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Performance and Reliability Monitoring of Ship Hybrid Power Plants

1. Introduction
As technological breakthroughs have been maturing, 
modern vessels incorporate smart technologies capable of 
performing various automated tasks [1]. Adopting smart 
sensors and systems onboard ships enables increased 
monitoring capabilities, which is crucial for next-generation 
autonomous ships to perform autonomous decision-making 
actions. Several research projects have been investigating 
and developing technologies to enable autonomous shipping. 
Specifically, AUTOSHIP has been focused on developing and 
applying key enabling technologies in two autonomous 
ships, highlighting the importance of autonomous 
machinery systems with predictive condition monitoring 
capabilities [2]. Furthermore, MUNIN provided a concept 
for an autonomous ship, pinpointing the importance of an 
intelligent machinery system that can perform monitoring 
tasks with advanced failure predetection and handling 
functionalities [3].

The power plant operation of modern ships is already 
highly automated. Sensors are installed to monitor the 
performance of the majority of the power plant components. 
Usually, the acquired data are pertinent to performance 
measurements, including fuel consumption and emissions 
[4]. Nevertheless, smart ships require extended monitoring 
capabilities to assess the health state of their power plants.
In this respect, traditional metrics or key performance 
indicators are insufficient to capture the plant’s health state. 
Data from sensors can enable diagnostic functionalities in 
the power plant while also being employed to estimate the 
health state and determine the remaining useful life (RUL) 
of the investigated components or system [5]. Automotive 
and aerospace industries already employ several methods 
to estimate the health state and perform future predictions 
using the prognostics and health management framework 
[6]. However, the maritime industry lags in terms of using 
similar methods. Gkerekos et al. [7] proposed an approach 
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to monitor the machinery’s health state using vibration data. 
Lazakis et al. [8] used a dynamic time series neural network 
to predict future operating values of ship machinery critical 
systems. Using a similar approach, Zaman et al. [9] applied 
a condition monitoring approach using neural networks on 
the main engine to predict future variations of performance 
parameters while combining reliability tools for criticality 
assessment. In Kökkülünk et al. [10], a mathematical 
model to estimate engine degradation was developed 
under varying operating conditions. Nevertheless, the 
aforementioned studies typically focused on calculating the 
health state of a particular component or individual system 
without incorporating insight into the power plant as an 
integrated system.
Moreover, for the successful operation of unmanned 
missions, Edge et al. [11] argued that priority should be 
given to the selection and optimization of the machinery 
design in respect to the availability. Pertinent literature 
reports attempted to monitor autonomous power plants 
operations. Abaei et al. [12] developed a probability model 
based on the multinomial process tree and hierarchical 
Bayesian model to evaluate the reliability of an unattended 
machinery plant under the influence of random events. 
Ellefsen et al. [13] acknowledged the potential of 
using deep learning techniques to estimate the RUL of 
autonomous systems in real time from measured shipboard 
data. Bolbot et al. [14] introduced the concept of a safety 
monitoring system in cruise ship power plants to estimate 
the probability of blackout using sensor measurements. 
Utne et al. [15] highlighted the importance of dynamic risk 
monitoring and control in autonomous marine systems, 
although these tools have not been currently implemented 
in the maritime sector.
From the preceding studies, the following research gaps are 
identified: (a) a systematic and structured framework to 
monitor the machinery health state in the maritime industry 
is not available, (b) the influence of the performance profile 
on the health state of the components have not been 

investigated, and (c) the overall system’s dynamic health 
state estimation based on an actual operational profile has 
not been addressed.
In this respect, this study aims to develop a monitoring 
functionality for power plants that captures performance 
metrics while considering the overall system and its 
components’ reliability as health indicators. Modeling of 
the power plant’s performance is done using a combination 
of the first principles method, look-up tables, and built-
in Simulink blocks. The reliability of the power plant’s 
components is calculated using failure rates based on the 
proportional hazard model (PHM), while the system’s 
reliability is calculated using a dynamic Bayesian network 
(DBN). A parallel hybrid power plant of a pilot boat is 
selected as a case study.

