Journal of ETA Maritime Science

Performance Analysis of Interacting Rigid Wind Sails and Rotor Sails by Kriging Surrogate Model

© Takumi Endo¹, **©** Cem Güzelbulut²

¹The University of Tokyo Graduate School of Engineering, Department of Mechanical Engineering, Tokyo Pan ²Kahramanmaraş İstiklal University, Department of Mechanical Engineering, Kahramanmaraş, Türkiye

Abstract

Increasing global CO₂ emissions lead to all industries, including the maritime industry, to adopt environ ly friendly sol ns. Using energy, introducing alternative fuels, building carbon capture and storage systems, and improving the operation route optim tion and voya speed control are some of the attempts to achieve this. In the present study, an investigation of e rigid wind sail and one rotor sail was conducted to optimize the use of both systems to their maximum pg med to understand how much interaction between sails plays a role and how to use multiple sailing systems consid ing surrogate model ig the interact odel. was created to model the interaction between sails, and the maximum prediction error was and to be 8% in lift coeff prediction of the und that interaction significantly rotor sail. Then, the ship dynamics model, known as the Maneuvering Modeling Group mod as built. It wa affects the performance of sails, approximately 4%, and using a surrogate mo around 1% more than that of an · conf independent controller to the reduction of power required to maintain ship s

Keywords: Rigid wind sail, rotor sail, wind-assisted ship propulsion, krigit urrogate mode

1. Introduction

The International Maritime Organ duced regulations to deal with increasing CC achieve net-zero emissions by 2050 in shirt nany innovations and ideas are being produce emissions. Bouman et al. [2] listed dece the maritime industry and categorized them in ill design, propulsion systems, alternatized implem ion of other energy sources, and q impro Serra and Fancello [3] of lucted review on alternative solutions. pping and provided advantage id disadv ages of ach option. In d-assisted nclude different the pr at study eing investigated to combine the sailing benefits of em depending on wind direction, sailing t that can be acquired. thus total b

Wire assisted proposed reduce the required power by engine thus contribute to fuel savings and reducing CO₂

ain types of wind-assisted ship propulsion rigid wind sails, rotor sails, kites and suction sails. Rigid wind sails have an airfoil, which generates lift and drag forces due to pressure differences. By controlling the angle of attack (AoA), thrust force is maximized to assist he propulsion system and reduce the load on the engine, which leads to fuel savings. Since wind can come from any direction, symmetrical National Advisory Committee for Aeronautics (NACA) airfoils, multi-element wings and crescent-like airfoils were proposed to be used in wind sailing systems. Kramer and Steen [4] used NACA0015 airfoils and calculated fuel savings for different operational and design conditions, von Klemperer et al. [5] proposed an articulating sailing system based on NACA0020 airfoil and found that articulating airfoils can generate 30% larger lift forces compared to the fixed airfoil. Zhu et al. [6] proposed a crescent-like airfoil for rigid wind sails and compared it to a classical NACA0015 airfoil. It was found that crescent-like airfoils can generate larger thrust than classical NACA0015

Address for Correspondence: Asst. Prof. Cem Güzelbulut, Kahramanmaraş İstiklal University, Department of Mechanical Engineering, Kahramanmaraş, Türkiye

E-mail: cem.guzelbulut@istiklal.edu.tr

ORCID iD: orcid.org/0000-0001-9618-4032

Received: 03.06.2025 Last Revision Received: 15.08.2025 Accepted: 14.10.2025

Epub: 18.11.2025

To cite this article: T. Endo, and C. Güzelbulut, "Performance analysis of interacting rigid wind sails and rotor sails by kriging surrogate model," *Journal of ETA Maritime Science*, [Epub Ahead of Print]

