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1. Introduction 
Over the past decades, maritime transport has played 
an increasingly vital role in facilitating global trade. 
Containerization, in particular, has revolutionized the way 
goods are handled, allowing for standardized, secure, and 
efficient movement across vast supply chains [1,2]. Ports 
serve as critical nodes in this network, acting as gateways 
between sea and land transport [3]. As container traffic 
continues to grow, improving the performance of port 
operations has become a strategic necessity for economies 
relying on seamless and timely cargo flow [4].
Among the various operational indicators used to evaluate 
port efficiency, the service time of container ships remains 
one of the most crucial [5]. This metric directly reflects how 
effectively terminal resources are managed, especially the 
allocation and scheduling of quay cranes [6,7]. The time a 
ship spends at berth is not only a matter of cost but also a 
determinant of terminal throughput and customer satisfaction. 
Optimizing crane schedules, therefore, plays a central role 
in enhancing the overall performance and competitiveness 
of container terminals [8-10]. Figure 1 illustrates a typical 

container terminal environment, where quay cranes operate 
alongside berthed ships and coordinate with other handling 
equipment to ensure seamless cargo flow.
In this context, quay crane scheduling refers to the process 
of assigning unloading or loading tasks to cranes in an 
efficient and coordinated manner. The problem has been 
extensively studied in the literature, with most research 
focusing intensely on unidirectional (UDS) and bidirectional 
movement strategies. However, the internal distribution of 
containers across the ship bays also plays a critical role, 
particularly in studies where a bay is treated as a complete 
task [11-13]. Some works have restricted crane movement 
to a single direction to avoid potential interference [14-
16], but such limitations can increase ship service time and 
lead to workload imbalance. Other studies have explored 
bidirectional movements and the possibility of assigning 
the same bay to multiple cranes, thereby enhancing solution 
flexibility [17]. Yet, unless these shared bays are processed 
in a tightly synchronized manner, they can cause weight 
imbalance, especially lateral stability between the seaside 
and land side of the ship. Early studies in this domain relied 
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heavily on exact algorithms and commercial solvers, which 
tend to become inefficient as problem size increases and 
constraint verification becomes more complex. 
Based on the limitations discussed above, this study 
emphasizes the adaptability of metaheuristics; unlike 
exact methods, which face scalability barriers as problem 
size grows, metaheuristics can be seamlessly hybridized 
with operational rules. This property enables the proposed 
approach to embed practical constraints and enhance 
realism, thereby directly overcoming the issue of insufficient 
dynamic adaptability.
Given the hybrid nature of this work, harmony search 
(HS) offers an appropriate balance between simplicity and 
effectiveness. While genetic algorithm (GA) and particle 
swarm optimization (PSO) are recognized for their strong 
performance in purely metaheuristic settings, the lightweight 
structure of HS makes it more suitable when combined with 
a rule-based approach. Unlike single-trajectory approaches 
such as Tabu Search or Simulated Annealing, HS evolves 
a population of candidate solutions through its harmony 
memory, thereby enhancing exploration while preserving 
computational efficiency. This combination of diversity 
and simplicity makes it particularly well aligned with the 
requirements of the proposed framework.
The objective of this study is to propose a novel solution to 
the quay crane scheduling problem (QCSP) under the non-
crossing constraint, offering a perspective that departs from 
conventional approaches in the literature. In the following 
section, we review related studies, highlight the limitations 
inherent in each, and clarify the specific gaps that the present 
work addresses.

2. Literature Review 
In this part, we divide the existing literature into three main 
categories based on how the QCSP has been approached. 
The first category encompasses foundational works that 
gradually shaped the problem’s structure by addressing key 
operational constraints. The second category includes models 
that integrate crane scheduling with broader port operations. 

The third category focuses on QCSP under uncertainty. 
While these models offer adaptive strategies, we also point 
out certain limitations related to movement flexibility and 
directional constraints that remain unaddressed.

2.1. QCSP 
The QCSP was initially introduced by the author in [19], 
who formulated a mixed-integer programming model 
aiming to minimize ship turnaround time. The study [20] 
extended this formulation through a branch-and-bound 
approach, though both studies did not consider crane 
interference. The work [21] proposed a foundational model 
that treats tasks as complete bays and introduces non-
crossing constraints. The study [22] expanded this modeling 
by presenting a more detailed framework that included non-
crossing, minimum distance, and job-separation constraints. 
The proposed approach combined exact and heuristic 
methods. The research [23] improved the model of [21] by 
incorporating safety distances to prevent interference and 
solved it using a branch-and-cut method. The study [24] 
developed this line of research by employing a Tabu Search 
based on a disjunctive graph structure for faster solution 
generation. The work [11] presented a scheduling model 
based on individual jobs with non-crossing constraints, 
which implicitly enforced unidirectional crane movements. 
The proposed formulation introduced a detailed integer 
programming model and a graph-based simulated annealing 
method to solve large instances. The study [12] extended the 
model beyond single-ship scheduling by addressing multiple 
ships and proposed a two-level heuristic for minimizing ship 
tardiness. This study integrated berth-level QC allocation 
with ship-level workload scheduling, incorporating non-
crossing, safety margins, and crane traveling times. It also 
allowed bay-level workload splitting, which improved 
flexibility and performance. The research [25] proposed 
the UDS heuristic for QCSP with container groups. This 
work outperformed previous approaches in both solution 
quality and computational speed, especially on benchmark 
instances. The study [26] introduced crane time windows, 
enabling dynamic task assignment based on crane availability 
over time. The work [27] incorporated unidirectional 
movement, time windows, and spatial limitations, and 
proposed a mixed-integer programming model combined 
with a tailored tabu search algorithm. The study [28] 
used a GA that permitted bidirectional crane movement 
while maintaining non-crossing constraints and balancing 
workloads. The research [29] presented hybrid evolutionary 
computation methods capable of generating diverse and 
efficient schedules. The study [17] developed a bidirectional 
model that allowed multiple cranes to serve the same bay, 
focusing on minimizing idle times and workload imbalance. 
The research [1] compared two metaheuristics (ACO and Figure 1. Configuration of container terminal [18]
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GRASP–GA) for QCSP in non-automated terminals, and 
the best approach was embedded in a DSS to enhance crane 
utilization and terminal productivity.
These studies collectively illustrate the progressive evolution 
in how researchers have approached QCSP. Early works 
relying on exact optimization delivered precise solutions but 
quickly became impractical as problem size and constraint 
complexity increased, underscoring a fundamental scalability 
limitation. Later approaches based on pure metaheuristics 
alleviated this issue, yet they often left open the question 
of how close the obtained schedules were to the optimal, 
since solution quality depended heavily on stochastic 
search without embedded operational logic. In contrast, the 
present work integrates metaheuristic search with rule-based 
coordination, allowing operational constraints to directly 
guide the search process. This hybrid design enhances the 
reliability of the outcomes and narrows the gap to optimal 
solutions. A further distinction in prior studies lies in how 
constraints have been modeled-some focusing on entire bays, 
others on container groups, some including safety margins, 
others omitting them, making direct comparisons difficult. 
By adopting a consistent bay-level model enriched with 
practical rules such as non-crossing and workload balance, 
our approach provides a more unified and operationally 
realistic framework.

