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1. Introduction
The coastal region of countries is one of the important 
vital areas. The coastal area and the port have an important 
impact on national income, as they have an important role 
in promoting the development of urban areas and increasing 
and revitalizing coastal tourism [1-6]. Despite all this, natural 
phenomena negatively affect the beaches, such as tides, 
waves, and sea currents [7-10]. A breakwater provides a calm 
area for waves, greatly reducing wave energy so that ships 
can anchor safely and assisting in construction and mineral 
and oil exploration [11,12]. Traditional barriers such as 
rubble mounds and gravity barriers are used to reduce the 
negative effects of waves and to create a safe and calm marine 
area [13-15]. Furthermore, these breakwaters hinder littoral 
drift, which causes notable erosion or accretion [16,17]. In 
recreational ports, part of the waves are allowed to pass so 
that tourists are not exposed to danger or any inconvenience 
and provide a stunning view of the beach [18-21]. Many 
investigations have been carried out on barriers and the 
effect of their hydrodynamic properties on wave reduction, 

using a set of numerical and experimental models to evaluate 
hydrodynamic performance [22-30]. The hydrodynamic 
properties of the fixed floating barrier were investigated for 
waves [31,32]. Although a closed wall structure for barriers 
can successfully reduce wave disturbance to the harbor’s 
waters, its restricted water exchange capacity can degrade the 
water quality of the harbor. Furthermore, sediment siltation 
may be exacerbated by decreased harbor flow velocities. 
Thus, in recent years, researchers have focused on permeable 
breakwaters. Horizontal perforated barriers, a sequence of 
vertical cylinders, slotted and porous barriers are examples of 
structures that enhancing port flow speed and environmental 
sustainability by facilitating water exchange and efficient 
wave dissipation [33,34]. A caisson barrier that used the 
staggered arrangement of wave chambers to decrease the 
wave energy and had perforations on both the front and 
back walls [35]. The transmission and reflection properties 
of regular waves through thin, perforated walls were studied 
[36]. The effectiveness of pile-supported barrier caisson 
has been studied [37-39]. This paper aims to assess the 
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hydrodynamic efficacy of a partially submerged breakwater 
by conducting an experimental and numerical investigation 
of precast concrete caissons supported on spaced piles.

1.1. Advantages of Permeable Caisson Barriers
This type of breakwater is commonly used for the following 
purposes:
⦁ It is used as a common solution in deep water conditions.
⦁ It is used in soils with low bearing capacity.   
⦁ Effectively used in wave energy applications.
⦁ Providing continuous refreshing water in the coastal 
region, which reduces pollution.  
⦁ It doesn’t occupy a lot of space, therefore having no effect 
on seafloor living organisms. 

1.2. Research Objectives
⦁ Proposing efficient, economical breakwaters to protect 
beaches.
⦁ Assessing experimentally and numerically the 
hydrodynamic performance of the proposed barrier.

2. Materials and Methods
2.1. Experimental Work
In this study, a wave flume length of 15.6 m in length, 45 cm 
in height, and 30 cm in width was used, which is split into 
three sections. These sections are the wave generator section 
and the wave absorber section, which are both connected to 
the testing part of the flume. The length of the working part is 
12 m. Figure 1 shows the dimensions and details of the flume. 
The vertical sides are composed of 1.2 cm thick glass. Using 
various wave characteristics, the experiments were conducted 
to assess the hydrodynamic performance. The barrier was a 
caisson that was held up by a system of large, spaced piles. 
To provide the required wave periods, the wave generator’s 
velocity was adjusted. To measure the wave height (Ht), a 
digital ultrasonic water surface measuring device was used. 
The details of barriers a caisson as shown in Figures 2 and 3. 
Table 1 contains a summary of the experimental parameters.

2.2. Hydrodynamic Parameter
Two parameters are used to evaluate hydrodynamic 
performance. The reflection coefficient (Kr), which measures 
how much energy the barrier reflects, is the first parameter 
and may be calculated as follows [40]:

Figure 1. Details of the wave flume
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               (1)

Where: Hr is the height of the reflected wave, and Hi is height 
of the incident wave.
The second parameter is the height of the wave reflected by 
the incident wave, or the wave transmission coefficient (Kt), 
which can be calculated as follows [41]:

               (2)

Where: Ht is the height of the transmitted wave. 

