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1. Introduction
Autonomous underwater vehicles’ (AUVs) research and 
application topics include localization, path following, 
target tracking, underwater mapping, and dynamic position 
management. Energy efficiency is a key issue that can be 
resolved by combining precise localization with dynamic 
position control to halt drifts.
The goal of this study is to create and test an algorithm for 
dynamic position controllers for AUVs. The scaled Delphin2 
AUV model from the Engineering and Environment Faculty 
at the University of Southampton in the UK was used for 
the experiments [1-6]. To provide dynamic position control 
during hover and flight-style operations underwater, the 
local position definition of AUVs is a crucial challenge.
Delphin2 has an inertial measurement unit (IMU), a 
depth pressure sensor, a sounding altimeter, a mechanical 
scanning sonar, and a global positioning system (GPS). GPS 
does not work underwater or in closed areas such as tank 
tests. The IMU includes a 3D accelerometer, gyroscope, 

and magnetometer. The heading-pitch-depth motions of 
Delphin2 can be measured in tank tests and underwater 
applications.
Surge and sway motions of an AUV cannot be measured 
during underwater operations for this research study 
because an ultra-short baseline (USBL) positioning system 
cannot be used for tank tests because of the wall effect.
An over-actuated design enables the Delphin2 AUV model to 
perform various missions, from hover-style operation at zero 
or slow speeds to flight-style operation at forward speeds up 
to approximately 1 m/s.
Hover and flight style motions according to the different 
speeds of Delphin2 were implemented in the tank. 
Nonlinear coupled mathematical models were studied using 
experimental data. Proportional integral derivative (PID) 
control of heading and depth-pitch motions simulation 
studies were performed on the nonlinear mathematical 
model. Previous control studies on Delphin2, such as model 
predictive control (MPC) depth-pitch motion control [3] 
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and sliding mode control heading motion control [6], were 
implemented. 
The feedback signals were collected in the tank tests from 
the sensors, a sounding altimeter, a pressure depth sensor, 
and an IMU, according to set values on the actuator, including 
the vertical and horizontal tunnel thrusters, the vertical and 
horizontal control surfaces as the tails, and the propeller. The 
input-output test data were used to form nonlinear coupled 
mathematical models. The models were formed in two 
groups: altitude-pitch and heading motion black-box models 
using a shallow neural network (SNN) algorithm [7]. This 
nonlinear coupled mathematical model was used to develop 
a dynamic position control design. The five actuator control 
signals must be calculated online by a controller system 
using 3D depth-pitch-heading motions for the over-actuated 
Delphin2.

2. Literature Review
Sensor data fusion for navigation AUVs has received 
much attention in the literature because their localization 
remains a challenge. Underwater navigation techniques 
most commonly employed include long baseline (LBL) with 
IMU, USBL, and Doppler velocity log (DVL) sensors.
Because of wall effects, USBL-based echo-sounding 
communication cannot be used in a tank or on a shallow 
coast. Therefore, rangefinder sensors, such as a laser-based 
vision feedback sensor, and sonar systems were used to 
calculate AUV’s localization in a tank in the literature. With 
the aid of an IMU and a laser-based vision system, online 
localization of AUVs via Kalman filtering was established 
[8,9]. These tests were performed in a tank. However, the 
laser-based vision feedback measurement range was only 
approximately 30 cm, and the computer vision feedback 
was seldom performed. After the localization study, online 
identification and visual control were studied [10]. Another 
laser-based rangefinder study was applied in a tank, and the 
range was approximately 5 m [11].
The position of the AUV in artificially structured 
environments, such as tanks, harbors, marinas, and 
maritime platforms, was determined using a mechanical 
scanning sonar with an IMU [12]. The experimental results 
of the simultaneous localization and mapping measurement 
method are presented in this thesis. To address motion-
induced distortion caused by high measurement error or 
lengthy scan periods, a different localization of AUV based 
on mechanically scanned imaging sonar was investigated 
[13].
For open-water applications, acoustic-based USBL and LBL 
communication systems are used to determine the location 
of AUVs. According to Plueddemann et al. [14], a comparative 
discussion of USBL- and LBL-based AUV navigation 