2.2. Integrated QCSP 
In berth scheduling, the service time of a ship is not a fixed 
input; it directly depends on the number of quay cranes 
assigned and the efficiency of their coordination. This 
dependency has led several studies to embed quay crane 
scheduling within berth allocation models [30,31]. The 
study [32] developed a simulation-optimization framework 
that integrates berth allocation and quay crane scheduling 
under stochastic handling times and dynamic ship arrivals. 
The proposed model was solved using simulated annealing 
to minimize makespan. The research [33] addressed this 
integration by proposing a joint model where berthing order, 
berthing position, and the number of cranes per ship are 
optimized simultaneously. This work relied on an enhanced 
genetic algorithm with population partitioning that explicitly 
incorporates crane assignment. The study [34] moved 
further toward realism by introducing time-variant crane 
scheduling under tidal access constraints. In this model, 
ships are assigned cranes dynamically throughout their stay, 
depending on tidal windows and operational feasibility. 
The authors proposed three hybrid heuristics to handle the 
combined berth and crane decisions efficiently. The research 
[35] proposed a deeply integrated framework in which berth 
allocation, crane assignment, and crane scheduling are 
handled together while enforcing non-crossing constraints 
and safe distances between cranes. The model was solved 

using a random-topology PSO designed for large-scale 
instances. The work [36] adopted a discretization strategy 
that converts the continuous berth space into manageable 
segments. The proposed approach included a large 
neighborhood search mechanism with dedicated procedures 
to preserve feasibility throughout the optimization process.
Some recent contributions have focused on the joint scheduling 
of quay cranes and yard trucks to enhance coordination and 
minimize operational bottlenecks. The study [37] proposed 
a mixed-integer linear programming model for jointly 
scheduling quay cranes and trucks, addressing precedence, 
crane interference, and blocking constraints. The authors 
used an improved PSO algorithm and considered both 
unidirectional and bidirectional container flows. The research 
[38] formulated a mixed-integer linear programming model 
for the joint scheduling of quay cranes, yard trucks, and yard 
cranes. A genetic algorithm with a 3D chromosome design 
was introduced to improve efficiency and to support low-
carbon terminal operations. The model in [37] was extended 
by the study [39], which corrected previous assumptions 
such as allowing two-container handling per crane or truck. 
The authors proposed an adaptive PSO that dynamically 
adjusts parameters and demonstrated that it outperformed 
earlier methods on larger problem instances.
While these integrated studies provide valuable insights 
into berth-quay and quay-yard interactions, they generally 
target a broader scope of terminal operations. In contrast, the 
present work focuses specifically on intra-vessel quay crane 
coordination under non-crossing constraints, providing a 
complementary but distinct contribution to the literature.

2.3. QCSP Under Uncertainty 
Several researchers have addressed QCSP under uncertainty, 
with growing attention to realistic parameters such as 
stochastic processing times, uncertain ship arrivals, energy 
fluctuations, and even fuzzy handling conditions. Focusing 
on processing time as a primary stochastic element, the 
author in [40] employed a two-stage stochastic programming 
model complemented by metaheuristics for scalability, while 
the study in [41] introduced a unified distributionally robust 
framework that balances between stochastic and robust 
extremes through a tunable parameter. In a similar approach, 
the study in [15] addressed uncertainty from a dual-
objective perspective, minimizing makespan and energy 
consumption using exact techniques under deterministic 
but fixed-direction conditions. The study in [42] tackled 
integrated berth and crane scheduling in multi-terminal 
tidal ports under uncertainty, using a nonlinear formulation 
and an adaptive genetic algorithm enhanced with simulated 
annealing. The author in [43] considered berth and crane 
assignment jointly, formulating a robust model that also 
incorporates fluctuating energy prices. Meanwhile, the study 
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in [16] extended the discussion to dynamic rescheduling, 
reacting to ship delays and unscheduled arrivals with a 
rolling-horizon heuristic. Additionally, the study in [44] 
adopted a fuzzy logic approach to handle the uncertainty 
of ship arrival times, offering an alternative to probabilistic 
representations. From an algorithmic standpoint, the 
author in [14] proposed a hybrid estimation of distribution 
algorithm enhancing traditional probabilistic models 
through bio-inspired local search. Despite the diversity and 
depth of these contributions, most of the above works, with 
the exception of the study in [42], adopt the unidirectional 
crane movement assumption, which is often presented as the 
optimal strategy in the literature. While this simplification 
helps avoid interference and reduces model complexity, it 
does not fully reflect real operational conditions. In practice, 
the distribution of containers along the containership can 
significantly affect the completion time of tasks; enforcing 
a single movement direction may prevent the achievement 
of optimal makespan. In our approach, cranes are allowed to 
move in both directions, which provides greater flexibility 
and enables more efficient scheduling. We summarize the 
main contributions of this research as follows:
- The study introduces a novel hybrid formulation of the 
QCSP, combining HS with rule-based coordination to ensure 
realistic scheduling. This directly responds to the scalability 
limits of exact methods and the lack of optimality assurance 
in pure metaheuristics.
- Explicit integration of initial crane positioning as a decision 
variable, overcoming the fixed-starting-point limitation of 
earlier QCSP models.
- Introduction of empty and full path concepts to guide 
dynamic crane assignment, providing flexibility beyond 
the rigid unidirectional assumptions common in previous 
studies under uncertainty.
- Feature-based analysis to explore the behavior of the 
Harmony algorithm, highlighting the emergence of a 
dominant feature across multiple scenarios.
- Comprehensive performance assessment of the proposed 
approach through comparative experiments against state-of-
the-art methods, including a benchmark GA and the UDS 
heuristic, as well as a relaxed non-crossing scenario used to 
estimate the solution space limits.
The remainder of this paper is organized as follows. Section 
3 introduces the problem and outlines the operational 
assumptions adopted in this study. Section 4 details the 
proposed hybrid methodology. In Section 5, a comprehensive 
experimental analysis is presented, highlighting the behavioral 
features of the proposed method, benchmark comparisons, 
and sensitivity tests. Finally, Section 6 concludes the paper 
with key findings and future research perspectives.

