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1. Introduction
Ships consume 6.8% of the total fossil fuels in the world 
[1], and because of this consumption, 1,076 million tons 
of carbon dioxide equivalent (CO2eq) greenhouse gas 
(GHGs) was produced in 2018, indicating a 9.3% increment 
compared to 2012. Ships are also responsible for 2.89% of 
the total anthropogenic emissions [2]. While the world’s 
CO2 production increased by 31.4% between 1970 and 
2019, the value of CO2 produced by ships increased by 
76.8% over the same period [3]. If no measures are taken, 
ship-related emissions are expected to increase by 50% in 
2050 compared with 2018 [2].

Only a small part of the 450 atmospheric pollutants 
produced from the internal combustion process in ships 
are harmful enough to be evaluated, and only this group 
is produced above a negligible level [4]. These are listed 
as ozone-depleting substances, nitrogen oxides (NOx), 
sulfur oxides (SOx), particulate matter (PM), and volatile 
organic compounds (VOCs) and are regulated by the 
International Convention for the Prevention of Pollution 
from Ships (MARPOL 73/78) Annex-VI. Additionally, 
although ship-related carbon emissions are excluded in the 
Kyoto Protocol [5] and the Paris Convention [6], the Initial 
Strategy on Reduction of GHG Emissions from Ships report 
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The Turkish Straits are critical waterways connecting the Mediterranean and the Black Sea. About 38,552 and 43,343 ships pass through 
the Strait of Istanbul and Strait of Canakkale annually, respectively, and their emissions into the air pose a threat to the regional and global 
environment, as well as to the people of the region. Herein, the effects of the declaration of the Sea of Marmara as an emission control area 
and the use of alternative fuels by ships on emission formation were examined. For this purpose, the data of the ships passing through 
the Turkish Straits were obtained, the engine powers were calculated based on the gross registered tonnage values of these ships, and the 
emission values were reached. Declaring the Sea of Marmara as an emission control area provides an 80% and 76% reduction in sulfur 
and nitrogen oxides, respectively. Carbon emissions remained the same. The use of liquefied natural gas dramatically reduces carbon 
emissions. Alternative fuels, especially liquefied natural gas, effectively reduce sulfur oxide emissions. Despite these positive effects, there 
seem to be many years ahead of the widespread use of alternative fuels due to the lack of technical and economic infrastructure. Thus, 
the declaration of the Sea of Marmara as an emission control area will positively affect both the population in the region and the region’s 
environment.
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published by the International Maritime Organization in 
2018 offers short-, medium-, and long-term solutions for 
the decarbonization of ships and plays a guiding role. This 
strategy aims to reduce ship-related carbon emissions by 
40% by 2030 and by 70% by 2050 compared to 2008 [7].
The harmful effects of ship-borne atmospheric emissions 
are well known, especially CO2 [8-12], NOx [13-15], sulfur 
dioxide (SO2) [4,14-16], and PM [17-22] are pollutants that 
have often been emphasized.
Various national and international restrictions have been 
applied to reduce the effects of these pollutants, among 
which the regulations contained in MARPOL 73/78 Annex-
VI are the most important. The most effective regulations 
proposed by Annex-VI are Regulations 13 and 14, which 
contain various restrictions for NOx and SOx, respectively. 
According to Regulation 13, ships are classified as having 
engines <130 RPM, 130-1999 RPM, and >2000 RPM and 
as Tier I effective after January 1, 2000, Tier II effective 
after January 1, 2011, and Tier III [Emission Control Areas 
(ECAs) only] restrictions effective after January 1, 2016. 
According to Regulation 14, the allowed fuel sulfur content 
of 4.5% before January 1, 2012, in regions outside the ECA 
has been reduced to 0.5% as of January 1, 2020, and this 
rate has been applied as 0.1% since January 1, 2015, in the 
ECA regions. In addition to these rules, ships sailing in the 
European Union waters cannot use fuel containing >0.5% 
sulfur since January 1, 2020. Similarly, as of January 1, 2020, 
China has set a maximum sulfur content of 0.1% of the fuel 
used by ships sailing in its territorial waters and the Yangtze 
and Xi-Jiang Rivers. The ECA regions include the coasts of 
North America, US waters in the Caribbean, the Baltic Sea, 
and the North Sea. Additionally, some studies have declared 
the Mediterranean as an ECA region as of January 1, 2025 
[23].
Despite the measurable positive effects of these restrictions, 
it is also an essential requirement to take stricter measures. 
Therefore, in addition to conventional fossil fuels, the 
tendency to alternative fuels that can replace them has 
been one of the important issues recently. Suppose the ECA 
declaration is insufficient due to the risk that it lacks the 
desired effect in reducing CO2 and other GHGs and other 
emissions simply because it proposes a transition from 
one fossil fuel to another, alternative fuels are increasingly 
relied upon to improve air quality.
The Sea of Marmara and the Turkish Straits, in addition to 
being an important waterway with heavy ship traffic, are 

