MSE does 
not have a direct unit of measure and serves as a relative 
measure of prediction accuracy. The results show that 

Table 6. Comparison of predicted and actual ship positions with and without Weather Factors

Current Weather forecast without weather Prediction with weather
Latitude Longitude Latitude Longitude Latitude Longitude
-5,9292 106,1170 -5,9353 106,1054 -5,9322 106,1121

-5.9225 106,1231 -5,9279 106,1123 -5,9253 106,1169

-5,9236 106,1222 -5,9285 106,1116 -5,9262 106,1153

-5,9065 106,1269 -5,9110 106,1177 -5,9087 106,1206

-5,9031 106,1658 -5,9091 106,1545 -5,9083 106,1597

-5,9685 106,1117 -5,9740 106,0990 -5,9715 106,1071

-5,9685 106,1118 -5,9740 106,0990 -5,9716 106,1071

-5,9672 106,1123 -5,9692 106,1049 -5,9677 106,1107

-5,9602 106,1147 -5,9568 106,1133 -5,9644 106,1357

-5,9688 106,1150 -5,9693 106,1089 -5,9694 106,1159

Table 5. Bi-GRU Hyperparameters

No Hyperparameter Mark Descriptions

1 Optimizer Adam Adjusts model weights based on the difference between predictions and actual values to accelerate 
convergence

2 Loss Function MSE, MAE Measures prediction errors, where MAE captures absolute errors, and MSE accounts for squared 
errors

3 Bi-GRU Layers 2 Determines the number of Bi-GRU layers used to capture sequential patterns in AIS data

4 Unit 24 Specifies the number of neurons per Bi-GRU layer for processing AIS movement data

5 Number of Epochs 20 Represents the total number of training iterations over the entire dataset

6 Batch Size 64 Defines the number of samples processed before model weight updates

7 Early Stopping 
Patience 3 Sets the number of epochs without validation improvement before training stops to prevent 

overfitting

8 Dense Unit 12 Determines the number of neurons in the fully connected layer before the final prediction

9 Activation Function ReLU Enhances computational efficiency and training stability
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incorporating weather variables reduces prediction errors, 
with MAE decreasing from 0.00976° to 0.00709°, while 
MSE shows a slight improvement from 0.00116 to 0.00112. 
This confirms that the inclusion of weather data enhances 
the model’s predictive accuracy by reducing both absolute 
errors and large deviations in ship trajectory estimation.

3.3. Identification of CCZ
CCZ identification in the Sunda Strait was conducted 
using the DBSCAN clustering method to detect areas with 
high ship traffic density and significant encounter risks. 
Encounter risk refers to the probability of ships encountering 
each other at close distances in congested maritime 
zones, thereby increasing the likelihood of navigational 
accidents. This study quantifies risk based on ship density 
in CCZs and projected movement patterns over time. By 
integrating AIS and weather data, the model enhances risk 
estimation, helping identify hazardous zones and improve 
maritime safety measures. The clustering process focused 
on intersecting domestic and international shipping routes, 
particularly near Merak and Bakauheni Ports, where heavy 
traffic makes precise risk assessment crucial.
DBSCAN clustering, which relies on distance matrices 
between AIS data points, demands high computing power 
due to the large dataset involved. Identifying CCZs in this 
area aids in implementing targeted risk mitigation strategies 
at key navigational chokepoints. While a 1 nautical mile 
(nm) threshold is a standard benchmark in maritime risk 
assessments, actual encounter risks depend on factors 
such as ship speed, heading, and relative positioning. The 
model dynamically incorporates trajectory predictions to 
reduce false positives, enhancing accuracy. Future work will 
integrate vessel maneuverability parameters to further refine 
encounter risk assessments and improve proactive maritime 
safety measures.

3.3.1. DBSCAN Parameters
The main parameters of DBSCAN, namely epsilon (ε) and 
minimum points (minPts), affect the clustering results and 
the amount of noise generated. The optimal values   of epsilon 
and minPts are determined using a k-distance plot, with 
the elbow point on the curve as a guide. The analysis was 
performed on a random sample of 10,000 data points to fit 
within the researcher’s computing resources. The k-distance 
plot of the prediction results with and without weather data, 
using k = 175, is shown in Figure 4.

Figure 4 shows the distance of each data point to the 175 
nearest points, sorted from the smallest to the largest value. 
Significant changes occur in the data interval between 8,000 
and 10,000, forming an elbow point around the value of 300. 
This elbow point indicates a larger distance between points, 
so the optimal epsilon for DBSCAN is approximately 300.