3. Problem Description
This study focuses on the scheduling of multiple quay cranes 
assigned to unload containers from a single ship. The ship 
is divided into a sequence of bays, each containing a known 
number of containers as shown in Figure 2. Each bay is 
treated as an indivisible task that must be fully handled by one 
crane. A set of quay cranes is available and allowed to move 
bidirectionally along the ship. Bays are indexed from left to 
right, with Bay 1 located at the far left and the last bay at 
the far right. Throughout the operation, a strict non-crossing 
constraint is enforced, ensuring that cranes never pass over 
or interfere with one another. The time required to move 
between adjacent bays is assumed to be negligible. All cranes 
are assumed to operate at the same speed, and the handling 
time of a bay is calculated by the number of containers in 
the bay divided by the crane’s handling speed. In contrast to 
many previous studies where the initial crane positions are 
fixed [11,21,37,39,41], this work considers these positions 
as part of the decision process. The aim is to explore how 
different initial configurations can influence the efficiency 
of the resulting schedule. To support this investigation, 
three positioning strategies are proposed and evaluated. 
The objective is to minimize the total completion time of 
the unloading process, also known as the makespan, which 
corresponds to the latest finishing time among all cranes. 
This objective also expresses the balance of workload among 
cranes, as minimizing the makespan requires distributing the 
unloading tasks as evenly as possible.
The problem setting and constraints described above form 
the foundation upon which our hybrid resolution method 
is developed. The next section presents the methodological 
framework combining HS and rule-based simulation to solve 
the QCSP efficiently.

4. Methodology 
This section presents the proposed methodology for solving 
the QCSP, focusing on the intelligent initialization of crane 

Figure 2. QCs working on a ship [21]

QCs: Quay Cranes
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positions and the rule-based simulation of their movements. 
The entire implementation was developed using Python 3.9. 
This programming language was chosen for its simplicity 
and ease of integration with algorithmic development, which 
makes it particularly suitable for prototyping optimization 
models.

4.1. Rationale for Initial Crane Positioning
In practice, the uneven distribution of containers across the 
bays is a key factor contributing to workload imbalance. 
Ideally, if the number of containers was evenly distributed, 
the scheduling process would be more predictable and 
straightforward. Based on this observation, we argue that 
determining the initial crane positions should not be left 
to random selection or simple criteria. Instead, it must be 
approached with careful analysis.

4.2. HS Algorithm 
Originally introduced in 2001, the HS algorithm is a 
population-based metaheuristic inspired by the improvisation 
process of musicians seeking the best harmony. Each 
musician contributes a note, and together they strive to 
achieve the most pleasing combination [45,46]. 
The HS algorithm has shown remarkable adaptability in a 
variety of optimization problems [47-49]. However, despite 
its potential, it remains underexplored in maritime scheduling 
applications, especially compared to more popular methods 
such as GAs or PSO [50]. This relative scarcity provides an 
opportunity to investigate its performance in a novel context.

4.3. Parameters 

4.3.1. Harmony memory size (HMS)
This represents the number of solutions stored per iteration. 
Each solution corresponds to a unique set of initial crane 
positions. HMS was set to 7 based on preliminary tests, 
as higher values did not improve results and lower values 
sometimes degraded performance.

4.3.2. Harmony memory consideration rate (HMCR)
This parameter governs the probability of choosing a value 
from the memory rather than generating it randomly. 

4.3.3. Pitch adjustment rate (PAR)
It controls the fine-tuning of selected variables. Pitch 
adjustment enables slight modifications to crane positions, 
allowing the algorithm to explore nearby configurations and 
escape potential local optima.
HMCR and PAR were fixed at 0.95 and 0.3, respectively, 
following commonly used values in the literature [45].

4.3.4. Bandwidth (BW)
BW defines the maximum allowable shift applied to a 
crane’s bay assignment during the pitch adjustment phase. 

When a bay position is selected from memory and the pitch 
adjustment condition is met (governed by PAR), the selected 
value is perturbed by a random amount within ±bw. BW was 
set to 1, meaning that each adjustment modifies the initial 
position of a crane by one bay.

4.3.5. Number of improvisations (NI)
It defines the number of iterations performed. NI depended 
on the problem size and the stability of the results; it was set 
between 20 and 100.

4.4. Rules-Based Approach to Define the Movement Path 
of Cranes
Once the initial positions of each crane are determined 
using the HS algorithm, the unloading time of each crane is 
calculated based on the number of containers in its assigned 
bay; and is then divided by the crane’s speed.  
These unloading times are recorded, and the remaining bays 
are updated accordingly. Then, the crane that completes its 
task first is selected to move, reflecting a realistic scenario 
aimed at minimizing idle and waiting times. The selection of 
the next bay depends on the available path, following a set of 
prioritized rules. 

4.4.1. First priority-moving along the empty path
Cranes are initially ranked according to the bay from which 
they start. Since cranes are not allowed to cross each other, 
this order must be respected until the end of the unloading 
process. The ranking increases in the same order as the bays 
(from the far left to the far right). The first priority is to select 
an empty path, which means a path that does not contain any 
crane either with a lower or a higher rank. 
For example, if the crane to be moved is at bay 5- and other 
cranes are at bays 7 and 10, then the empty path is in the left 
direction, covering bays 4, 3, 2, and 1.
Bay Selection Within the Empty Path:
If an empty path is available, the crane must select the 
farthest bay in that path, meaning the bay with either the 
lowest or highest numerical rank among the remaining bays, 
depending on the direction of the path. In the given example, 
the farthest bay in the empty path is bay 1.

4.4.2. Second priority-moving along the full path
This priority applies when the empty path is not available 
and a full path is present only in one direction. In such a 
case, the crane is guided along that direction. This situation 
typically arises in two cases:
- The crane is initially positioned at the edge of the bay layout, 
(i.e., the first or the last bay), leaving only one possible path.
- During the unloading process, all remaining bays in the 
designated path have been completed, leaving only bays the 
direction of other operating cranes.
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Bay Selection Within the Full Path:
The crane must select the closest bay in that path.
- If this occurs immediately following the initial position, the 
selected bay is the bay ranked immediately before or after 
the initial bay, depending on the direction of the path (left 
or right).
- If the situation occurs during the process, the selected bay 
is the one with the minimum distance to the crane’s current 
position, among the remaining bays.