airfoils. Then, Guzelbulut et al. [7] proposed a parametric crescent airfoil and optimized the shape of the crescent airfoil. The optimal crescent airfoil improved the efficiency of the sailing systems up to 22% depending on the wind direction. Unlike rigid wind sails, rotor sails are active devices which require steady power input. Rotor sails are cylinder-like structures and generate lift and drag forces due to pressure difference caused by rotational movement along their vertical axis. Tillig and Ringsberg [8] investigated the effectiveness of different Flettner rotor arrangements using a 4-degree-of-freedom model. To understand how the design and operational parameters of a single rotor sail affect the aerodynamics, Kwon et al. [9] conducted 3D fluid dynamics simulations considering aspect ratio, diameter ratio, and spin ratio. Guzelbulut et al. [10] considered different control strategies for the sailing system and the ship dynamics of a ship equipped with four rotor sails and concluded that integrating the ship dynamics controller and the sail controller can lead to further fuel savings. Since wind speed at higher altitudes is significantly stronger, static and dynamic kites were proposed, to harness this increased wind potential. Goksu and Erginer [11] investigated the canopy curvature of a kite on aerodynamic characteristics and towing force for wind-assisted ships. Dadd et al. [12] conducted an optimization study to find the optimal design and the operation of a dynamic kite. In the study, we examined whether using two dif systems together can have potential benefits d

er, inter When using multiple sailing systems between sails play a significant role. ad Ringst [8] used potential flow theory to determine nteraction between multiple rotor sails. lanova [13],applied Gaussian Process R fully co neural networks to model ne inte etween three d. [14 DynaRig configuration mined the effect of desynchron control o vo inter ting rigid wind sails ing cre like airfoi iging surrogate et al. models lso impleme a kriging surrogate model to n tion behavior of three symmetrical NACA er, the interaction between ems and hether using different sailing diffe it sailing to synergistic improvement of the s together la y of the sai effic systems still remain ambiguous. In imed to model the interaction between two differe pes using a surrogate model fitted by 3D fluid dynamics simulation.

In the present study, we first generated samples based on Latin Hypercube sampling (LHS) and conducted 3D computational fluid dynamics (CFD) simulations to create a database of aerodynamic and operational parameters. The interaction between sailing systems was estimated using an ordinary Kriging surrogate model. Finally, we conducted a case study to understand the effect of interactions between sailing systems. We examined how a controller, integrating an interaction surrogate model, can lead to further improvements to reduce propeller power.

2. Methodology

In the present study, we first conducted SED simula understand how the aerodynamics of sails the AoA of the rigid wind sails, spin ratio of to apparent wind direction. A gate moder created following CFD simu ions, who onditions we determined by LHS, to the tand the inte tion betwe sailing systems. Finally, the h ction effect tween sail systems and the actions were of syne investigated aneu Modeling Group (MMG) mod

2.1. CFD Sir ations

CFD nulations were conducted to mics of interacting sails. The racterize the rodynamic p meters of interest are the lift and drag fficients for th sailing systems, c_I and c_D , and the coefficie for rotor sails, c_p , which were defined as ons 1-3, where L and D are the lift and drag forces, \overline{P} is the power required to rotate the rotor sail, ρ_{air} is the density of air (1.225 kg/m³), V_A is the apparent wind speed, and A is the projected area of the sails. The rotor sail used in the study has a diameter of 5 m and a height of 30 m, resulting in a projected area, A, of 150 m². When it comes to a rigid wind sail, it has a chord length of 14 m and height of 50 m and results in a projected area, A, of 700 m².

$$c_D = \frac{D}{\frac{1}{2}\rho_{air}V_A^2 A} \tag{1}$$

$$c_L = \frac{L}{\frac{1}{2}\rho_{air}V_A^2 A} \tag{2}$$

$$c_P = \frac{P}{\frac{1}{2}\rho_{air}V_A^3 A} \tag{3}$$

While the aerodynamics of rigid wind sails depends on AoA, that of rotor sail is characterized by spin ratio, which is the ratio of tangential speed to apparent wind speed, as given in Equation 4. ω and R are the angular speed and the radius of rotor sails, respectively. The radius of the rotor sail is 2.5 m.

$$SR = \frac{\omega R}{V_A} \tag{4}$$

The computational domain used in CFD simulations is threedimensional having the following arrangement, positioning and boundary conditions:

- The distance between rotor sail and rigid wind sail is set to be 100 m
- The mid-point of sailing system is set to be 200 m away from the inlet
- ϑ defines the apparent wind direction
- The size of the computational domain is $600x300x100 \text{ m}^3$
- Inlet fluid speed is set to be 10 m/s
- Slip boundary condition was defined on bottom surface on xy plane
- Wall (no-slip) boundary conditions were defined on the outer surfaces of both sailing systems
- The remaining surfaces were set to be an outlet boundary conditions as shown in Figures 1 and 2.