systems is presented, along with recommendations for the 
limitations of USBL regarding ice area docking and shallow 
coast applications. The drift in the location estimation that 
results from DVL-based navigation makes long-range AUV 
navigation over 300 m considerably more challenging. To 
navigate underwater, a DVL is rarely used alone; instead, it 
is integrated with other sound sensors [15]. According to 
Chen et al. [16] and Paull et al. [17], survey research was 
conducted to investigate the mapping, navigation, and 
localization of AUVs.
The accuracy of AUV localization during tank tests, for 
example, to verify control algorithms, is compromised 
by wall effects when using the USBL/LBL measurement 
system. Additionally, the AUV’s localization range, when 
using eye feedback, is extremely small, as is its frequency. 
AUV motion drifts could be caused by dead reckoning 
techniques. The combination of DVL and IMU for 
underwater vehicles was investigated using multisensor 
Kalman filtering [18].
There are fewer dynamic position control studies than 
navigation studies on AUVs. However, there have been few 
experimental studies on dynamic position control. Dynamic 
positioning systems of remotely operated vehicles and AUVs 
are explained comparatively [19]. Simulation studies on 
dynamic position control algorithms have been conducted 
[20,21]. In addition, experimental data were designed and 
verified for the 4-DOF and 6-DOF advanced controllers of 
AUVs [22]. The system identification (SI) method was used 
with experimental data for the surge and yaw modeling 
of AUVs [23]. Using the USBL measurement system, we 
demonstrated a novel optimization-based method with 
simulation results for dynamically placing a fully actuated 
AUV [24]. The neural network model reference adaptive 
control serves as the dynamic loop in the proposed dynamic 
position approach, whereas the nonlinear MPC serves as 
the kinematic loop.

3. Materials and Methods
3.1. AUV Characteristics
The Delphin series for AUVs was initiated in 2007 as a 
collaboration between the University of Southampton 
and the National Oceanography Centre [1]. Delphin2 was 
developed as a scaled model of Autosub6000 [25]. With 
control surfaces and a propeller, its body is designed like 
a torpedo. Because of the inefficiency of these types of 
rear control surfaces, a typical design flaw is that the 
AUV is unable to maintain sufficient control at zero or 
slow speeds. Thus, the design is expanded to include two 
horizontal and two vertical thrusters. Delphin2 serves 
as a research platform for control system development 
and for studying the performance of over-actuated AUVs.  
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A Delphin2 AUV with actuators is shown in Figure 1. This 
AUV has been successfully demonstrated during hover-
style motions [3,4].

Figure 1. Delphin2 AUV [3]

AUV: Autonomous Underwater Vehicles

AUV Delphin2 has a mid-body diameter of 0.26 m and a 
length of 1.96 m, giving it a torpedo-like shape. The over-
actuated Delphin2 has 7 actuators to be fully controlled. 
These are the propeller, the vertical and horizontal tails 
acting as control surfaces, the front and back vertical 
thrusters, and the front and rear horizontal thrusters. 3D 
depth-pitch-heading motion coupled control using five 
actuators was the focus of the research study. Consequently, 
it may effectively perform a range of tasks, such as survey 
flights at a surge speed of approximately 0-1 m/s and zero-
speed hovering. In the event of a system failure, an AUV 
can autonomously return to the water’s surface because of 
its small positive buoyancy. Delphin2 is typically ballasted 
to be buoyant at 6 N. A surge-sway motion measurement 
system is not present on the AUV [2].
The Delphin2 AUV has a pressure transducer rated from 
0 to 5 bar to measure its depth below the free surface. 
For surface operation, the GPS offers a current position at 
a sample rate of one hertz (Hz). There is no underwater 
positioning option for the Delphin2 AUV. The direction and 
turning rate are provided at a sample rate of 20 Hz via the 
Xsens 4th generation MTi-30 IMU. The dynamics model is 
used to estimate the forward and sway velocities used in 
the control systems at 20 Hz to comply with the IMU. Using 
acoustic backscatter techniques, the altimeter and scanning-
sonar track the distance between the AUV and the seabed. 
Delphin2 is equipped with two analog color charge-coupled 
device cameras, one facing ahead and the other below [2,6].
During the testing, propeller demands of uprop = {0, 10, 16, 
22} were employed. These values, which roughly translate 
to 2.4, 4.5, and 6.15 rev/s, agree with prop. The motor 
control board needs these set points to operate the motor. 
For fully submerged operation, they roughly correspond to 