2. Methodology Overview
The methodological steps to develop the monitoring 
functionality are presented herein. The first step is to 
develop a rule-based energy management strategy that 
defines the operating setpoints for the power plant 
components. Subsequently, performance models are 
employed to estimate the power plant’s behavior. In the 
next step, the power plant’s operating points are fed 
into the PHM to update the failure rate and calculate the 
components’ reliability. Finally, using the components’ 
reliability, the system reliability is calculated using the DBN.

3. System Description & Performance Modeling
In this study, a parallel hybrid power plant of a pilot boat 
is selected to demonstrate the proposed methodology’s 
applicability. Figure 1 shows a schematic representation of 
the power plant’s configuration. The hybrid power plant is 
a combination of a diesel engine, a battery, and an electric 
machine. The diesel engine and the electric machine are 
coupled via a gearbox. The electric machine can be used as 
a power take in (PTI) to supply propulsive power and as a 
power take off (PTO) to charge the battery. Table 1 presents 
the power plant’s components’ characteristics.

Figure 1. Parallel hybrid power plant configuration
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The investigated hybrid power plant is modeled in MATLAB/
Simulink environment using a modular approach. Each 
power plant component is modeled as a separate block, and 
connections facilitate the parameters’ exchange between 
the interconnected components.

3.1. Diesel Engine Modeling
The performance of the diesel engine is modeled by 
employing the mean value engine model proposed by 
Theotokatos [16]. The engine brake mean effective pressure 
is calculated by subtracting the friction mean effective 
pressure (FMEP) from the indicated mean effective pressure 
(IMEP). The FMEP is considered a function of the IMEP and 
the engine crankshaft rotation speed, whereas the IMEP is 
calculated using the rack position, the maximum IMEP, and 
the combustion efficiency.
The torque produced by the engine is calculated using the 
following equation:

​​Q​ eng​​ = ​ 
BMEP ​V​ D​​
 _ 2π ​rev​ cy​​
 ​​ (1)

where revcy is the number of crankshaft revolutions per 
cycle.
The engine fuel mass flow rate is calculated as:

​​​m ˙ ​​ f​​ = ​ 
​z​ cyl​​ ​m​ f,cy​​ ​N​ eng​​ _ 60 ​rev​ cy​​

  ​​ (2)

where zcyl denotes the cylinder number and mf,cy is the mass 
of injected fuel per cylinder per cycle, the variation of which 
versus the engine rack position is provided as input.
The following equations are employed to calculate the 
engine brake power and brake specific fuel consumption 
(BSFC):

​​P​ b​​ = ​ 
π ​N​ eng​​ ​Q​ eng​​ _ 30  ​​ (3)

​BSFC = ​ 
​​m ˙ ​​ f​​ _ ​P​ b​​
 ​​ (4)

The engine governor is modeled using a proportional-
integral (PI) controller law [16].

3.2. Electric Machine Modeling
For the modeling of the electric machine, a quasi-static 
approach is followed, which is widely used in supervisory 
automotive control applications [17,18]. Energy losses 
are calculated based on the operating point of the electric 
machine [19]. The power output is then expressed as:

​​​P​ em​​= ​  1 _ 
​η​ em​​​(​​ ​N​ em​​, ​P​ elec​​​)​​

 ​ ​ 
​πN​ em​​ ​Q​ em​​
 _ 30  ​, ​  P​ elec​​ ≥ 0  (Motor Mode)​​ (5)

​​​P​ em​​= ​η​ em​​​(​​ ​N​ em​​, ​P​ elec​​​)​​ ​ 
​πN​ em​​ ​Q​ em​​
 _ 30  ​, ​ P​ elec​​ < 0 (Generator Mode)​​ (6)

where ​η​em is the efficiency of the electric machine, which is 
considered a function of its speed and electric power.
The desired power output of the electric machine is 
controlled using a similar (PI) controller approach as in the 
case of the diesel engine.