CFD simulations were performed on Altair Hypermesh CFD 2023 and AcuSolve 2023 based on a steady-solution of the Reynolds-Averaged Navier-Stokes equations with Shear Stress Transport (SST) k- ω turbulent modeling. The properties of the fluid are given in Table 1.

The following mesh refinements around rotor sail and rigid wind sail were assigned to computational volume to capture the acting forces.

- The maximum length of edges aro the river vind sail and rotor sail is 0.1 m.
- The number of prism elements around rotor sail with a growth rate of 1.3. The thickness he first each layer around the rotor sails is 0.0001 m.

- The number of prism elements around the rigid wind sail is 10, with a growth rate of 1.3. The thickness of the first edge layer around the rotor sails is 0.005 m.
- The element size of surface elements on rigid wind sails and rotor sails is 0.3 m.
- The maximum global volume mesh size is with a growth rate of 1.2.

2.2. Sampling of CFD Database

To establish a surrogate model of interaction a set of data is required. There re various determining the sampling poi ulated. LHS chosen due to its extensive se in CFL plications ar kriging surrogate modely outs of the ogate mod were the AoA of the rigid win il, the spin o of the ro sail, and the appa ing points for vind di each parameter

able 1. Physica roperties of

Pr ty	Value	
Densh	1.225 kg/m ³	
Dynamicsiscosity	1.781x10 ⁻⁵ kg/ms	

Table 2 *Impling points for each input parameter*

Parame (nit)	Sampling points
Angle of attack (deg)	-90, -75, -50, -40, -30, -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 40, 50, 75, 90
Spin ratio (-)	-5, -3, -2, -1, 0 ,1, 2, 3, 5
Apparent wind direction (deg)	0, 30, 60, 90, 120, 150, 180

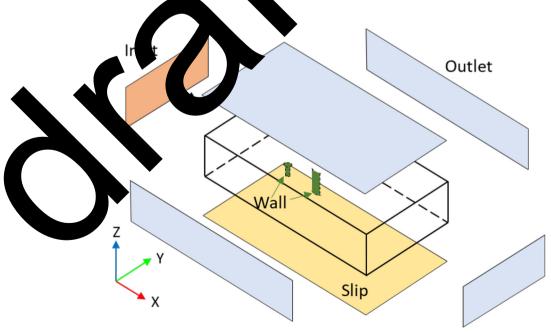


Figure 1. Boundary conditions and computational volume of the problem

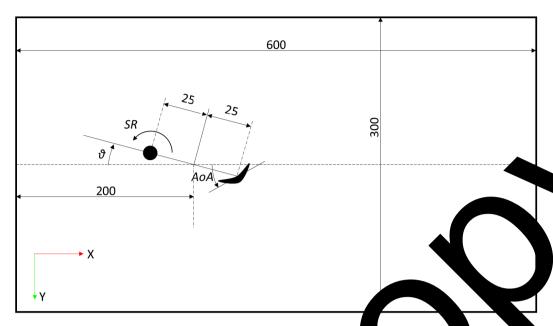


Figure 2. The dimensions of computational volume and the definitions of the parameter used in CFD selections (CFD: Computational fluid dynamics, SR: Spin ratio, AoA: Angle of attack

The airfoil used in the present study is a crescent-like airfoil obtained by previous study conducted by Zhu et al. [6], and has a maximum lift around *AoA* of 20 deg. Therefore, data points were concentrated within the range of 10-30 degrees. When it comes to rotor sails, previous studies have terized the behavior of rotor sails for the structure of 0-5, which justifies the spin ratio range sterming a sign of the spin ratio implies whether the station as a clockwise or counterclockwise direction.

LHS is a design of experiment technique the atistically reduces the total possible co design variable. More precisely, it up utes each nple point within the design st e. Usi 170 different conditions in which in and rent wind iven sampling direction were unifor v distrib dacross Samplin re divided into 85% tra and 15% t data

2.3. Krigin rrogate del

mation methods to express Surr com x behavior to reduce computational time. In the ed an ordinary kriging surrogate pres study, we gate models are interpolation-based mode giging su d approach the real function as given surrogate in Equation 5, where \hat{y} is predicted response, and Z(x) are mean and deviation terms, and x is the parameters vector. In ordinary kriging surrogate models, the mean term is a zeroorder polynomial function.