extremely vulnerable to adverse environmental impacts 
from ship emissions due to the dense settlement around 
them. Despite this importance, the literature on ship 
emissions in this region is limited. The first study on the 
subject was conducted in 2001, and the total amount of 
emissions in the Strait of Istanbul and Strait of Canakkale 
was measured as 353,625 and 347,221 t, respectively [24]. 
Another study in 2008 focused on ship emissions in the Sea 
of Marmara, and the amounts of CO2, NOx, SO2, CO, VOCs, 
and PM produced according to 2003 data were 5,451,224, 
111,039, 87,168, 20,281, 5801, and 4762 t, respectively, 
measured in [25]. In a recent study, the number of total 
petroleum hydrocarbons measured in water at the outlets 
of the Turkish Straits and polycyclic aromatic hydrocarbons 
measured in sediments varied between 1.7-11.6 µg/l and 
120-2912 ng/g, respectively [26].
Herein, data about the ships passing through the Strait of 
Istanbul and Strait of Canakkale, which can be declared ECA 
after the Mediterranean, were compiled for 2021, and first, 
the emissions in the current situation were calculated. Then, 
the emission reduction that may occur in the declaration of 
the ECA announcement was evaluated. Finally, the scenarios 
for the widespread use of biodiesel, ethanol, liquefied 
natural gas (LNG), and methanol were created and the gains 
to be achieved in using these fuels were calculated. These 
fuels were chosen because, first, their emission factor data 
can be accessed since the emission factor inventory of all 
alternative fuels has not yet been completed. Second, the 
possibility that these selected fuels have already found use 
and will be preferred more widely in the near future. The 
research question of the study seeks to find an answer for 
which option, alternative fuels, or ECA declaration, provides 
a more environmentally friendly solution. Herein, only the 
strait passages were considered, and no calculation was 
made about the cruise of the ships in the Sea of Marmara. 
The results of the study will contribute to the declaration 
of the Sea of Marmara and the Black Sea as the ECA and will 
provide support for promoting alternative fuel use.

2. Materials and Methods
The Turkish Straits are two important waterways 
separating Europe and Asia, connecting the Black Sea to the 
Mediterranean. The Strait of Istanbul is located at 41°07’10” 
N and 29°04’31” E, whereas the Strait of Canakkale is located 
at 40.2° N and 26.4° E. The transit routes of the two straits 
are shown in Figures 1 and 2:
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While 38,552 (7,168,719 gross registered tonnages) transits 
were made through the Strait of Istanbul in 2021, the 
number of passages made through the Strait of Canakkale 
is 43,343 (11,665,114 gross registered tonnages). While 
the average transit time of the Strait of Istanbul is 1.8 h, 

the Strait of Canakkale is crossed in 3.3 h on average. In the 
emission calculations, all the passages made by the ships in 
the north-south and south-north directions are included in 
the calculation. The data were obtained from the Ministry of 
Transport and Infrastructure of the Republic of Turkey and 
the Directorate General of Coastal Safety.
Since the fuel consumption data were not recorded, the 
calculations were conducted according to the engine power 
method. The formula suggested by Trozzi [27] is as follows:

  E  Trip,i,j,m   =  ∑ p    [ T  p    ∑ e    ( P  e   ×  LF  e   ×  EF  e,i,j,m,p  )  ]                (1)

where;
ETrip: Total emissions (t)
T: Voyage duration (h)
P: Engine power (kW)
LF: Load factor (%)
EF: Emission factor (g/kWh or g/MJ)
p: Voyage phases
e: Engine category
i: Pollutant type
j: Engine type
m: Fuel type
Since there is no engine power of the ships in the data 
obtained regarding the strait passages, the equations 
presented in Table 1 were used to determine the engine 
power depending on the gross registered tonnage:

Figure 1. Route to the Strait of Istanbul

Figure 2. Route to the Strait of Canakkale

Table 1. Engine power-gross registered tonnage equations (y as 
engine power, x as gross registered tonnage)

Ship Types Equation Reference

General Cargo  y =  5.3799x   0.7633  

[28]