3.3.2. CCZ Clustering Results
The clustering results with DBSCAN produce the 
geographical boundaries of the CCZ in the Sunda Strait, 
which are used to group coordinate points into relevant 
clusters. The clustering results using the optimal parameters 
are shown in Figure 5.
Figure 5 shows three main categories, namely outliers, 
cluster 1, and cluster 2, in both models without and with 
weather data. Outliers indicate ships outside the high-density 
areas and not following the main traffic patterns. Cluster 1 
is located in the west, reflecting the high concentration of 
ships around domestic lane intersections, while Cluster 2 
is located in the east, indicating a major shipping lane with 
significant congestion. Both clusters indicate high-risk areas 
that require attention in mitigating encounter risks.
Table 8 shows the formation of two clusters, indicating the 
CCZ in the Sunda Strait, in both the models without and 
with weather data. Cluster 1 includes 8,549 points in the 
model without weather and 8,540 points in the model with 
weather, while cluster 2 includes 1,087 points in the model 
without weather and 1,100 points in the model with weather. 
The silhouette score of 0.5425 in the model without weather 
and 0.5489 in the model with weather indicates a fairly good 
separation. Higher values in the model with weather data 
indicate increased accuracy in identifying the CCZ.

3.4. Probability of Ship Encounter in the CCZ
MCS is used to calculate the probability of ship encounter 
in the CCZ considering uncertainties of variables, such 
as ship motion and weather conditions. MCS generates 
ship movement scenarios based on relevant probability 
distributions, so that interactions between ships are modeled 
realistically. Each ship in both CCZs is simulated with a 
trajectory that reflects the uncertainties in the prediction 
model.

3.4.1. Ship Trajectory Simulation
The ship trajectory simulation is obtained by adding random 
values   from the residual distribution of the prediction model 
to each ship coordinate point, based on historical data in the 
CCZ. The most appropriate distribution for the residuals 
of the Bi-GRU prediction model is determined through a 
goodness of fit test using the Anderson-Darling method. The 
distribution that gives the best Anderson-Darling value is 
selected for use in the simulation, allowing for an accurate 

Table 7. Bi-GRU model evaluation metrics

Model
Without weather 

variables
With weather 

variables
MAE MSE MAE MSE

Bi-GRU 0.00976 0.00116 0.00709 0.00112
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representation of the uncertainty of the ship’s motion.
Table 9 shows the relatively low AD values, in the Loglogistic 
distribution, both in MSE latitude and MSE longitude,  for 
the models without weather and with weather. This value 
indicates that the MSE latitude and MSE longitude in the 
models with and without weather follow the Loglogistic 
distribution. The Loglogistic distribution shows the lowest 
AD value, but the selection of the distribution is still further 
analyzed through visualization, using probability plots to 
ensure the distribution matches the actual data. Based on the 
probability plot of each distribution, the MSE latitude and 
longitude are estimated to follow the Weibull distribution 
because the points on the probability plot follow a line. This 

indicates that the Weibull distribution is suitable to represent 
the residual data. The probability plot of the Weibull 
distribution against the residual latitude and longitude is 
visualized in Figure 6.
Figure 6 shows the residual distribution of MSE latitude and 
MSE longitude, that follows the Weibull distribution. The 
data points mostly follow a line, especially in the middle 
of the curve, which indicates a good fit of the Weibull 
distribution to the residual data. Some deviations are seen 
in the tail of the data, indicating a poor fit to  extreme 
data. Overall, the Weibull distribution is effective in 
describing the residual pattern of the prediction model.The 
visualization in Figure 7 shows a comparison of trajectory 

Figure 4. K-distance plot without weather (a) and with weather (b)

Figure 5. Clustering results without weather (a) and with weather (b)
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prediction and simulation results for two different ships with 
and without weather variables. The Weibull distribution 
produces realistic path variations, indicating uncertainty in 
unpredictable environmental conditions.

3.4.2. Chances of a Ship Encounter
The probability of ship encounter is obtained from the 
analysis of trajectory simulations generated through MCS. 
The distance between ships at each trajectory point is 
calculated. Ship encounters are likely to occur if the distance 
between ships is less than 1 nautical mile (1,852 km). The 
frequency of occurrence is calculated from all simulations to 
estimate the probability of encounter in each CCZ as shown 
in Table 10.

Table 10 shows the encounter probability in CCZ for models 
with and without weather data. In cluster 1, the encounter 
probability with weather data is 0.41653, which is higher 
than the probability without weather data, at 0.41189, 
indicating the contribution of weather data to the accuracy 
of risk estimation. In cluster 2, the encounter probability 
with weather data is 0.83199, which is  higher than the 
probability without weather data 0.71645, indicating that 
weather information provides a more realistic picture of the 
risk of ship interaction in the field.