$$\hat{y} = \hat{\mu} + Z(x) \tag{5}$$

establish an ordinary Ariging surrogate model, covariance s defined to inderstand the proximity of the sampling parts, as shown Equation 6, where σ^2 is the variance, and $R(X, \Phi^{(i)})$ is a correlation function. In the present study, the Gass are correlation function, as given in Equation 7, was used, where d is the number of parameters and θ is the hyperparameter vector of the model to be tuned.

$$\operatorname{Cov}\left(Z(x^{(i)}), Z(x^{(j)})\right) = \sigma^2 R(x^{(i)}, x^{(j)}) \tag{6}$$

$$R(x^{(i)}, x^{(j)}) = \exp\left(-\sum_{k=1}^{d} \theta_k (x_k^i - x_k^j)^2\right)$$
 (7)

In each prediction, a covariance vector, r, is calculated as given in Equation 8, where n_{sample} is the number of sampling points.

$$\mathbf{r} = \left[R(x, x^{(1)}) \quad R(x, x^{(\dots)}) \quad R(x, x^{(n_{sample})}) \right]^T \tag{8}$$

The predicted output value of new parameters is estimated by Equation 9, where y is the output vector with size $n_{sample} \times 1$, and f is the vector of ones with by the size $n_{sample} \times 1$.

$$\hat{\mathbf{y}} = \hat{\mu} + \mathbf{r}_{(\mathbf{x})}^T \mathbf{R}^{-1} (\mathbf{y} - \mathbf{f}\hat{\mu}) \tag{9}$$

For any given θ , μ^2 and σ^2 are found using Equations 10 and 11.

$$\hat{\mu} = (f^T \mathbf{R}^{-1} f) \times (f^T \mathbf{R}^{-1} \mathbf{y}) \tag{10}$$

$$\sigma^2 = \frac{1}{n_{sample}} (\mathbf{y} - \mathbf{f}\hat{\mu})^T \mathbf{R}^{-1} (\mathbf{y} - \mathbf{f}\hat{\mu})$$
 (11)

To find the best θ vector, the maximum likelihood estimator was used, as given in Equation 12, and genetic algorithm was adopted to pick the optimal θ .

$$\max_{\theta} \left(-\frac{n_{sample}}{2} \ln(\sigma^2) - \frac{1}{2} \ln(|\det(R)|) \right)$$
 (12)

2.4. Ship Dynamics Model

To analyze how sailing systems affect propeller power in response to environmental conditions, a ship dynamics model, namely MMG model [16,17], was used. The equation of the motion of a ship based on the MMG model is given in Equation 13. Here, m, m_x , m_y , I_{zG} , and J_z are the mass, added mass, inertia, and added inertia terms; u and v_{\perp} are the surge and sway speeds; r is the yaw rate; x_c is the position of the center of gravity with respect to midship; X, Y, and N are the acting force and moment in the direction of surge, sway, and yaw. The subscripts H, P, R, Sail, and HullWind indicate hull hydrodynamic forces, propeller forces, rudder forces, sail forces, and hull-wind interaction forces. Further details regarding the formulation of the model can be found in previous studies [18,19]. Target ship in the present study is KVLCC2 [20], whose length between perpendiculars is 320 m, breadth is 58 m, draft is 20.8 m, and block coefficient is 0.81.

$$(m + m_x)\dot{u} - (m + m_y)v_mr - x_Gmr^2 = X_H + X_P + X_R + X_H + X_{HumWind}$$

$$(m + m_y)\dot{v_m} + (m + m_x)ur + x_Gm\dot{r} = Y_H + Y_P + Y_{Sail}$$

$$(I_{2G} + x_G^2m + J_z)\dot{r} + x_Gm(\dot{v_m} + ur) = N_H + N_P + N_{Sail}$$

$$(13)$$

autopi To evaluate the performance of sa integrated into the MMG model to fe straight i at a given ship speed. Due to the interaction tween th hull and the environment and enerated he sail. propeller revolution, and rudd ed to d be cor ensure the same conditions st. Thu emparison and evaluation are conducted.