Bulk Carrier  y =  66.728x   0.4826  

Tanker  y =  18.189x   0.6093  

Container Ship  y =  2.5008x   0.8801  

Reefer  y =  1.2462x   0.9783  

Ro-Ro  y =  692.09x   0.2863  

Passenger  y = 0.6379x + 1411.5 

Fishing  y =  19.266x   0.6658  

Other  y =  77.806x   0.5283  

Tugs  y =  27.303x   0.7014  [29]
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Since the gross registered tonnage value of the ships is 
known, the approximate engine power of the ships can 
be obtained using the equations presented in Table 1. The 
cruise time, which is another variable in the formula, is kept 
separately for each ship and is available as a data set. The 
engine load of the ships was accepted as 0.8 during cruising. 
Emission factors are presented in Table 2 for different fuels:

3. Results and Discussions
Tables 3 and 4 present the emission values obtained for 
the Strait of Istanbul and Strait of Canakkale for 2021, 
respectively. The emission values are arranged according to 
the reference order given in Table 2.
The difference between the current situation and the ECA 
declaration is evident in the first two lines of Tables 3 and 

4. Accordingly, the carbon-based emissions (CO2, CO, and 
HC) and PM values are unaffected by the ECA declaration. 
Furthermore, although there is a positive correlation 
between PM and SOx emissions, ECA regulations do not 
seem to provide a direct reduction for PM. However, 80% 
and 76% reductions were observed in SOx and NOx amounts, 
respectively.
Biodiesels were evaluated as SVO and FAME herein. SVO 
refers to the biodiesel used directly as fuel, and FAME is a 
type of fuel called real biodiesel [37,38]. According to the 
results, biodiesel decreased SOx formation by ~80% and 
increased NOx formation by ~25%. The reason for this 
may be that biodiesel is used in the form of a mixture with 
diesel fuel instead of direct use, and this may change the in-
cylinder temperature. The lack of a significant effect on PM 

Table 2. Emission factors
Fuel Type/Pollutant CO2 SO2 CO HC NOx PM Unit Reference

VLSFO (0.5% sulfur) 588 1.85 1.0 0.6 14.4 0.2 g/kWh
[30]

ULSFO (0.1% sulfur) 588 0.37 1.0 0.6 3.4 0.2 g/kWh

Biodiesel (SVO) - 0.37 - - 17.1 0.19 g/kWh
[31]

Biodiesel (FAME) - 0.36 - - 17.9 0.18 g/kWh

Ethanol 257.04* - - - - - g/kWh
[32]

LNG

201.96* - - - - - g/kWh

205.2* - 1.008* - 0.612* 0.0324* g/kWh [33]

198.72* - - - - - g/kWh [34]

446.0 0.88 0.79 - 8.76 0.34 g/kWh [35]

412.0 0.003 - - 1.17 0.027 g/kWh [31]

Methanol

248.76* - - - - - g/kWh [32]

522 - - - 3.05 - g/kWh [31]

548.2 - 0.54 - 2.16 - g/kWh [36]

*The units presented in g/kWh are given in g/MJ in the original references

Table 3. Emissions for Strait of Istanbul
Fuel Type/Pollutant CO2 SO2 CO HC NOx PM