4. Conclusion
This study develops a Bi-GRU-based trajectory prediction 
model, incorporating AIS and weather data to improve 

Table 8. CCZ cluster characteristics

Model Cluster Amount of Data
Coordinate

Silhouette Coefficient
Minimum Maximum

No Weather
1 8,549 6°2ˈ S, 105°50ˈ E 5°48ˈ S, 106°10ˈ E

0.5425
2 1,087 6°2ˈ S, 105°42ˈ E 5°47ˈ S, 105°53ˈ E

With Weather
1 8,540 6°2ˈ S, 105°51ˈ E 5°49ˈ S, 106°10ˈ E

0.5489
2 1,100 6°0ˈ S, 105°42ˈ E 5°46ˈ S, 105°53ˈ E

Table 9. Goodness of FitBi-GRU Residuals

No Distribution
Weatherless model Model with weather

AD MSE Latitude AD MSE Longitude AD MSE Latitude AD MSE Longitude
1 Weibull 40,078,015 29,672,837 7,021,465 6,214,237

2 Lognormal 15,057,068 27,259,079 20,361,333 6,507,489

3 Exponential 69,989,553 93,338,939 143,392,115 477,650,399

4 Normal 191,116,802 189,148,761 166,552,149 200,805,814

5 Logistic 194,946,908 159,954,120 170,933,386 207,814,098

6 Loglogistics 4,403,143 10,092,395 12,350,652 2,919,226

Figure 6. Probability plot model without weather (a) and with weather (b)
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maritime navigation in the Sunda Strait. The model is 
complemented by DBSCAN clustering for identifying CCZs 
and MCS for estimating ship encounter probabilities. The 
findings provide valuable insights into ship characteristics, 
trajectory prediction accuracy, and encounter risk assessment.
1. The Sunda Strait is a high-density maritime corridor 
with both domestic and international shipping activities. 
Bulk carriers and container ships dominate vessel traffic, 
reflecting the strait’s importance in cargo transportation. Flag 
state analysis reveals that Indonesia and Panama are the most 
prevalent, indicating a mix of national and global shipping 
interests. The intersection of domestic routes (Merak-
Bakauheni) and international shipping lanes contributes to 
navigational complexities in the strait.
2. Integrating weather data into the Bi-GRU trajectory 
prediction model significantly reduces errors in ship position 
forecasting. Quantitative improvements in prediction 
accuracy:
a. Latitude error reduction: 50% (from 0.0054° to 0.0027°).
b. Longitude error reduction: 43% (from 0.0107° to 
0.0061°).
The use of sequential learning (Bi-GRU) allows the model 
to capture ship movement patterns more effectively than 
traditional methods. The enhanced trajectory prediction is 
crucial for route optimization, encounter avoidance, and fuel 
efficiency in congested maritime zones.

3. DBSCAN clustering successfully identifies two CCZs in 
the Sunda Strait, highlighting high-risk navigational areas. 
Cluster quality improved with weather data integration, as 
indicated by an increase in the silhouette coefficient from 
0.5425 to 0.5489. MCS estimates ship encounter probability:

a. Without weather data:
● Cluster 1: 0.41189
● Cluster 2: 0.71645
b. With weather data:
● Cluster 1: 0.41653
● Cluster 2: 0.83199
The increase in encounter probability after weather data 
integration suggests that weather conditions significantly 
impact ship navigation risks. The results support the need 
for real-time weather data incorporation in maritime traffic 
management systems to enhance navigational safety. 
This study presents a data-driven framework for predicting 
ship trajectories and encounter risks, offering valuable 
support for maritime traffic monitoring and risk assessment. 
By integrating weather-aware clustering, the model enhances 
the identification of navigational hazards, contributing to safer 
maritime operations and proactive encounter prevention. The 
findings highlight the importance of real-time weather data 
incorporation in maritime navigation systems to optimize 
route planning and improve vessel safety. Future research 

Table 10. Chances of ship encounter

Model Cluster Critical distance Trajectory combination Chance of encounter

No Weather
1 2,012,405 4,885,683 0.41189

2 932,639 1,301,751 0.71645

With Weather
1 2,078,429 4,989,908 0.41653

2 924,579 1,111,275 0.83199

Figure 7. Comparison of model simulations without weather (a) and with weather (b)
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should focus on real-time AIS-weather data streaming to 
enable dynamic risk assessments and adaptive navigation 
strategies. Additionally, integrating ship maneuverability 
modeling—considering factors such as braking capabilities 
and response times—can further enhance the accuracy of 
encounter risk predictions and strengthen maritime safety 
measures.

Footnotes
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Supplementary Figure 1. Comparison of Actual Ship Trajectories (Red) with Predicted Trajectories using Weather Factors (Green) and 
without Weather Factors (Blue)

Supplementary Figure 2. Loss (a) and Validation Loss (b) Bi-GRU Model