The performance of d wind or sails highly depen on their. tional para as the AoA and ion effect b n sails is neglected, spin ra the in both saili ld have their own controller to stems aditions. For example, AoA is detern rationa st, and spin ratio is determined dete ze the ta ence between the propulsive power imize the d all and the power required to rotate d by the rot gene at oper owever, it is inevitable that interaction n multiple sailing systems. In this case, the optimal operational conditions would change depending on the environment. To investigate how much interaction plays a role and how an integrated controller would improve the overall performance, a case study was conducted as given in Table 3. In Case 1, the physical interaction effects are neglected, and sails are operated at their own individual

optimal points. In Case 2, the physical interaction effects are included in the model, but sails operate at their own optimal points to identify how much interaction plays a role. In Case 3, the controller logic is adjusted to find the mutual optimal points, using the knowledge of the surrogate model of interaction, to measure the extent to which the attegrated control approach improves the overall performance.

3. Results

First, the performance of the surrogate in this study was presented in Figure 3 and Tac 3 shows a plot with the CFD nd values o horizontal axis and the sur predicted a gate mod values on the vertical ax mparing the ults based each type of sail. To evalua e errors qu titatively. root mean square (RMS absolute error (MAE) were 4. In addition to RMSE and M E and MAE to the E values, the maximum va of the corre cients (RMSE/ nding c d. Results indicate that the MAE/c vere calcul gate model are sufficiently urate. The maxiprediction error was found to be 06% and 5.8 in terms of RMSE/c_{max} and MAE/c_{max} the rotor sa lift coefficient prediction, respectively. ore, it be concluded that the surrogate model an acceptable level of accuracy.

After obtaining the surrogate model behavior, three different models corresponding to the cases given in Table 3 were created. Then, the required propeller power for each case

Table 3. Sampling points for each input parameter

Cases	Rotor sail control	Rigid wind sail control	Interaction effect		
Case 1	SR to maximize net power	AoA to maximize sail thrust	Not included		
Case 2	SR to maximize net power	AoA to maximize sail thrust	Included		
Case 3	Surrogate model of interaction is integrated to maximize total net power to determine <i>SR</i> and <i>AoA</i> .				
SR: Spin ratio, AoA: Angle of attack					

Table 4. Error analysis of surrogate model

	$\mathbf{C}_{ ext{D,rigid}}$	$\mathbf{C}_{\mathrm{L,rigid}}$	C _{D,rotor}	C _{L,rotor}	C _{P,rotor}	
RMSE	0.0420	0.0921	0.1983	0.8026	0.0163	
MAE	0.0347	0.0671	0.1491	0.5850	0.0123	
RMSE/c _{max} (%)	3.15	6.91	6.61	8.06	1.01	
MAE/c _{max} (%)	2.61	5.03	4.97	5.88	0.76	
RMSE: Root mean square error, MAE: Mean absolute error						

was compared to the propeller power of the ship without any sailing system. As given in Figure 4, the percent propeller power reduction was calculated for the true wind speed of 10 m/s and the different true wind angles. It was found that Case 1 revealed a higher power reduction compared to other cases because the interaction effects were ignored. In the condition of true wind angles between 30 and 90 degrees, the surrogate model-informed controller in Case 3 found better operating conditions, leading to higher power reduction characteristics.

To clarify how such an integrated controlling approach achieves higher power reduction, optimal operating conditions assigned by the controller were investigated, as shown in Figure 5. Since Case 1 and Case 2 have the same

controlling strategy, which neglects the interaction model, spin ratios and angles of attack were found to be almost the same. On the other hand, the integrated control approach in Case 3 leads to having different optimal spin ratios and angles of attack.

It is also important to reveal how much thrust is tenerated by each sailing system depending on controlled upe and interaction model. Figure 6 shows how much just is generated considering different modelling approches based on different cases. It was found to see 1 a cays overestimates the thrust generated because the second between sailing systems is Surprisingly, we integrated control action er ances the genall thrust

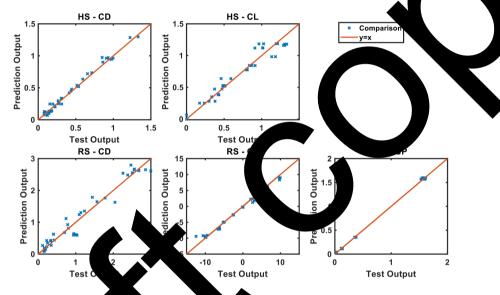


Figure 3. The performance of the develope A_D at C_D and C_D estimation compared to CFD-computed C_D and C_D HS: Hard sail, CD: Drag coefficient, RS: Rotor sale C_D : Computational fluid dynamics