VLSFO (0.5% sulfur) 199,716.6 628.4 339.7 203.8 4981.0 67.9

ULSFO (0.1% sulfur) 199,716.6 125.7 339.7 203.8 1154.8 67.9

Biodiesel (SVO) - 125.7 - - 5808.1 64.5

Biodiesel (FAME) - 122.3 - - 6079.8 61.1

Ethanol 87,304.7 - - - - -

LNG

68,596.5 - - - - -

69697.0 - 342.4 - 207.9 11.0

67,496.1 - - - - -

151,485.7 298.8 268.3 - 2975.4 115.5

139,937.5 1.0 - - 397.4 9.2

Methanol

84,492.3 - - - - -

172,299.4 - - - 1035.9 -

186,198.4 - 183.4 - 733.7 -
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may also be due to the same reason. The reduction in SOx 
and PM emissions is an expected result because biodiesels 
do not contain sulfur [39-45]. Although studies have shown 
that biodiesel reduces carbon emissions slightly [46-49], 
there are also studies showing the opposite. [41,50]. Despite 
the studies showing that the use of biodiesel reduces NOx 
emissions [46,47,51,52], some other studies have shown 
that this decrement is insignificant [42]. Some studies 
have indicated that using biodiesel may even increase NOx 
emissions [41,53,54].
Ethanol has the chemical formula C2H5OH and is the simplest 
alcohol. It has been observed that ethanol reduces CO2 
emissions by >50%. Studies have proven that ethanol has a 
reducing effect on PM and NOx emissions [55]; however, it 
has been observed that it increases HC emissions [56].
Although it is impossible to reach a definite conclusion due 
to the different emission factors used for LNG, it is clear that 
CO2 emissions have decreased. Also, the use of LNG has a 
reducing effect on SOx, NOx, and PM. LNG is the most studied 
alternative fuel, and its characteristics are well known. Since 
LNG does not contain sulfur, it is known to reduce SOx and 
PM emissions [57-61]. LNG has also been proven to reduce 
NOx emissions in accordance with the Tier-III restrictions 
[62-64] and to reduce CO2 [65-68].
Methanol is simple alcohol with the chemical formula 
CH3OH. The use of methanol did not dramatically reduce 
the carbon emissions, but reduced NOx emissions by 85%. 
Since it does not contain sulfur, SOx and PM formation is not 
expected [55,69-72]. Although it is thought that methanol 
can reduce NOx emissions in accordance with the Tier-III 
restrictions, [69] there are also arguments against it [72].
As seen from the tables and discussions, the expected effects 
of alternative fuel use on emissions remain unclarified. 

Some studies support alternative fuels, whereas others offer 
opposing views. According to the findings obtained herein, 
there is no fully effective solution for CO2 emissions from 
LNG. The reducing effect of fuels, especially LNG, on SOx 
emissions is obvious. Significant positive effects were also 
observed on NOx and PM, except for biodiesels. The reducing 
effect of alternative fuels, especially on SOx and NOx, is due 
to the necessity of complying with the restrictions in the 
scope of MARPOL Annex-VI. This international regulatory 
pressure is a significant driver for shipowners, companies 
and fuel manufacturers. However, carbon-zero fuels, 
such as hydrogen, are highly preferable energy sources 
for decarbonization, which is another important issue. 
Biodiesels can be considered a carbon-neutral option as 
vegetable-based fuels in the carbon cycle. Although the ECA 
declaration is an ineffective solution for decarbonization at 
the first stage, it is a very effective method for reducing SOx 
and NOx emissions.

4. Concluding Remarks
Ship emissions are an essential issue that can have very 
harmful effects, especially for the population living in coastal 
areas. Ship emissions have been considered a critical issue 
recently due to their effects on human health, city structures, 
and global climate change. The Strait of Istanbul and Strait of 
Canakkale host heavy ship traffic as a significant waterway 
connecting the Sea of Marmara to the Black Sea and the 
Mediterranean Sea. Thus, it is inevitable that ship emissions 
will occur intensively in these regions.
To avoid the negative effects of these emissions, the ships’ 
tendency to use alternative fuels or the declaration of 
the region as the ECA seem to be two important methods. 
However, alternative fuels are still in the trial phase, and it 
will be many years before the establishment of sufficient 

Table 4. Emissions for the Strait of Canakkale
Fuel Type/Pollutant CO2 SO2 CO HC NOx PM

VLSFO (0.5% sulfur) 567,598.4 1785.8 965.3 579.2 13,900.4 193.1

ULSFO (0.1% sulfur) 567,598.4 357.2 965.3 579.2 3282.0 193.1

Biodiesel (SVO) - 357.2 - - 16,506.7 183.4

Biodiesel (FAME) - 347.5 - - 17,278.2 173.8

Ethanol 248,121.6 - - - - -

LNG

194,952.7 - - - - -

198,080.3 - 973.0 - 590.8 31.3

191,825.1 - - - - -

430,525.3 849.5 762.6 - 8456.1 328.2

397,705.0 2.9 - - 1129.4 26.1

Methanol

240,128.9 - - - - -

503,888.4 - - - 2944.2 -

529,179.3 - 521.3 - 2085.1 -
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technical and economic infrastructure for implementing 
these fuels on all ships, which increases the importance of the 
ECA declaration. The ECA declaration of the Mediterranean 
Sea, including the region up to the entrance of the Strait 
of Canakkale in the Aegean Sea, as of January 1, 2025, will 
ensure that the Sea of Marmara will also have significant 
environmental benefits. Herein, the environmental 
benefits, which positively affect the protection of both the 
environment and population, to be obtained as a result of the 
ECA declaration of the Sea of Marmara have been observed. 
Additionally, it is thought that the development of Annex-VI 
and ECA rules to cover not only SOx and NOx emissions, but 
also carbon emissions will provide significant benefits.
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