3.3. Battery
The power plant battery is considered to be of the lithiumion 
type with 100 modules. To model the battery’s behavior 
while charging and discharging, the built-in simscape model 
proposed by Tremblay and Dessaint [20] was employed. 
Specifically, the battery’s voltage in discharge and charge is 
respectively obtained by the following equations:

​​​V​ 
bat

​​ = ​E​ 0​​ − R i − K ​  Q
 _ Q − i t ​​(it + ​i​​ 

*​)​ + Aexp​(− B it)​,  ​    

 i​​ *​  >  0 ​(​​Discharge​)​​​​                                                                  (7)

​​V​ 
bat

​​ = ​E​ 0​​ − R i − K ​  Q
 _ it − 0.1 Q ​ ​i​​ *​ − K ​  Q

 _ Q − it ​ it + Aexp​(− B it)​,  
 
​ i​​ *​ < 0 ​(Charge)​​                                                                (8)

where Vbat is the battery voltage, E0 is the battery constant 
voltage, K is a polarization constant, Q is the battery 
capacity corresponding to the actual battery charge, A is the 
exponential zone amplitude, B is the exponential zone time 
constant inverse, R is the internal resistance, it is the actual 
battery charge (​∫ ​idt​)​​​​, i is battery current, and i* denotes the 
filtered current.

3.4. Gearbox
The following equation derived from angular momentum 
conservation in the gearbox is used to calculate the engine 
speed:

​​ 
​dN​ eng​​ _ dt  ​ = ​ 

30​(​​ ​η​ gb​​ ​​(​​Q​ eng​​ − ​Q​ em​​​)​​ − ​Q​ prop​​​)​​
  ___________________  

π​(​​ ​Ι​ eng​​ + ​Ι​ em​​ + ​Ι​ gb​​ + ​Ι​ prop​​​)​​
  ​​ (9)

Table 1. Component’s characteristics
Component Parameter Value

Engine

Type 4 stroke, 8 cylinders

Power MCR (kW) 423

Speed MCR (RPM) 2100

Electric machine Nominal power (kW) 100

Battery

Type Lithium ion

Module capacity (Ah) 100

Nominal voltage (V) 12

Number of modules 100

MCR: Maximum continuous rating
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where ηgb denotes the gearbox efficiency and Ieng, Igb, Iem, 
and Iprop are the polar moments of the inertia of the engine, 
electric machine, gearbox, and propeller, respectively.

3.5. Propeller
Finally, the propeller law is utilized to calculate the propeller 
toque. To calculate the constant parameter kp, the engine 
torque and speed at the maximum continuous rating (MCR) 
are used. As a result, the propeller torque is expressed as:

​​Q​ prop​​ = ​k​ p​​ ​N​ eng​ 
2  ​​ (10)

4. Rule-based Energy Management
Since the power plant consists of a parallel hybrid 
configuration, a supervisory control strategy must be 
adopted to allocate the load to various power sources [21]. 
This study adopts a rule-based energy management strategy 
(RB-EMS) to specify the operating mode (e.g., hybrid 
and electric) and the components’ operating point. This 
strategy is implemented using the Stateflow state machine 
in Simulink, which can be used to develop a decision logic 
and supervisory control strategies for hybrid systems [22].
The power plant can switch between different modes 
including hybrid, fully electric, and mechanical. Similar 
approaches have been presented in the pertinent literature 
[23,24]. Table 2 presents the decision logic. It must be noted 
that the mechanical mode is included in the hybrid mode 
with the electric machine switched off.

Table 2. Rule-based energy management strategy
State of charge

Requested engine speed  
(rev/min) 0-40 40-80 80-100

0-1000 Hybrid Electric Electric

1000-1400 Hybrid Hybrid Electric

1400-2100 Hybrid Hybrid Electric

The mechanical mode is included in the hybrid mode with the electric 
machine switched off

After the operating mode is defined, the operating point of 
every component is specified. When the engine is switched 
on, it is set to operate at the optimal (BSFC) point in the 
current engine speed. In case of surplus power, it is used to 
charge the battery and the electric machine operates in the 
PTO mode. In contrast, when the engine load is not sufficient 
to satisfy the propeller demand, the electric machine is used 
in the PTI mode.