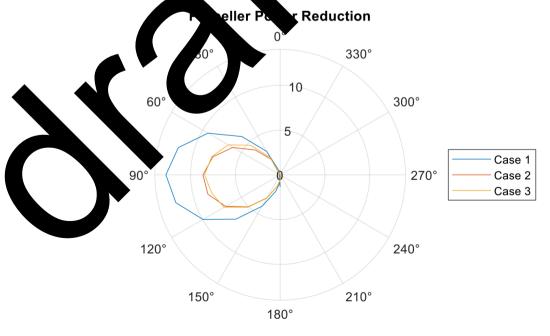


Figure 4. The amount of propeller power against the wind direction in each case

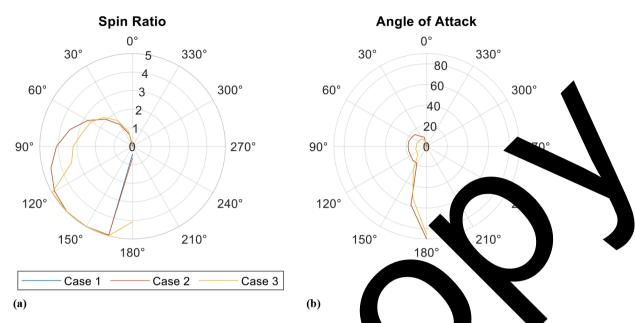


Figure 5. The optimal (a) spin ratio and (b) angle of attack depending on the true win

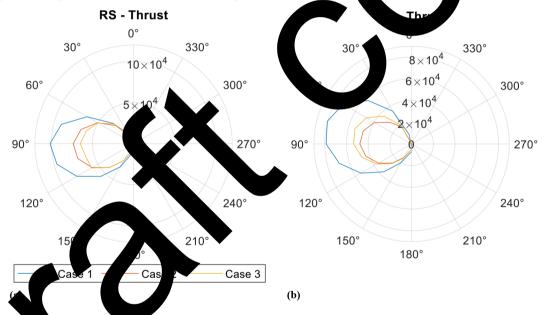


Figure 6. Thrust getted by (a) rotor sail and (b) rigid wind sail depending on the true wind direction increasing ficiency rigid wind sail and reducing the such a situation, propeller revolution.

4. I cussion

cy of ro

effic

Wind wisted proposion systems gain attention due to their potential and consumption and CO₂ emissions using wind as a free energy source. Although their implementation in vessels increases continuously, there are some challenges that need to be investigated. When wind-assist systems are integrated into ships, the additional thrust can be used without changing the operating point of the propeller. In this case, resistance will also increase as the ship speed increases. Thus, the efficiency of sailing systems drops. To avoid

such a situation, propeller revolution should be controlled to maintain ship speed, thus leading to reduced propeller power and fuel consumption. In addition, the bridge, other superstructures on deck, and other sailing systems affect the actual flow speed and direction near the sail of interest. In this case, extensive CFD simulation results or experimental/ operational data should be incorporated into controllers to find the optimal operating point of sailing systems. In the present study, the interaction effects of different sailing systems on the force generation characteristics of sails and the effect of CFD simulation data on the performance of sails were investigated.

The fluid interaction between the same type of sailing systems was investigated previously. Since the interaction problem is complex and dependent on many factors, some studies used simpler models, such as potential theory, to generate data. To increase the accuracy of fluid dynamics, the steady incompressible Reynolds-Averaged Navier-Stokes equations with the SST k-ω turbulence model were employed. Since the computational cost increases, a surrogate model of interaction is required. Among various methods, the kriging surrogate model with LHS was selected due to its performance with fewer sampling points. As shown in Figure 3 and Table 4, the surrogate model developed in this study demonstrates generally high prediction accuracy with a maximum 8% relative RMSE and 5.8% relative MAE. Kriging surrogate models can be considered as a suitable method to investigate the interactions of multiple sailing systems based on performance metrics, the computational cost of building a database, and requiring fewer data points. By employing such a surrogate model, the number of required simulations can be reduced significantly. On the other hand, it was observed that the performance of the surrogate model decreases when the wind direction is between 0° and 30° or 150° and 180° relative to the heading direction. This is likely due to the complex flow interactions occurring between the rigid wind sail and the rotor sail in these regions, where aerodynamic in omes significant. The complexity of the f eraction in th zone is considered difficult to accur the the Kriging model.