forward speeds of u = {0, 0.26, 0.6, 1.0} m/s or u = {0, 0.42, 
0.82, 1.03} m/s for operating on the water surface. However, 
these speeds were calculated according to the operation 
time and measured distance regardless of the drifts of the 
Delphin2 AUV.
Accordingly, they are referred to as zero, low, mid, and high-
speed cases. The thrusters function well at low and zero 
speeds. However, the tails work effectively at high speeds. 
In addition, both thrusters and tails cannot work fully 
effectively at mid-speeds. The effectiveness of the actuators 
at mid-speeds is determined with weighting functions, and 
the illustration is shown in Figure 2.   ω  

th
   , a tunnel thruster 

weight, and   ω  
s
   , a control surface tail weight.

Figure 2. Actuator weighting functions [6]

3.2. Nonlinear Dynamic Modeling
Before control applications on the Delphin2 AUV model, 
dynamic modeling of the model was investigated; hence, 
a modeling strategywas chosen: a) nonlinear modeling 
is somewhat complex but might better capture actual 
dynamics. The coefficients can be determined using data 
from scaled-model testing or full-scale sea trials when the 
model’s structure is readily accessible for the specific type 
of sample AUV. b) Linearized models such as state-space 
models or transfer functions may be adequate for the initial 
control design. The simplicity of these linear models is one 
of their advantages. However, the simulation results and 
actual system reactions could vary significantly.
AUV dynamics can be modeled using three different 
approaches: white box modeling, which employs the Navier-
Stokes equations to characterize fluid structure interactions; 
gray box modeling, which combines experimental data with 
partial theoretical structures; and black box modeling, which 
uses only experimental data. White box modeling promises 
accurate predictions of AUV motions, but due to its time-
consuming nature, it is not useful for control design. The 
term “System Identification-SI” approach refers to studies 
including gray and black box modeling in transdisciplinary 
disciplines. The SI method has proven to be very accurate 
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when compared with both empirical and theoretical 
methodologies [26]. There are few studies on AUV motion 
modeling using the SI technique for controller design.
The feedback signals were collected with the sensors of 
Delphin2, while the actuators were sending various signals 
in the tank experiments. These input-output data were 
used for nonlinear modeling of the AUV. Nonlinear coupled 
mathematical modeling based on the black-box model 
method was studied. Nonlinear depth-pitch motions and 
heading motions were modeled using SNNs to develop a 
nonlinear coupled control algorithm. 
SNNs typically have fewer hidden layers, whereas deep 
neural networks can have dozens or even hundreds of layers. 
There are several layers in the network structure, including 
an input layer, hidden layers, and an output layer. While the 
hidden layer routes inputs to the output layer, the input 
layer handles intermediate calculations. When input values 
are applied, the primary goal of the network is to generate 
the desired output. For neural network training, the well-
liked supervised learning method back propagation (BP) 
is propesed [27]. Due to the typical BP algorithm’s slower 
convergence and longer training times, BP with adaptive 
learning rate and momentum term (BPALM) is advocated 
[28]. Because of the shorter training time, the BPALM, 
which is based on the standard BP, adjusts its learning rate 
and momentum rate at each iteration. Traingdx in Matlab 
is used to implement the BPALM method [29]. An output 
layer of linear neurons follows one or more hidden layers 
of sigmoid neurons in feedforward networks. Many layers 
of neurons with nonlinear transfer functions within the 
network enable the learning of both nonlinear and linear 
interactions between input and output vectors. The linear 
output layer indicates that the network may produce values 
outside the 1 to +1 range. The feedforward network models 
were trained using the BPALM technique [7].
In Figure 1, the actuators used as input data for modeling 
heading dynamics SNNs and depth-pitch dynamics SNNs 
are displayed. Figures 3 and 4, respectively, show the 
input-output data for heading dynamics and depth-pitch 
dynamics.