5. Reliability Modeling
5.1. Dynamic Bayesian Networks
To capture the health state of the investigated system and its 
components, reliability is used as a metric to demonstrate 

degradation. Mathematically, reliability is defined as the 
probability that a component is functioning at the time 
interval (0,t), where t is the mission time [25]. As a result, 
reliability can be used as an alternative to describing the 
degradation function [26].
In this study, a DBN approach is used. DBNs are an extension 
of the conventional Bayesian network (BN) that can capture 
the temporal behavior of the network, as they can predict 
future node probabilities based on the feeding evidence 
[27].
A BN is a pair of a directed acyclic graph (DAG) and a joint 
probability distribution function that satisfies the Markov 
condition [28]. The DAG is defined by nodes (V) and edges 
(E) where nodes are random variables and edges show the 
probabilistic relationships between the nodes.
The BN consists of the qualitative part, where the topology of 
the network is represented by the DAG, and the quantitative 
part, where conditional probabilities are specified to 
make the numerical inference [29]. The joint probability 
distribution function of the network is calculated as the 
product of all conditional probability density functions of 
each node given all its parent nodes as follows [30]:

​​P​(​​ ​X​ 1​​, ​X​ 2​​, … , ​X​ n​​​)​​ = ​∏ 
i=1

​ 
n
  ​P​(​X​ i​​ | ​Pa​(​​ ​X​ i​​​)​​​)​​​​ (11)

where ​​Pa​(​​ ​X​ i​​​)​​​​ represents the parent set of variable Xi and ​
P​(​X​ i​​ | ​Pa​(​​ ​X​ i​​​)​​​)​​ is the conditional probability distribution 
function of variable Xi given its parent set.
The limitation of the conventional BN is its inability to 
capture temporal relationships between the nodes of the 
network, resulting in a static representation of the joint 
probability distribution function at a specific time instant 
[28]. To overcome this limitation, DBN were introduced, 
which can provide temporal dependencies of network nodes 
considering the previous time slice. The joint probability 
distribution function of the DBN network from the previous 
time slice to the current time slice can be expressed as [27]:

​P​(​Ζ​ t​​ | ​Z​ t−1​​)​ = ​∏ 
i=1

​ 
n
  ​P​(​Z​ i,t​​ | ​Pa​(​​ ​Z​ i,t​​​)​​​)​​​ (12)

where Z is the family of random variables X1,X2,…, XN, Zi,t 
is the ith node at the time slice t, and Pa(Zi,t) is the parent 
nodes of Zi,t from the same and previous time slices.
Finally, the following equation is employed to calculate the 
overall joint probability distribution function of the DBN 
from the first time slice till slice N:

​​P​(​​ ​Z​ 1:N​​​)​​ = ​∏ 
t=1

​ 
N
  ​​∏ 

i=1
​ 

n
  ​P​(​Z​ i,t​​ | ​Pa​(​​ ​Z​ i,t​​​)​​​)​​​​​ (13)
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5.2. Failure Rate Update Model
The failure (or hazard) rate is used to calculate the reliability 
of the power plant’s components. This study considers the 
operating point (load) of the components as a factor that 
influences the failure rate. Usually, in health-aware control 
applications, PHMs are used, which take into account the 
actuators’ control effort in the degradation function [26,31].
The PHM was first introduced by Cox [32] and employs the 
following expression for the calculation of the failure rate:

​​λ​(​​t, l​)​​ = ​λ​ 0​​​(t)​g​(​​l, θ​)​​​​ (14)

where λ0 is the nominal failure rate dependent on time only 
and g(l,θ) is the covariate function that depends on covariate 
l that affects the component and an unknown parameter 
θ of the component model. The term g(l,θ) can take many 
forms [33]. However, the linear form is considered herein.
In this study, the Weibull PHM (WPHM) proposed by Gorjian 
et al. [34] is used, which is an extension of the PHM. The 
failure rate is assumed to follow the Weibull distribution, 
resulting in an increasing failure rate with time when the 
shape factor β is greater than one. According to the WPHM, 
the failure rate is calculated as follows:

​​λ​(​​t, l​)​​ = β ​​λ​ 0​​​​ 
β​ ​t​​ β−1​ g​(​​l, θ​)​​​​ (15)

Failure rates that are used in this study are based on the 
OREDA 2015 database [35]. In particular, the components’ 
mean and maximum failure rates are considered. Because 
the Weibull distribution is followed, a correction procedure 
for the failure rates is followed according to [36], since the 
failure rates in the OREDA are assumed constant.
For the diesel engine, it is assumed that the failure rate is 
the mean of the values provided in the OREDA in the region 
close to the half load region, whereas it reaches its maximum 

value in the idle and at full load regions. Consequently, the 
engine failure rate is calculated by the following equations:

​λ​(t, l)​ = β ​​λ​ mean​​​​ 
β​ ​t​​ β−1​​(​​(​ ​λ​ max​​ _ ​λ​ mean​​​)​​​ 

β
​ + ​(1 − ​​(​ ​λ​ max​​ _ ​λ​ mean​​​)​​​ 

β
​)​ ​  l _ 0.4​)​,​ ​

0 ≤ l < 0.4​
(16)

​λ​(t, l)​ = β ​​λ​ mean​​​​ 
β​ ​t​​ β−1​,​ ​                       0.4 ≤ l < 0.6​ (17)

​λ​(t, l)​ = β ​​λ​ mean​​​​ 
β​ ​t​​ β−1​​(1 + ​(​​(​ ​λ​ max​​ _ ​λ​ mean​​​)​​​ 

β
​ − 1)​ ​l − 0.6 _ 0.4  ​)​,​​                           

                                   0.6 ≤ l < 1​
(18)

For other components, it is assumed that the failure rate is 
calculated according to Equation (19). The mean failure rate 
value was considered as reported in the OREDA, whereas it 
increases as a function of the load till the full load, where it 
gets its maximum value.

​λ​(t, l)​ = β ​​λ​ mean​​​​ 
β​ ​t​​ β−1​​(1 + ​(​​(​ ​λ​ max​​ _ ​λ​ mean​​​)​​​ 

β
​ − 1)​l)​​ ​        ​ (19)

6. Case Study
6.1. Operating Profile
To demonstrate the applicability of the proposed approach, 
an operating profile that specifies the time variation of the 
propeller power and speed setpoints is required. Operating 
data from an actual pilot boat representing the time 
variation of the engine speed is shown in Figure 2.
Due to the inherent noise of the collected data, this profile 
was elaborated and was converted into power setpoints for 
the rule-based energy management strategy. Additionally, 
the profile corresponding to a one-month operation was 
developed based on these setpoints and considering a 
random variation of ±10%. This randomness was included 

Figure 2. Actual operating profile of the pilot boat engine case study
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to derive a more realistic scenario. Figure 3 provides the 
developed operating profile for 6 hours as the one-month 
operating profile cannot be readily presented in a single 
plot.
Finally, an overall model screenshot is presented in Figure 
4. The model consists of four district subsystems: The 
operating profile, the rule-based energy management 
strategy (RB-EMS), the power plant model, and the 
monitoring subsystem.

6.2. Dynamic Bayesian Network Structure
Figure 5 presents the structure of the developed DBN for the 
pilot boat power plant case study. Root nodes represent the 
components of the power plant, while intermediate nodes 
represent noisy gates. Noisy gates are similar to logical 
gates of fault trees. It is assumed that the noisy gates are 
influenced independently by their parent nodes, resulting 
in a parameter reduction for the corresponding conditional 
probability tables and a lower computational effort [29].
Since a built-in toolbox to perform the Bayesian inference 

does not exist in MATLAB libraries, the SMILE engine 
provided by BayesFusion was used [37]. The engine is 
written in C++. As a result, a wrapper was used to import 
the library into MATLAB.
To calculate the reliability of root nodes, the WPHM 
presented in the preceding sections is used. The reliability 
of each component is calculated using the following 
expression:

​​​R​ i​​​(​​t​)​​ = ​e​​ −​∫ 0​ 
t​ ​λ​ i​​​(t,l)​dt​​​​ (20)

Root nodes are modeled as unobservable variables in the 
DBN. However, the components’ reliability is calculated 
directly using equation (20). The SMILE engine supports 
the use of virtual evidence, where it is allowed to enter 
uncertain observations (i.e., reliability in this study) into 
normally unobservable variables [38]. Therefore, the DBN 
can be updated as the power plant operates at specific time 
intervals, feeding the root nodes with the components’ 
reliability.