In this study, two key findings were The first whether the aerodynamic interaction is cons d or not leads to a significant differen esulting st. As shown in Figure 4 and Figure Case 1 e the inte ction is not considered, consiste y ove he effect of the sails in all wind ss all directions, times ore thrust than Case 1 produces ap oximately Case • thich co. rs the aero iteraction. When thrust g tion c teristics were considered, Case 1 yields abou to 1.8 more thrust than Case 2 across ults indicate that neglecting all w odynamic action leads to an overestimation of the be interaction between sails has a thru suggesting t al effect of he actual thrust that can be obtained. detrii ling is that integrated control of the sails leads to better performance compared to independent operation. As shown in Figure 4 and Figure 6, Case 3 where the rigid wind sail and rotor sail are optimally operated integratively—achieves higher thrust than Case 2, where the two sails are controlled independently. In Figure 6, this advantage of integrated control is particularly evident when the wind direction is between 60° and 90°. Referring

to Figure 5, which shows the *AoA* and spin ratio for the same wind directions, it can be observed that both *AoA* and spin ratio varied in Case 3. These results suggest that the integrated control strategy seeks to minimize the flow interference caused by the rotor sail, thereby allowing the rigid wind sail to generate maximum thrust. As a result, the total thrust output is effectively maximized.

In this study, the aerodynamic interaction between rigid wind sail and a rotor sail was considera d the thr and energy savings achieved through integrate evaluated. It was confirmed that i ed operation y consumpt in an average reduction of across all wind directions wever, furth eductions ca be expected when this a ch is comb d with of strategies. One such strategy oute opti zation, which involves adjustig naximize wind sail availability. A low ship speed. ther strate

5. Study L. itations

several lir ations. First, the cost analysis ce, operating multiple types of not conducte ls may lead increased maintenance and operational since the initial and running costs of ts. However wind sails nd rotor sails include many confidential insiderations were excluded from this study. The second limitation relates to the impact on ship balance caused by the installation of sails. The addition of rigid wind sails and rotor sails may alter the center of gravity, and the rotation of the rotor sails can generate moments that may educe the ship's stability. In actual ship operations, safety is a critical parameter, and thorough analysis will be essential for future applications.

While the multi-sail system developed in this study has demonstrated its potential to contribute to greenhouse gas reduction, it is expected that even greater performance gains can be achieved. To achieve further improvements, surrogate models that consider design parameters in addition to operational parameters may be utilized to find the optimal layouts of multiple sailing systems. Another important point is that multiple sailing systems generate significantly larger thrust and affect the operating point of the engine and propeller. To evaluate the extent of reduction in fuel consumption achieved using many sailing systems, a main engine model is required. These issues remain for future investigation and development.

6. Conclusion

In this study, we developed an integrated operational model that combines multiple types of wind-assisted devices, specifically, a rigid wind sail and a rotor sail to overcome the limitations of existing devices. For the development of the model, the aerodynamic effects arising from the operation of multiple types of sails were analyzed using CFD simulations. Based on the CFD results, a kriging surrogate model was constructed to efficiently represent aerodynamic behavior. Using the surrogate model integrated into an MMG model, researchers investigated the interaction effect and the interaction-informed controller approach. It was confirmed that when interaction model is not considered, the reduction in propeller power tends to be overestimated This discrepancy is caused by aerodynamic interference between the sails, which disturbs the flow and results in actual wind conditions deviating from the assumed input. Next, the effect of interaction-informed control was investigated. It was confirmed that integrated operation yields greater thrust and reduces fuel consumption more effectively, with particularly significant differences observed when the wind direction is between 60° and 90°. This suggests that the integrated control strategy minimizes aerodynamic interference between the sails, allowing each sail to operate as if the other were not present.

Footnotes

Authorship Contributions

Concept design: T. Endo, and C. Güzelbulut, Data Collection or Processing: T. Endo, and C. Güzelbulut, Analysis or Interpretation: T. Endo, and C. Güzelbulut, Literature Review: T. Endo, Writing, Reviewing Edit L. Endo, and C. Güzelbulut.