Figure 3. Input-output data for heading dynamics

Figure 4. Input-output data for depth-pitch dynamics

Two datasets-training and test data-are prepared and used 
in SNN modeling. Test data are used to gage the model’s 
performance after it has been developed using training 
data. Several acronyms of input and output data are 
employed in the following figures. The AUV’s propulsion 
data are displayed as “uprop”. During the testing, propeller 
demands of uprop = {0, 10, 16, 22} were employed. These 
values, which roughly translate to 2.4, 4.5, and 6.15 rev/s, 
agree with prop. The horizontal control surfaces as tail 
are abbreviated as “tailH”, their unit is degree. The vertical 
control surfaces as tail are indicated as “tailV”. The altimeter 
measures the vertical distance of the AUV from the tank 
bottom, and this distance is called the “altitude”. In addition, 
the vertical thrusters located at the rear and front are 
abbreviated as “thrVrear” and “thrVfront”, respectively. The 
horizontal thrusters located at the rear and front are shown 
as “thrHrear” and “thrHfront”, respectively. All thrusters’ 
units are rpm.
The experimental data used in the SNN modeling includes 
the depth, pitch, and heading motions of the AUV in hover- 
and flight-style conditions at various speeds. In addition, 
data on the actuators of the AUV, such as the horizontal-
vertical thrusters and control surfaces (tails), were obtained. 
Depth-pitch motion and heading motion were modeled as 
decoupled. The depth-pitch and heading motion training 
data of the AUV given in Figures 5-11 are data of the same 
mission motions. In addition, the depth-pitch and heading 
motion validation/test data of the AUV given in Figures 6-12 
are data of the same mission motions.

Figure 5. SNN model training data for depth-pitch motion

SNN: Shallow neural network
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Figures 5 and 6 show the depth-pitch motion modeling 
training and validation/test data, respectively. If the 
horizontal control surface, tailH, is sent saturated limit 
signals, it causes large amplitudes, as seen in Figure 5, with 
approximately 500 sampled data.
The correlation coefficient (R-value) is used to assess the 
outcomes of SNN model applications created with the aid 
of Matlab software. The linear link between two continuous 

variables is measured by the R-value, which also indicates 
the direction of the association. The values fall between -1 
and +1. This coefficient range can be interpreted as negligible 
if it falls between 0 and 0.09, weak if it falls between 0.1 
and 0.39, moderate if it falls between 0.4 and 0.69, strong 
if it falls between 0.7 and 0.89, and very strong if it falls 
between 0.9 and 1.00 [30,31]. In the application results, the 
R-value is expressed as a proportional percentage.

Figure 10. Correlation coefficients, R, of the SNN model for training 
and validation pitch angle data

SNN: Shallow neural network

Figure 11. SNN model training data for heading motion

SNN: Shallow neural network

Figure 9. Comparison between SNN output and experimental pitch 
data for training and validation

SNN: Shallow neural network

Figure 6. SNN model test data for depth-pitch motion

SNN: Shallow neural network

Figure 7. Comparison between SNN output and experimental 
altitude data for training and validation

SNN: Shallow neural network

Figure 8. Correlation coefficients, R, of NNM for training and 
validation altitude data
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Altitude and pitch motions of SNN depth-pitch model 
outputs have high R-values, approximately 90%. These 
comparisons between the SNN output and experimental 
test data and the R-values are shown in Figures 7-10.
Training and validation data for SNN heading motion 
modeling are given in Figures 10-12. A comparison between 
the SNN output and experimental heading data for training 
and validation is given in Figure 13. R-values, of SNN 
heading modeling training and validation outputs are 78% 
and 87%, respectively.