4.4.3. Third priority-crane between two full paths
This case applies when the crane’s current rank is located 
between two full paths, meaning there are cranes operating 
in both directions (left and right).
Bay Selection in this Situation:
The crane must select the closest bay from one of the two 
paths, based on one of the following criteria:
- Prefer the path that has the greater number of remaining 
bays.
If this number is equal in two directions:
- Prefer the path in which the total number of containers in 
the remaining bays is higher.

4.4.4. Blocked crane
This concept is introduced to represent the situation where a 
crane becomes restricted by the non-crossing constraint, and 
no path is available for further movement.
During the path selection process, it is possible for a 
crane to find neither an empty nor a full path, either due 
to no remaining bays in those paths, or ranking constraints 
imposed to prevent crossing.
In such cases, the crane is identified as a blocked crane, and 
its operation is terminated by recording its final unloading 
time, which corresponds to the last bay it was assigned to.
The three detailed priorities for selecting paths and bays are 
applied sequentially for each crane. The crane that finishes 
its current task first is assigned to the next bay, and this 
order is respected continuously until all bays are completely 
unloaded.

4.4.5. Interaction of crane movement rules with the HS
The HS generates the initial crane positions, by considering a 
number of bays equal to that of the cranes. From these initial 
positions, the rule-based procedure simulates the movement 
of each crane and constructs a complete unloading schedule. 
The resulting makespan value represents the quality of the 
candidate solution and determines its inclusion in the harmony 
memory. To enhance realism, the concept of a blocked crane 
was explicitly incorporated and treated as a natural operational 
scenario. Such cases are efficiently handled within the 

simulation, where the schedule automatically results in an 
increased makespan, reflecting the reduced efficiency of the 
configuration. This mechanism ensures that blocked-crane 
situations are realistically captured without disrupting the 
process, while simultaneously reducing the probability of 
such solutions being retained in the harmony memory. 
Example:
We illustrate an example with 3 cranes and 10 bays, as shown 
in Figure 3.
The number of containers in each bay is (16, 18, 22, 14, 17, 
11, 20, 13, 15, and 19), respectively, with a fixed unloading 
time of 1 minute per container.
We select random initial positions: bays 2, 5, and 8 for the 
three cranes.
- The crane at bay 8, which finishes first with a minimum 
time of 13 minutes, moves along the empty path in the 
right direction to the farthest bay, bay 10. It concludes at 32 
minutes, calculated as 13+19.
Remaining bays: [1,3,4,6,7,9].
- The crane at bay 5 can move in two directions, finishing at 
17 minutes.
In both directions, the number of remaining bays is 3, so we 
apply the second rule:
For bays 1, 3, 4 → total containers = 16+22+14=52
For bays 6, 7, 9 → total containers = 11+20+15=46
Therefore, the crane moves along the full path to the left to 
the closest bay, (bay 4). The duration finishes at 31 minutes, 
calculated as starting at 17 minutes and adding 14 minutes.
Remaining bays: [1,3,6,7,9].
- The crane at bay 2, with a finish time of 18 minutes, moves 
along the empty path in the left direction to the farthest bay, 
bay 1. It finishes at 18+16=34 minutes.
Remaining bays: [3,6,7,9].
- The crane at bay 4 moves to the closest bay, bay 6, along 
the full path in the right direction, passing one bay in the left 
direction, bay 3, and two bays in the right direction, bays 7 
and 9. It finishes at 31+11=42 minutes.
Remaining bays: [3,7,9].
The crane at bay 10 moves along the full path available 
to the left, stopping at the closest bay, bay 9. It finishes at 
32+15=47 minutes.
Remaining bays: [3,7].
- The crane at bay 1 moves along the full path to the closest 
bay, bay 3. It finishes at 34+22=56 minutes.
Remaining bay: [7].
- The crane at bay 6 moves along the full path in the direction 
of the closest bay, bay 7. It finishes at 42+20=62 minutes.
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Thus, Cmax = 62 minutes.
However, the near-optimal solution for this example, based 
on the proposed method, is 55 minutes, with initial positions 
[3,5,7] for the three cranes.
Figure 4 presents the flowchart providing a comprehensive 
overview of the proposed hybrid method.

5. Results and Analysis
5.1. Behavioral Analysis of the Harmony-Based Approach
To understand how the proposed harmony-based approach 
structurally behaves, we analyzed three key features extracted 
from each solution generated during the optimization 
process. These features were observed over 30 independent 
test cases, each involving a distinct bay configuration and 
random container distribution. The goal was to determine 
which structural tendencies consistently appear in high-
performing solutions.

5.1.1. Total containers in assigned bays (TCA)
This feature reflects the total number of containers handled 
by the selected crane positions. A higher TCA indicates 
that choosing fuller bays helps to accelerate the unloading 
process and reduce the makespan.

5.1.2. Container count range (CCR)
The CCR is defined as the difference between the maximum 
and minimum number of containers among the selected bays. 

Figure 3. Quay crane movements

Figure 4. The flowchart 



A Hybrid Harmony Search and Rule-Based Approach for Dynamic Crane Scheduling Problem

Smaller CCRs indicate more balanced workloads between 
cranes, helping to avoid bottlenecks.

5.1.3. Minimum initial distance between cranes (MID)
This is the minimum distance between any two cranes in the 
initial layout. Larger spacing reduces crane interference and 
allows more flexible movement in the dynamic phase.

5.1.4. Application
For each of the 30 test cases, the HS algorithm generated 
a memory of candidate solutions (HMS=7). The best-
performing solution (with the lowest Cmax) was then 
compared feature-by-feature against the other solutions in 
the memory. A feature (TCA, CCR, or MID) was considered 
dominant if the best solution performed better than at 
least half of the other candidates in that particular metric. 
If the best solution had a TCA that is higher than or equal to 
at least 4 out of the 6 other candidates, TCA was counted as 
dominant for that test case. This comparison was repeated for 
CCR and MID independently. To evaluate the consistency 
of feature dominance patterns, the experiment was repeated 
10 times using different random seeds, with the results as 
shown in Table 1. 
- Although the HS algorithm involves randomness in 
candidate generation and memory updates, the overall 
dominance trends remained relatively stable. Across the 10 
runs, the MID feature showed the highest average dominance, 
frequently appearing in the range of 50% to 70%. For instance, 
it reached 67% in run 3, 70% in run 4, and 67% again in 
run 5. Even in the lowest cases (run 6, 8 and run 9), it still 
maintained a value of 53% and 50%, which is higher than or 
equal to the other features in those runs. This confirms its 
importance in maintaining spatial separation between cranes 
and minimizing interference during operation.
- The CCR and TCA features showed more fluctuation, 

occasionally reaching dominance in individual runs, but 
without the same consistency. For example, CCR reached 
57% in run 4, while TCA reached 53% in runs 2 and 8. Their 
dominance values typically ranged between 37% and 57% 
depending on the run.
- These findings suggest that while feature dominance 
can vary slightly between executions, MID tends to be the 
most influential structural characteristic, reinforcing the 
importance of crane spacing in effective scheduling.