Funding: The authors did not receive ancial smort for the research, authorship and/or public and of this arm

References

- [1] IMO, "Initial IMO strategy of Fauch of GHG embass from ships," [Online]. Availab https://www.oorg/en/owwork/Environment/Pages/Visio nd-level -and so-of-the-Initial-IMO-Strategy.aspx. Physics June 2025].
- [2] E. A. Bouman, E. Adstad, A. I. alland, a. A. H. Strømman, "Lete-of-the inologies, me as are ofential for reducing Organisations whipping a research part in support a Suvironment, vol. 52, Part A, pp. 408-421, 2017
- [3] Perra, and Chancello, "Lards the IMO's GHG goals: a critical verview of the projectives and challenges of the main options for carbonizing into an pal shipping," Sustainability, vol. 12, 3220,
- [4] J. mer S. Steen, "Sail-induced resistance on a wind-poweree ship," *Ocean Engineering*, vol. 261, 111688, Oct 2022.

- [5] C. J. von Klemperer, R. A. D. Horwitz, and A. G. Malan, "An articulating wingsail design for Wind Assisted Ship Propulsion (WASP) applications," *Scientific African*, vol. 20, e01699, Jul 2023.
- [6] H. Zhu, H. D. Yao, F. Thies, J. W. Ringsberg, and B. Ramne, "Propulsive performance of a rigid wingsail with crescent-shaped profiles," *Ocean Engineering*, vol. 285, 115349, Oct 2023.
- [7] C. Guzelbulut, T. Badalotti, and K. Suzuki, "Optimization echniques for the design of crescent-shaped hard sails for windated ship propulsion," *Ocean Engineering*, vol. 312, 119142, Nov. 4.
- [8] F. Tillig, and J. W. Ringsberg, "Design, gion and are is of wind-assisted cargo ships," *Ocean Engineerin*, 211, 1 103, Sep 2020.
- [9] C. S. Kwon, S. M. Yeon, Y. Jam, X. Kim, Y. H. Kim, H. J. Kang, "A parametric stay for a fleth cotor in standalo condition using CFD," Kanada Journal of a vival Architectural Ocean Engineering, vo. 100493, Jan 20
- [10] C. Guzelbulut, T. Badalotti, a. X. Suzuki impact of control strategies freed sh, and agy consumption," Brodograf vol. 76, 76 Nov 20.
- [11] B. Goksu d K. E. Erginer, aluation of sanopy curvature for a kite ass d ship propulsio system," *Nav. Ingineers Journal*, 134, p. 104, 2022.
- G. M. Dadd, and R. A. Shenoi, "Determination of kite forces using unree-dimensional flight trajectories for ship propulsion", newable Energy, vol. 36, pp. 2667-2768, Oct 2011.
- M. Reche-Vi ova, et al. "Predictive surrogates for aerodynamic rformance and independent sail trim optimization of multiple alsion system configurations," *Journal of Sailing Technology*, vol. 10, pp. 19-49, 2025.
- [14] R. Zhang, et al. "A novel method of desynchronized operation of sails for ship wind-assisted propulsion system," *Ocean Engineering*, vol. 288, 115964, Nov 2023.
- 15] H. Lee, Y. Jo, D. J. Lee, and S. Choi, "Surrogate model based design optimization of multiple wing sails considering flow interaction effect," *Ocean Engineering* vol. 121, pp. 422-436, Jul 2016.
- [16] A. Ogawa, T. Koyama, and K. Kijima "MMG report-I, on the mathematical model of ship manoeuvring," *Bull Soc Naval Archit Jpn*, vol 575, pp. 22-28, 1977. [In Japanese]
- [17] A. Ogawa, and H. Kasai, "On the mathematical method of manoeuvring motion of ships," *Int Shipbuild Prog* vol: 25(292), pp. 306–319, 1978.
- [18] H. Yasukawa, Y. Yoshimura, "Introduction of MMG standard method for ship maneuvering predictions," *Journal of Marine Science and Technology*, vol. 20, pp. 37-52, 2015.
- [19] C. Guzelbulut, T. Sugimoto, Y. Fujita, K. Suzuki, "Investigation of the efficiency of wind-assisted systems using model-based design approach," *Journal of Marine Science and Technology*, vol. 29, pp. 387-403, Apr 2024.
- [20] MOERI KVLCC2 geometry and conditions, SIMMAN 2008, FORCE technology. [Online] http://www.simman2008.dk/KVLCC/ KVLCC2/kvlcc2_geometry.html. Accessed: 27 June 2023.