4. Dynamic Position Control
The PID controller is the most common type of closed-loop 
control system. These controllers continually monitor and 
modify a system’s output to maintain a specified set point. 
The comparator loops back to the system output, y(t), 
and compares it to the set point, r(t), to produce the error 
signal, e(t)=r(t)-y(t). The closed-loop control reduces this 
error signal as much as possible before using it to produce 
the control signal u(t). The most general mathematical 
representation of the entire control function, Equations 
1-4, can be represented as the sum of the three individual 
contributions [26].

  u (t)  =  u  
P
   (t)  +  u  

I
   (t)  +  u  

D
   (  t )      (1)

   u  
P
   (t)  =  K  

P
   * e (  t )     (2)

  u  
I
   (t)  =  K  

I
   *  ∫ 

0
  t  e  (𝝉) d𝝉   (3)

  u  
D
   (t)  =  K  

D
   *  

de (  t )  
 _ dt    (4)

It is possible to find many methods in the literature 
regarding the adjustment of KP, KI, and KD coefficients. 
The main adjustment method is the Ziegler-Nichols rule 
[32]. In practically adjusting these control coefficients, 

the proportional KP coefficient should first be adjusted 
according to the gain rate of the system. The KP coefficient 
should be increased until the response of the system 
reaches the reference signal. In the second step, if there is 
a steady-state error in the system response, the integrative 
KI coefficient should be increased/decreased until this 
steady-state error is eliminated. However, the disadvantage 
of increasing the integration coefficient is that delays and 
oscillations in the system response increase. In the third 
step, the derivative KD coefficient may need to be adjusted to 
optimally adjust the system response time and oscillation.
There are two operating conditions in which depth-
pitch control is used. The first involves modifying the 
type equation using a hover-style control method (at 
zero speed). Using vertical thrusters, the AUV depth and 
pitch may be changed. The second is a flight-style control 
approach that uses vertical thrusters for depth control 
and horizontal control surfaces (tails) for pitch motion 
reduction control. When operating across a wide range 
of speeds, the horizontal aft surfaces,   𝝎  

s
   , and the vertical 

tunnel thrusters,   𝝎  
th

   , offer a transition between the two 
control techniques. The integration (I) coefficient was the 
most effective in depth control based on simulation studies. 
When dealing with a significant shift in depth demand, an 
integrator for the generalized thrust control law may grow 
unreasonably large while the AUV is diving. The impact 
of the integral windup phenomenon is minimized using 
a conditional integration technique. The pitch for depth 
for hover-style and flight-style operations, proportional 
(P), integral (I)-derivative (D), and PI-D controls are used. 
It implemented a PI-D strategy instead of a PID to avoid a 
spike in the derivative term when changing the demand 
[2,6]. The Enhanced Differentiator (ED) approach was used 
to differentiate between variables and error variables [33]. 
If the ED algorithm is used for derivation, PID control can 
be used.

Figure 12. SNN model validation data for heading motion

SNN: Shallow neural network

Figure 13. Comparison between SNN output and experimental 
heading data for training and validation

SNN: Shallow neural network
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Due to their effectiveness and energy efficiency, the 
rudders (the vertical control surfaces for the Delphin2 
AUV) are frequently used for heading control during high-
speed operation. However, when operating in a low-speed 
regime where the control surfaces lose their effectiveness 
or when coping with significant heading mistakes, 
additional pressures from the horizontal tunnel thrusters 
are necessary. The AUV model can be maintained at the 
desired equilibrium with the help of the proportional (P)-
derivative (D) (PD) function. Two cascade modules make 
up the heading control; the first module establishes a 
generalized moment for following heading demand, and the 
second module divides the generalized moment between 
the thrusters and rudders [34]. The horizontal thrusters 
and vertical control surfaces of the Delphin2 AUV model are 
responsible for distributing the generalized yaw moment 
[6]. The control signal can be applied in two ways for depth 
control, as Equations 5 and 6. The definitions of symbols 
are as follows;   u  

c_total
   , total control signal,   u  

c_prev
   , total control 

signal calculated one step earlier,  ∆ u , calculated according 
to PD control. Conversely,   u  

c
    control signal can be calculated 

according to PID control.