5.2. Benchmark Comparison
To validate the performance of our proposed method, we 
compare its results against established approaches. This 
includes two benchmarks from the work of Skaf et al. [13]: 
a GA, and an exact method based on dynamic programming 
algorithm (DPA), both developed for the same crane 
scheduling problem (Table 2). 
The 26 instances considered in Table 2 were designed 
to cover a range of problem sizes and complexities. For 
scenarios with two quay cranes, the number of bays varied 
between 5 and 14, while for three cranes it ranged from 7 to 
22 bays. This corresponds approximately to the handling of 
small- to medium-sized ships. Increasing the number of bays 
and cranes naturally increases the computational complexity 
of the problem, thereby providing a representative set of 
instances for evaluation.
Additionally, we include results from a classical heuristic 
(UDS - unidirectional scheduling), which provides a 
structured but simpler baseline for comparison (Table 3). 
To estimate the quality of the proposed schedules under real 
operational constraints, a relaxed version of the problem 
was solved using a multi-start greedy algorithm (GEA). 
This approach ignores crane interference and balance the 
workload among cranes by testing multiple randomized bay 
allocations and selecting the most balanced configuration. 
Although this solution is not applicable in practice due 
to the absence of non-crossing constraints, it provides a 
useful lower bound for evaluating the performance of the 
implemented scheduling strategies (Table 3). The results 
of the GEA reported in Table 3 correspond to the stable 
outcome that consistently reappeared across multiple runs, 
rather than a single random result.
To ensure an objective comparison, the experimental data 
published in Skaf’s thesis 2020 [51] was used. Table 2 
includes his original results, as well as those produced by 
our proposed method.
For the comparison with UDS, synthetic data was used, 
specifically designed for this problem to test our approach 
in various scenarios.
- To statistically validate the comparative results reported in 
Table 2, we performed paired analyses on the 26 benchmark 
instances. For the comparison between hybrid harmony 

Table 1. Summary of feature dominance across 10 runs

Run TCA (%) CCR (%) MID (%)
1 40% 37% 63%

2 53% 43% 63%

3 43% 53% 67%

4 43% 57% 70%

5 47% 50% 67%

6 40% 37% 53%

7 43% 53% 63%

8 53% 43% 53%

9 40% 50% 50%

10 50% 50% 63%
TCA: Total containers in assigned bays, CCR: Container count range, MID: 

Minimum initial distance
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search (HHS) and GA (n=26), a paired t-test revealed no 
significant difference [t (25)=0.254, p=0.802], with a 
negligible effect size (Cohen’s d=0.05). This indicates 
that both metaheuristics perform equivalently in terms of 
makespan. Since the exact DPA failed to return a solution in 
instance 26, comparisons involving DPA were conducted on 
the remaining 25 instances. Repeated- measures ANOVA [F 
(2.48)=8.983, p=0.000485] and Friedman’s non-parametric 
test [χ² (2)=21.06, p≈2.710-5] confirmed significant 
overall differences among the three methods. The post-hoc 
test showed that DPA, as expected from an exact method, 
achieved a significantly lower makespan than both GA 
(p<1e-6, large effect) and HHS (p≈0.003, medium effect). 
Importantly, the performance gap between the proposed 
HHS and the exact DPA remains limited, highlighting that 

the metaheuristic produces near-optimal solutions with a 
fraction of the computational effort. These findings confirm 
the competitiveness and practical value of HHS. While 
DPA represents the theoretical benchmark, HHS achieves 
results statistically indistinguishable from the GA and only 
marginally higher than the exact solutions. 
- However, while the proposed method outperformed 
the GA in most cases, the latter achieved better results in 
some specific instances. These exceptions highlight that 
although HHS is generally robust, it could benefit from 
further refinement to increase adaptability without losing its 
structured coordination rules.
- The proposed hybrid approach consistently achieved 
execution times below one second across all problem sizes, 
even where the GA required significantly longer central 

Table 2. Results of DPA, GA, and HHS

Instances
NQ NB

Makespan CPU time
DPA (min) GA (min) HHS (min) GA (s) HHS (s)

1 2 5 39.78 39.78 39.78 <1 <1

2 2 6 51.48 51.48 52.65 <1 <1

3 2 7 58.5 59.67 58.5 <1 <1

4 2 8 73.71 75.71 73.71 <1 <1

5 2 9 90.09 91.26 90.09 <1 <1

6 2 10 99.45 100.62 100.62 <1 <1

7 2 11 104.13 107.6 106.64 <1 <1

8 2 12 107.64 109.98 107.64 <1 <1

9 2 13 114.66 115.83 114.66 <1 <1

10 2 14 119.34 122.85 122.85 <1 <1

11 3 7 39.78 39.78 39.78 <1 <1

12 3 8 51.48 52.8 52.65 <1 <1

13 3 9 60.84 63.35 66.69 <1 <1

14 3 10 70.2 72.71 73.71 <1 <1

15 3 11 73.71 76.02 73.71 <1 <1

16 3 12 73.71 74.88 73.71 <1 <1

17 3 13 76.05 76.05 81.9 <1 <1

18 3 14 81.9 83.07 91.26 <1 <1

19 3 15 91.26 92.43 93.6 <1 <1

20 3 16 95.94 98.28 100.62 1.59 <1

21 3 17 101.79 105.3 104.13 3.12 <1

22 3 18 105.3 106.47 108.81 7.39 <1

23 3 19 113.49 113.49 112.32 10.62 <1

24 3 20 118.17 119.34 114.66 28.64 <1

25 3 21 125.19 127.53 127.53 34.72 <1

26 3 22 - 134.69 132.21 60.12 <1
NB: Number of bays, NQ: Number of cranes, DPA: Dynamic programming algorithm, GA: Genetic algorithm, HHS: Hybrid harmony search
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processing unit times. This confirms that the integration of 
rule-based movement with HS not only improves solution 
quality but also ensures computational efficiency under 
realistic operational constraints.
- The statistical analysis of Table 3 confirms the robustness 
of the proposed approach. A paired t-test between UDS and 
HHS revealed a significant difference (t=5.29, p<0.001), 
indicating that the hybrid HS consistently outperforms the 
unidirectional heuristic in terms of makespan reduction. The 
comparison of the three methods was extended using the 
Friedman test, and the results showed a highly significant 
overall difference (χ²=29.53, <0.001), which confirms that 
the performance of the algorithms is not equivalent across 
scenarios. To further investigate these differences, a post-
hoc pairwise Wilcoxon signed-rank test was conducted. 
The results showed that both HHS and GEA significantly 
outperformed UDS, and the difference between HHS 
and GEA was also statistically significant, favoring GEA. 
Nevertheless, it is important to note that the apparent 
advantage of GEA stems from its relaxed assumptions, 
since it ignores crane interference constraints, whereas 
HHS achieves competitive results while fully respecting 
operational realities. These findings highlight the practical 
value of the hybrid approach: it not only yields significantly 
better performance than traditional heuristics but also 
approaches the efficiency of lower-bound methods while 
remaining realistic and applicable.