2.3. Numerical Simulations
The proposed barrier was numerically simulated FLOW-
3D program. The hydrodynamic performance of the curtain 
vertical breakwater supported on piles was examined in 
this study using the computational fluid dynamics (CFD) 
methodology. The CFD uses computer-based simulation to 
analyze systems that involve fluid flow-related phenomena, 
including the motion of water waves. This method is quite 
effective and has many different engineering application 
areas. CFD can provide a faster and more economical solution 
than physical modeling [42]. Numerous applications are 
made possible by the suggested program’s development base. 
The program’s coding is based on finite volume theory, and 
the 3D Reynolds mean was calculated using Navier-Stokes 
(RANS) calculations [43]. In addition to traditional linear 
waves, FLOW-3D can simulate irregular and nonlinear waves 
[44]. The flow zones are separated into a grid of rectangular 
cells of varying sizes. Values for the fundamental flow 
quantities (such as velocity, pressure, and density) are kept 
for every cell [45-47]. The Fractional Area Volume Obstacle 
Representation (FAVOR) approach was used in the software 
to arrange the breakwaters system in the grids [48]. Figure 4 
illustrates the numerical simulation process.

3. Results and Discussions
3.1. Experimental and Numerical Results
The experimental and numerical transmission coefficient 
results at B/h=1.5 were compared as shown in Figure 5. As 
Figure 5a illustrates, the experimental results at number of 

Table 1. Experimental parameters of the suggested model

Parameter Range of water levels
Depth of water (h) 20 (cm)

Width of barrier (B) 1, 20, 35, 50 and 65 (cm)

Wave length (L) 70-510 (cm)

Draft of barrier (D) 0, 6, 10, 14 and 18 (cm)

Bed slope (Sb) 0%, 2% and 4%

Figure 2. Specifications of the pile system supporting the caisson 
on the solid bed

Figure 3. Definition sketch for breakwater model 

Figure 4. Process for numerical simulation
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waves Kh=1.9 are consistent with the simulated values. It 
is also noted that as the draft increases, kt decreases when 
D/h=0.4 is Kt=0.20, and when D/h=0.6 is Kt=0.10. The 
explanation for this is that the passage of water under the 
barrier decreases, and thus the dissipation of wave energy 
increases. Also, the width of the barrier increases the path 
of the waves below it, and thus the energy of the waves 
decreases. Furthermore, at number of waves (Kh)=1.06, the 
numerical model reduces kt by roughly 7%, as shown in 
Figure 5b. In Figure 5b compared to Figure 5a, it is clear that 
kt increases with the decrease in kh, in Figure 5a at draft=0.2, 
water depth was 0.4 while in Figure 5b, at draft=0.2, the 
water depth was 0.7. Also, as in Figure 5a, it is noted that 
the values   of kt decrease with the increase in the values   of 
the draft, but the agreement of the experimental results with 
the numerical results is not as accurate as the results when 
the wave number was equal to 1.9. Which indicates that 
increasing the wavenumber (i.e. increasing the number of 
waves per second) gives better compatibility results. Figure 
5c illustrates the consistency among the experimental and 
numerical model results for Kh=0.75. The experimental 

and numerical Kt results at Kh=1. 9, 1.06, 0.75, and 0.4 
when B/h=0.5 were compared in Figure 6.  The results of 
experimental and numerical for various values of kh showed 
that there was agreement between them, as seen in Figures 
6a and 6b. Nevertheless, as Figures 6c and 6d demonstrate, 
numerical exceeds Kt from 7 to 13% for Kh less than 1.06 
at D/h less than 0.6 at this point, so the numerical model is 
most accurate. The experimental and numerical Kt and Kr 
results at various D/h when B/h=0.5 is shown in Figure 7. For 
transmission coefficient, Figure 7 demonstrated that, for Kh 
values less than 0.8, the experimental results accord with the 
numerical results; however, for Kh values more than 0.8, the 