  u  
c_total

   =  u  
c_prev

   + ∆ u   (5)

  u  
c
   =  u  

PID
    (6)

The controller includes a two-layer PID controller so that the 
AUV vehicle can descend to the given reference depth while 
diving at zero speed, i.e., in a hover-style state. In the first 
layer, the total PD control signal, which calculates the total 
force required for the vehicle to dive to the reference depth, 
is calculated depending on the depth error. In the second 
layer, the dynamic change in the vehicle’s longitudinal 
rotation center relative to the initial rotation center due to 
pitch error is calculated with PID control. Force allocation 
of the vertical thrusters is achieved with the PID control 
calculated in the second layer [6].
The control signal, according to Equation 5 and 6, was 
applied separately in the depth control of the AUV, while 
the altitude referenced 0.5 m, hover-style operation. A 
comparison of the two simulation results is shown in Figure 
14. The result showed that the total PD control signal should 
be applied for depth control because when the vehicle 
reference altitude comes, the signal to the thrusters is not 
reset. The PID control signal method was applied in pitch 
motion control, as shown in Figure 15.
It is not possible to use the hover-style control approach 
at fast forward speeds. This is because as forward speed 
increases, thruster performance diminishes. As the AUV’s 
speed increases, the thruster weight, wth, decreases from 

1 to 0. In this case, the total force calculated in the first 
layer required for the vehicle to dove in the hover-style 
condition multiplied by the thruster weight coefficient can 
be met by vertical thrusters in the flight-style condition. In 
addition, as the AUV’s speed increases, the control surface, 
ws, increases from 0 to 1. To calculate the horizontal control 
surface deflection for compensating pitch motion, the PID 
control equations are calculated in two layers. In the first 
layer calculation, the pitch bias, i.e., the reference value, 
is obtained by PID calculation, depending on the depth 
error of the vehicle. In the second layer, the deflection of 
the horizontal control surfaces is calculated using the PID 
calculation depending on the pitch error and multiplied by 
ws according to the speed of the vehicle. The heading control 
problem includes two cascade modules. In the first module, 
the PID controller determines the total moment depending 
on the heading error. In the second module, the controller 
allocates the total moment between the horizontal thrusters 
and the vertical control surfaces based on the AUV speed. 
In addition, the moment sharing between front and rear 
horizontal thrusters should be calculated based on the 
changing center of rotation of the vehicle [6].
In addition, the control was applied for altitude referenced 
0.5 m, flight-style operation. The control signal, according 
to Equation 5 and 6, was applied separately in the depth 

Figure 14. Altitude outputs of the control result data during altitude 
referenced 0.5 m, hover-style operation

Figure 15. Pitch angle outputs of PID control result data during 
altitude referenced 0.5 m, hover-style operation

PID: Proportional integral derivative
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control of the AUV, while the altitude referenced 0.5 m, 
flight-style operation. A comparison of the two simulation 
results is shown in Figure 16. The outcome demonstrated 
that the total PD control signal should be used for depth 
control because the signal to the thrusters is not reset when 
the vehicle reference altitude arrives, as shown in Figure 
17. The PID control signal method was applied to pitch and 
heading motion control. The other simulation results are 
shown in Figures 18-20.