5.3. Effect of bay layouts on unloading performance
To examine the influence of container distribution on 
unloading performance, we designed a comparative 
experiment involving six different layouts for each scenario. 
Two cases were considered: one where the number of bays is 
divisible by the number of cranes, and another where it is not. 
For each case, five randomly generated unbalanced layouts 
were compared to a perfectly balanced one, in which each 
bay contains an equal number of containers. The goal was to 
assess how irregular distributions affect the makespan, even 
when the total workload remains constant. The layouts and 
corresponding Cmax values are presented in Tables 4 and 5.

5.3.1. Scenario 1
This scenario involves 90 containers distributed across 9 
bays, to be unloaded by 3 cranes. The number of bays is 
divisible by the number of cranes, and each crane can handle 
an equal number of bays, resulting in a minimum theoretical 
Cmax of 30 in the balanced layout. 
- The results show that in the case of 9 bays and 3 cranes, the 
container layout significantly affects unloading efficiency. 
The balanced layout achieved the theoretical minimum 
makespan of 30, representing perfect workload distribution. 
However, layout 1 resulted in the highest Cmax of 40, 
highlighting how imbalance can severely hinder performance. 
In contrast, layouts 2 and 3 achieved a significantly lower Cmax 
of 33, demonstrating that some asymmetrical configurations 
can reduce total unloading time. Layouts 4 and 5 performed 

Table 3. Results of UDS, HHS, and GEA

Instances NQ NB UDS (min) HHS (min) GEA (min)
1 2 10 98.28 85.41 85.41

2 3 10 62.01 59.67 58.5

3 2 10 115.15 104.13 101/79

4 3 10 76.05 72.54 67.86

5 2 10 101.79 101.79 100.62

6 3 10 81.9 71.37 67.86

7 2 10 112.32 112.32 111.15

8 3 10 84.24 77.22 74.88

9 3 20 145.08 143.91 142.74

10 4 20 113.49 107.64 107.64

11 3 20 143.91 140.4 134.55

12 4 20 111.15 106.47 101.79

13 3 20 150.93 139.23 133.38

14 4 20 106.47 104.13 100.62

15 3 20 148.59 135.72 134.55

16 4 20 108.81 101.79 101.79
NB: Number of bays, NQ: Number of cranes, HHS: Hybrid harmony search, UDS: Unidirectional scheduling, GEA: Greedy algorithm
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moderately, with a Cmax of 36 each. These outcomes suggest 
that although balanced layouts are theoretically optimal, 
certain unbalanced distributions, if strategically designed, 
can also achieve competitive or even improved efficiency 
depending on the dynamic movement of cranes and bay 
assignments.

5.3.2. Scenario 2
This scenario involves 100 containers distributed across 10 
bays, to be unloaded by 3 cranes. Since the number of bays is 
not divisible by the number of cranes, at least one crane must 
handle more bays, resulting in a minimum theoretical Cmax of 
40 in the balanced layout. 
- The results confirm that in cases where the number of bays 
is not divisible by the number of cranes, the container layout 
continues to influence unloading efficiency. Although the 
balanced layout yielded a Cmax of 40, it was matched by layouts 
1 and 4, and slightly outperformed by layout 5 (Cmax=38). 
Most notably, layout 2 achieved the best performance with 
a Cmax of 35, demonstrating that strategic imbalances can 
reduce overall makespan. Layout 3 also slightly improved 
upon the balanced case. These observations highlight that 
even in structurally imperfect divisions, thoughtful container 
distribution can mitigate workload disparities among cranes 
and enhance system efficiency.

6. Conclusion 
This study introduced an innovative hybrid approach 
combining the HS algorithm with a rule-based dynamic 
simulation to solve the QCSP under strict non-crossing 
constraints. Our approach ensures logical decision-making 

and preserves spatial order without relying on exhaustive 
search. Experimental results demonstrated that the proposed 
approach delivers competitive outcomes with a computation 
time of less than one second, even in complex scenarios. 
HS was employed in this study due to its balance between 
simplicity and efficiency in exploring large discrete solution 
spaces, making it well-suited for the QCSP. Nevertheless, 
other metaheuristics such as ACO and the Firefly Algorithm; 
though less frequently applied in this domain, may provide 
valuable perspectives and represent interesting directions for 
future research.
The proposed method could be further integrated into terminal 
operating systems as a decision-support tool, providing real-
time guidance for crane allocation and coordination.
Since travel time between bays was not considered, 
addressing this factor becomes particularly meaningful and 
impactful as ship size increases.
While the current work focused on a single ship, extending 
simulation-based approaches to multiple ships and 
integration of berth allocation would represent an important 
step toward enhancing practical applicability in large 
container terminals.
Future work could also address uncertainty in crane 
scheduling, for instance, by considering variations in 
handling times, random equipment failures, or unexpected 
delays.

Footnotes

Authorship Contributions 
Concept design: H. Amani, Data Collection or Processing: 
H. Amani, Analysis or Interpretation: H. Amani, L. Bouaya, 
and R. Chaib, Literature Review: H. Amani, Writing, 
Reviewing and Editing: H. Amani, L. Bouaya, and R. Chaib.  
Funding: This research received no external funding.

References 
[1]	 F. Eldemir, and M. E. Taner, “A hybrid meta-heuristic approach for 

solving single-vessel quay crane scheduling with double-cycling,” 
Journal of Marine Science and Engineering, vol. 13, pp. 371, Jun 
2025. 

[2]	 Ü. Özdemir, “Analysis of empty container accumulation problem 
of container ports,” Journal of ETA Maritime Science, vol. 6, pp. 
319-332, Dec 2018.