Figure 3. Sample operating profile for the propeller’s power demand of the pilot boat case study

Figure 4. Screenshot of the overall model in Simulink
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Finally, the shape parameters β of the Weibull distribution 
for each component are based on relevant experimental 
studies and their values are presented in Table 3.

Table 3. Weibull shape parameters
Component β Source

Engine 2.4 [39]

Electric machine 1.2 [40]

Battery 1.69 [41]

Gearbox 2.028 [42]

7. Results and Discussion
In this section, simulation results for the investigated hybrid 
power plant are presented for a one-month operational 
time. It must be noted that the operational time is different 

from the calendar time, as the former only considers the 
actual time the power plant operates. It was assumed that 
the components are initially in their healthy state. As a 
result, their reliability is very close to 1 (slightly less than 
1 though).
Figure 6 presents the derived time variations of the 
components’ reliability. Because of the employed time scale, 
fluctuations of reliability values are not noticeable in this 
plot; hence, a zoomed region is presented. In particular, the 
zoomed region presents the engine’s reliability between 
the 28th and 29th operational days. Since the power plant 
is hybrid, the engine is occasionally switched off according 
to the rule-based energy management strategy. As a result, 
there are regions in the graph where the reliability remains 
constant.
Furthermore, an abrupt decline of the engine’s reliability 
is observed at t=28.3 days, which occurs due to the engine 
operation in regions close to idle and full loads. Figure 
7 presents the power demand and the delivered power 
by the engine and the electric machine in the region with 
the abrupt change. Results of this figure confirm that the 
engine operates close to the idle, which impacts the engine’s 
reliability.
Figure 8 provides the derived time variations of the 
components’ reliability (simulation results) as well as the 
time variations of the components’ reliability calculated 
taking into account the Weibull distributions with the 
mean and maximum failure rate values. As observed from 
this figure, the derived reliability for each component is 
between the corresponding values calculated using the 
mean and the maximum failure rates. It must be noted that 
the engine operating time is around 13 days (instead of 30 
days of operational time for other components) due to the 
engine switching off in several time periods.

Figure 5. Developed dynamic Bayesian network structure

Figure 6. Derived components’ reliability time variations
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Finally, to demonstrate the temporal behavior of the system’s 
reliability calculated from the developed DBN, different 
time slices of the dynamic Bayesian network (showing 
the reliability and unreliability of its components) at days 
15 and 30 are presented in Figure 9. From this figure, it is 
inferred that the engine’s unreliability exhibits the highest 
values (increases faster compared to other components), 
whereas electric components of the power plant exhibit 
high reliability values, thus resulting in lower values of the 
system’s unreliability.
It must be noted that the DBN can be used as a tool to estimate 
the system’s reliability in future time slices, considering the 

current operating conditions, thus supporting the decision-
making process.

8. Conclusion
In this study, a monitoring functionality for the operation 
of an autonomous ship power plant is proposed. The 
employed methodology considers operating conditions of 
the power plant to assess the health state of components 
and the system by developing and using a DBN.

Results demonstrated the usefulness of extended monitoring 
functionalities that include both conventional performance 
metrics and reliability. The latter was employed to estimate 

Figure 7. Power output and power demand

Figure 8. Comparison of the components’ reliability with theoretical distributions
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the components’ degradation. Future studies will include 
the use of this functionality as an enabling technology 
to develop the required automatic self-awareness of the 
power plant for facilitating the decision-making process in 
autonomous ships plants operations.
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