Figure 5. Comparison of experimental and numerical Kt results 
at B/h=1.5

Figure 6. Comparison of experimental and numerical Kt and Kr 
results at B/h=0.5
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transmission coefficient is exceeded by the numerical model 
by around 8 to 24%. Furthermore, Figure 7 demonstrates that 
for reflection coefficient, the numerical and experimental 
results agree when Kh is greater than 2.0, but when Kh is less 
than 2.0, the numerical model exceeds reflection coefficient 
by roughly 8-13%.
Figure 8 demonstrates a comparison between present study 
(experimental results) and various other similar studies for B/
h=0.5 at D/h=0.30 and 0.60. The results showed that kt values 

for this study are lower than those for previous studies under 
the same conditions. Figure 9 demonstrates the relationship 
between the numerical (Kt, Kr) and the wave number at 
different D/h at B/h=1.0 for experimental results. As Kh and 
D/h increase, Kt decreases, as seen in Figure 9a. However, 
Figure 9b shows that as Kh and D/h increase, the numerical 
Kr also rises.

3.2. The Impact of the Bed Slopes (Sb) on Hydrodynamic 
Performance
The relationship between B/h and Kt is shown in Figure 10 
for Sb at Kh=1.88 and D/h=0.0, 0.2, 0.4, 0.6, and 0.8 for 
experimental results. The figure demonstrates that when B/h 
increases, Kt reduces for all bed slopes. Also, Kt decreases 
with increasing Sb. The breakwater was very efficient in 
reducing wave energy. This happens because of friction 
between the waves’ transferred energy and the surface 
of breakwater, which causes more wave energy to be lost 
through the barrier. In addition to the vortices at the barrier’s 
bottom end shedding during transmission. Moreover, Figure 
8 demonstrates that kt reduces as D/h rises.

3.3. Hydrodynamic Pressure Distribution, Wave 
Velocities, and Vortex Formation Around Suggested 
Breakwater
Figure 11 illustrates the hydrodynamic pressure distribution 
caused by wave movement on the breakwater. The 

Figure 7. Comparison between Kr and Kt for different relative 
drafts at B/h=0.5 

Figure 8. A comparison between Kt of this study and various 
previous studies
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hydrodynamic pressure was strongest in front of the breakwater 
and close to the wave crest. The wave vortices surrounding 
the suggested breakwaters at various wave periods are seen 
in Figure 12. It was found that shorter wave periods also 
resulted in shorter wave lengths, which increased the number 
of vortices surrounding the breakwater. Hence, for T=1.1 s, 
the vortices in Figure 12b were larger than those in Figure 12a 
for T=1.3 s. It shows that the vortices surrounding the barrier 
expand as the wave period shortens. Figure 13 illustrates 
the wave velocities surrounding the barriers at various wave 
periods. It is evident from the figures that higher velocity 
was experienced around the barrier during shorter wave 
periods due to shorter wave lengths. The wave velocity rises 
surrounding the barrier as the wave period reduces, as shown 
in Figures 13a-c for T=0.8, 1.1, and 1.3 s, respectively.

4. Conclusion
These conclusions were drawn after analyzing the results as 
follows:
The transmission coefficient reduces with rising relative 
barrier width but rises when the barrier draft increases. 
The transmission coefficient reduces as the seafloor slope 
rises.

The proposed breakwater scatters the waves through it and 
reduces the speed of the waves behind it.
The hydrodynamic efficiency of the barrier may be predicted 
using the suggested numerical model.
The hydrodynamic pressure and velocity field surrounding 
the barrier can be determined by the utilization of the 
numerical model. 
The highest value of hydrodynamic pressure is at the wave 
crest and in front of the breakwater.
The simulated results using FLOW-3D program are 
consistent with the experimental results.

Figure 9. Kt and Kr versus Kh at B/h=1.0 Figure 10. Kt versus Kh for different D/h at Sb=0.0%, 2%, and 4%
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