[3]	 F. Rodrigues and A. Agra, “Berth allocation and quay crane 
assignment/scheduling problem under uncertainty: a survey,” 
European Journal of Operational Research, vol. 303, pp. 501-524, 
Dec 2022.

[4]	 M. Safaeian, F. Etebari, and B. Vahdani, “An integrated quay crane 
assignment and scheduling problem with several contractors in 
container terminals,” Scientia Iranica, vol. 28, pp. 1030-1048, 2021.

Table 4. Case of 9 bays and 3 cranes

Layout Number of containers Cmax

Balanced [10, 10, 10, 10, 10, 10, 10, 10, 10] 30

1 [6, 8, 12, 14, 20, 14, 12, 8, 6] 40

2 [5, 6, 7, 8, 9, 10, 11, 12, 22] 33

3 [7, 14, 8, 11, 9, 13, 6, 10, 12] 33

4 [4, 5, 6, 7, 8, 9, 15, 16, 20] 36

5 [20, 16, 15, 9, 8, 7, 6, 5, 4] 36

Table 5. Case of 10 bays and 3 cranes

Layout Number of containers Cmax

Balanced [10, 10, 10, 10, 10, 10, 10, 10, 10, 10] 40

1 [6, 8, 12, 14, 15, 14, 12, 8, 6, 5] 40

2 [5, 6, 7, 8, 9, 10, 11, 12, 13, 19] 35

3 [7, 14, 8, 11, 9, 13, 6, 10, 12, 10] 36

4 [4, 5, 6, 7, 8, 9, 15, 16, 20, 10] 40

5 [20, 16, 15, 9, 8, 7, 6, 5, 4, 10] 38



A Hybrid Harmony Search and Rule-Based Approach for Dynamic Crane Scheduling Problem

[5]	 M. Saini and T. Lerher, “Assessing the factors impacting shipping 
container dwell time: a multi-port optimization study,” Business: 
Theory and Practice, vol. 25, pp. 51-60, Feb 2024. 

[6]	 C. T. Ngoc, X. Xu, H. S. Kim, D. A. Nguyen, and S. S. You, 
“Container port throughput analysis and active management using 
control theory,” Proceedings of the Institution of Mechanical 
Engineers, Part M: Journal of Engineering for the Maritime 
Environment, vol. 236, pp. 185-195, 2022. 

[7]	 M. O. Herup, G. C. W. Thiesgaard, J. van Twiller, and R. M. Jensen, 
“A linear time algorithm for optimal quay crane scheduling,” In: de 
Armas, J., Ramalhinho, H., Voß, S. (eds) Computational Logistics. 
ICCL 2022. Lecture Notes in Computer Science, vol 13557. 
Springer, Cham.

[8]	 A. Al-Refaie and H. Abedalqader, “Optimal quay crane assignment 
and scheduling in port’s container terminals,” Jordan Journal of 
Mechanical & Industrial Engineering, vol. 15, pp. 153-167, Jun 
2021. 

[9]	 G. Tuncel, Ö. Yalçınkaya, E. Deniz, and S. Esmer, “Simulation 
modeling frameworks for single-cycling and double-cycling 
strategies in container terminals,” Journal of ETA Maritime Science, 
vol. 12, pp. 319-331, Aug 2024.

[10]	 E. T. Yassen, M. Ayob, A. A. Jihad, and M. Z. A. Nazri, “A self-
adaptation algorithm for quay crane scheduling at a container 
terminal,” IAES International Journal of Artificial Intelligence, vol. 
10, pp. 919-929, Dec 2021.

[11]	 Y. Zhu and A. Lim, “Crane scheduling with non-crossing 
constraint,” Journal of the Operational Research Society, vol. 57, 
pp. 1464-1471, Dec 2006.

[12]	 J. Liu, Y. W. Wan, and L. Wang, “Quay crane scheduling at 
container terminals to minimize the maximum relative tardiness of 
vessel departures,” Naval Research Logistics (NRL), vol. 53, pp. 60-
74, Feb 2006. 

[13]	 A. Skaf, S. Lamrous, Z. Hammoudan, and M. A. Manier, “Solving 
methods for the quay crane scheduling problem at port of Tripoli-
Lebanon,” RAIRO-Operations Research, vol. 55, pp. 115-133, Mar 
2021.

[14]	 R. Pérez-Rodríguez, “A hybrid estimation of distribution algorithm 
for the quay crane scheduling problem,” Mathematical and 
Computational Applications, vol. 26, pp. 64, Sep 2021.

[15]	 H. Li and X. Li, “A branch-and-bound algorithm for the bi-objective 
quay crane scheduling problem based on efficiency and energy,” 
Mathematics, vol. 10, pp. 4705, Dec 2022.

[16]	 H. Zheng, Z. Wang, and H. Liu, “The integrated rescheduling 
problem of berth allocation and quay crane assignment with 
uncertainty,” Processes, vol. 11, pp. 522, Feb 2023. 

[17]	 N. Al-Dhaheri and A. Diabat, “The quay crane scheduling problem,” 
Journal of Manufacturing Systems, vol. 36, pp. 87-94, Aug 2015. 

[18]	 D. Steenken, S. Voß, and R. Stahlbock, “Container terminal 
operation and operations research - a classification and literature 
review,” OR Spectrum, vol. 26, pp. 3-49, Jan 2004.

[19]	 C. F. Daganzo, “The crane scheduling problem,” Transportation 
Research Part B: Methodological, vol. 23, pp. 159-175, 1989.

[20]	 R. I. Peterkofsky and C. F. Daganzo, “A branch and bound solution 
method for the crane scheduling problem,” Transportation Research 
Part B: Methodological, vol. 24, pp. 159-172, Jun 1990.

[21]	 K. H. Kim and Y. M. Park, “A crane scheduling method for port 
container terminals,” European Journal of Operational Research, 
vol. 156, pp. 752-768, Feb 2004.

[22]	 A. Lim, B. Rodrigues, F. Xiao, and Y. Zhu, “Crane scheduling with 
spatial constraints,” Naval Research Logistics (NRL), vol. 51, pp. 
386-406, 2004.

[23]	 L. Moccia, J. F. Cordeau, M. Gaudioso, and G. Laporte, “A branch‐
and‐cut algorithm for the quay crane scheduling problem in a 
container terminal,” Naval Research Logistics (NRL), vol. 53, pp. 
45-59, 2006.

[24]	 M. Sammarra, J. F. Cordeau, G. Laporte, and M. F. Monaco, “A tabu 
search heuristic for the quay crane scheduling problem,” Journal of 
Scheduling, vol. 10, pp. 327-336, Aug 2007.