5. Conclusions and Proposed Methods
5.1. Conclusions
An over-actuated design enabled the AUV model to perform 
various missions, spanning from hover-style operation at 
zero or slow speeds to flight-style operation at forward 
speeds up to approximately 1 m/s. The current heading 
and turning rates were obtained from the IMU at a sample 
rate of 20 Hz. Surge and sway motions used in the control 
systems were estimated as dead reckoning using the 
dynamics model at 20 Hz to comply with the IMU, whereas 
the control systems were implemented at 5 Hz so that they 
could synchronize to the sensor and actuator interfacing 
nodes. However, the localization calculation based only on 
the dynamic model, without DVL measuring the speed of 
the AUV, caused drifts, and this case negatively affects the 
running control algorithms. 

The depth of the AUV was measured using both an echo-
sounding altimeter and a pressure sensor. The depth 
pressure sensor was negatively affected by the vertical 
tunnel thrusters, and its signal was very unstable and 
noisy. The altimeter output signal was more stable than 
the pressure depth sensor output; therefore, the altimeter 
output signal data were used for depth-pitch control.
The depth-pitch and PD heading motion operations were 
performed for each mission operation in the tank tests. 
Feedback signals were collected in the tank tests from 

Figure 16. Altitude outputs of the control result data during altitude 
referenced 0.5 m, flight-style operation

Figure 18. Pitch angle outputs of PID control result data during 
altitude referenced 0.5 m, flight-style operation

PID: Proportional integral derivative

Figure 19. Heading angle outputs of PID control result data during 
altitude referenced 0.5 m, flight-style operation

PID: Proportional integral derivative

Figure 20. Horizontal thruster front outputs of PID control result 
data during altitude referenced 0.5 m, flight-style operation

PID: Proportional integral derivative
Figure 17. Vertical thruster front outputs of the control result data 
during altitude referenced 0.5 m, flight-style operation
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the sensors, altimeter, pressure depth sensor, and IMU, 
according to set values on the actuator, including the vertical 
and horizontal tunnel thrusters, the vertical and horizontal 
control surfaces as the tails, and the propeller. The input-
output test data were used to form nonlinear coupled 
mathematical models. The models were formed in two 
groups as depth-pitch motion and heading motion black-
box models using the SNN algorithm. The SNN R-value, of 
the depth-pitch motion SNN model and the SNN R-value, of 
the heading motion SNN model were approximately 0.90 
and 0.80, respectively. This nonlinear coupled mathematical 
model was used to develop the control design.
The control process was applied for altitude-referenced 
0.5 m, hover-style, and flight-style operations. The control 
signal, according to the total PD and PID control, was applied 
separately in the depth control of the AUV. The outcome 
demonstrated that the total PD control signal should be 
used for depth control because the signal to the thrusters 
is not reset when the vehicle reference altitude arrives. 
The PID control signal method was applied to pitch and 
heading motion control. Good performance was obtained 
in the simulation studies. To achieve better results in 
every mission, there is a need to study an advanced control 
algorithm in the future.

5.2. Proposed Methods
The Delphin2 software’s dead reckoning technique results 
in AUV motion drifts. The DVL/IMU measuring system can 
be employed because of less drift. Because of wall effects, 
USBL and LBL measurement equipment do not function 
properly in tanks. In addition, the AUV’s localization range 
(about 30 cm) when using vision feedback from a laser and 
camera is relatively small.
To locate the AUV during tank testing, it has been 
recommended to integrate two or three echo-sounding 
altimeters with the IMU and a pressure depth sensor on the 
AUV. An AUV can measure the x- and y- axes positions when 
two echo-sounding altimeters are added. The frequency 
range of the altimeter is 1-4 Hz. If a magnetometer 
displays large drifts during tank tests, three-echo-sounding 
altimeters can also identify the yaw angle. Furthermore, 
DVL is more expensive than an altimeter that emits an echo 
[35].
In addition, an echo-sounding altimeter would be used 
to maintain distance control on AUVs in real-world 
circumstances, such as during the flight of AUVs in shallow 
coastal and under-ice areas, as well as during AUV docking, 
because the USBL measurement system might not work 
properly close to shore. Both stationary and moving targets 
might aid in avoiding AUV collisions.
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