[25]	 C. Bierwirth, and F. Meisel, “A fast heuristic for quay crane 
scheduling with interference constraints,” Journal of Scheduling, 
vol. 12, pp. 345-360, Feb 2009.

[26]	 F. Meisel, and C. Bierwirth, “A unified approach for the evaluation 
of quay crane scheduling models and algorithms,” Computers & 
Operations Research, vol. 38, pp. 683-693, Mar 2011.

[27]	 M. F. Monaco and M. Sammarra, “Quay crane scheduling with time 
windows, one-way and spatial constraints,” International Journal 
of Shipping and Transport Logistics, vol. 3, pp. 454-474, Jul 2011.

[28]	 S. H. Chung and F. T. Chan, “A workload balancing genetic 
algorithm for the quay crane scheduling problem,” International 
Journal of Production Research, vol. 51, pp. 4820-4834, 2013.

[29]	 S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, “Hybrid 
evolutionary computation methods for quay crane scheduling 
problems,” Computers & Operations Research, vol. 40, pp. 2083-
2093, Aug 2013.

[30]	 T. Wang, M. Li, and H. Hu, “Berth allocation and quay crane-
yard truck assignment considering carbon emissions in port area,” 
International Journal of Shipping and Transport Logistics, vol. 11, 
pp. 216-242, Apr 2019. 

[31]	 A. Nourmohammadzadeh and S. Voß, “A robust multi objective 
model for the integrated berth and quay crane scheduling problem at 
seaside container terminals,” Annals of Mathematics and Artificial 
Intelligence, vol. 90, pp. 831-853, 2022.

[32]	 G. Tasoglu and G. Yildiz, “Simulated annealing based simulation 
optimization method for solving integrated berth allocation and 
quay crane scheduling problems,” Simulation Modelling Practice 
and Theory, vol. 97, Jul 2019.

[33]	 Q. Fu and C. Cai, “Berth and quay crane scheduling optimization 
based on improved genetic algorithm,” in 2021 China Automation 
Congress (CAC), pp. 2138-2142.

[34]	 X. Jiao, F. Zheng, M. Liu, and Y. Xu, “Integrated berth allocation 
and time‐variant quay crane scheduling with tidal impact in approach 
channel,” Discrete Dynamics in Nature and Society, vol. 2018, no. 
1, 9097047, 2018.

[35]	 A. Malekahmadi, M. Alinaghian, S. R. Hejazi, and M. A. A. 
Saidipour, “Integrated continuous berth allocation and quay crane 
assignment and scheduling problem with time-dependent physical 
constraints in container terminals,” Computers & Industrial 
Engineering, vol. 147, 106672, Jul 2020.

[36]	 M. Tang, B. Ji, X. Fang, and S. S. Yu, “Discretization-strategy-based 
solution for berth allocation and quay crane assignment problem,” 
Journal of Marine Science and Engineering, vol. 10, 495, Apr 2022.



Journal of ETA Maritime Science 

[37]	 L. Tang, J. Zhao, and J. Liu, “Modeling and solution of the joint 
quay crane and truck scheduling problem,” European Journal of 
Operational Research, vol. 236, pp. 978-990, Aug 2014.

[38]	 Y. Zheng, M. Xu, Z. Wang, and Y. Xiao, “A genetic algorithm for 
integrated scheduling of container handling systems at container 
terminals from a low-carbon operations perspective,” Sustainability, 
vol. 15, Mar 2023.

[39]	 D. C. Hop, N. Van Hop, and T. T. M. Anh, “Adaptive particle swarm 
optimization for integrated quay crane and yard truck scheduling 
problem,” Computers & Industrial Engineering, vol. 153, pp. 
107075, Mar 2021.

[40]	 S. Ma, H. Li, N. Zhu, and C. Fu, “Stochastic programming approach 
for unidirectional quay crane scheduling problem with uncertainty,” 
Journal of Scheduling, vol. 24, pp. 137-174, Apr 2021.

[41]	 F. Rodrigues and A. Agra, “Handling uncertainty in the quay crane 
scheduling problem: a unified distributionally robust decision 
model,” International Transactions in Operational Research, vol. 
31, pp. 721-748, Mar 2024.

[42]	 M. Jiang, J. Zhou, J. Feng, L. Zhou, F. Ma, and G. Wu, “Integrated 
berth and crane scheduling problem considering crane coverage in 
multi-terminal tidal ports under uncertainty,” Journal of Marine 
Science and Engineering, vol. 10, pp. 506, Apr 2022.

[43]	 K. Chargui, T. Zouadi, V. R. Sreedharan, A. El Fallahi, and M. 
Reghioui, “A novel robust exact decomposition algorithm for berth 
and quay crane allocation and scheduling problem considering 
uncertainty and energy efficiency,” Omega, vol. 118, pp. 102868, 
Jul 2023.

[44]	 E. Lujan, E. Vergara, J. Rodriguez-Melquiades, M. Jiménez-Carrión, 
C. Sabino-Escobar, and F. Gutierrez, “A fuzzy optimization model 
for the berth allocation problem and quay crane allocation problem 
(BAP + QCAP) with n quays,” Journal of Marine Science and 
Engineering, vol. 9, pp. 152, Feb 2021.

[45]	 Z. W. Geem, J. H. Kim, and G. V. Loganathan, “A new heuristic 
optimization algorithm: Harmony search,” Simulation, vol. 76, pp. 
60-68, 2001.

[46]	 F. Qin, et al. “Hybrid harmony search algorithm integrating 
differential evolution and lévy flight for engineering optimization,” 
IEEE Access, 2025.

[47]	 A. Ala’a, A. A. Alsewari, H. S. Alamri, and K. Z. Zamli, 
“Comprehensive review of the development of the harmony search 
algorithm and its applications,” IEEE Access, vol. 7, pp. 14233-
14245, Jan 2019.

[48]	 M. Dubey, V. Kumar, M. Kaur, and T. P. Dao, “A systematic review 
on harmony search algorithm: theory, literature, and applications,” 
Mathematical Problems in Engineering, vol. 2021, 5594267, 2021.

[49]	 F. Qin, A. M. Zain, and K. Q. Zhou, “Harmony search algorithm 
and related variants: a systematic review,” Swarm and Evolutionary 
Computation, vol. 74, 101126, Oct 2022.

[50]	 D. Kizilay and D. T. Eliiyi, “A comprehensive review of quay crane 
scheduling, yard operations and integrations thereof in container 
terminals,” Flexible Services and Manufacturing Journal, vol. 33, 
pp. 1-42, Mar 2021.

[51]	 A. Skaf, “Planification of logistics activities in ports,” 2020. 


