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1. Introduction
The motivation for this paper stems from the urgent need to 
enhance infectious disease management on cruise ships, as 
illustrated by recent outbreaks, such as the one at the Celebrity 
Summit.
Recent incidents, such as the outbreak onboard Celebrity 
Cruises’ Celebrity Summit during its May 24, 2024, voyage, 
have highlighted the urgent need for effective disease 
management strategies on cruise ships. According to the 
Centers for Disease Control and Prevention, 68 out of the 
2,264 passengers and five crew members contracted the 
virus, highlighting the complexity of controlling infectious 
diseases in such environments [1]. Cruise ships are unique 
environments that combine the characteristics of residential 
communities and transient hubs, presenting distinct challenges 
for disease control. The motivation for this study stems from 
the urgent need to enhance infectious disease management on 
cruise ships, as illustrated by recent outbreaks, such as the one 
at the Celebrity Summit.

The confined and highly interactive nature of cruise ships 
exacerbates the difficulty of traditional epidemiological 
tracking and containment. For instance, the mobility and 
interaction patterns of passengers and crew in shared spaces 
like dining rooms, pools, and theaters significantly increase 
the risk of widespread exposure [2]. In this environment, 
precise tools are required to monitor and control the spread 
of pathogens.
Effective disease management on cruise ships requires two 
critical strategies: close contact tracing and identification of 
high-risk areas. Close contact tracing involves accurately 
identifying individuals who have interacted with infected 
persons, which is essential for implementing effective 
quarantine measures and preventing further spread [3]. 
Additionally, identifying areas aboard ships that present 
higher transmission risks can guide targeted sanitization 
efforts and the implementation of specific restrictions to 
manage outbreaks efficiently [4].
In response to these challenges, this paper proposes an 
integrated technological approach that utilizes Bluetooth 
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5.1 technology. The proposed technology enhances position 
tracking capabilities with high accuracy, which is crucial for 
the automatic logging of spatial interactions among passengers 
and crew [5]. The Binary Contact Detection Model proposed 
in this paper operates using In-phase and Quadrature (IQ) 
data from Bluetooth 5.1 signals to capture precise interaction 
data. This model is further complemented by the alpha shape 
algorithm, which facilitates the sophisticated delineation of 
high-risk areas on ships [6].
The combination of these technologies represents a significant 
advancement in public health surveillance on cruise ships. By 
employing these tools, we aim to not only rapidly identify 
potentially infected individuals and areas of high risk but 
also improve the precision and efficiency of public health 
interventions. This proactive approach to health management 
is vital for ensuring passenger safety, maintaining safe 
navigation, and enhancing the overall customer service 
experience on cruise ships. Moreover, it supports cruise 
companies by fostering a sense of corporate responsibility 
and enhancing consumer trust, which is crucial in today’s 
competitive tourism market [7]. 
Finally, by implementing these strategies, cruise companies 
can not only effectively control and prevent the spread of 
disease but also foster a sense of corporate responsibility 
and enhance consumer trust, thus maintaining a competitive 
edge in the intense tourism market. This proactive approach 
to health management may also become a crucial factor for 
passengers when choosing a cruise line, especially in today’s 
context of prominent global health issues [8].
Therefore, close contact tracing and risky area identification 
on cruise ships are not only practical necessities for addressing 
public health emergencies but are also integral parts of cruise 
operations, vital for ensuring public health, maintaining safe 
navigation, and enhancing customer service experiences [9].
Bluetooth 5.1 enhances position tracking capabilities with 
high accuracy, facilitating the automatic logging of spatial 
interactions among passengers and crew. Bluetooth 5.1 
technology significantly enhances the use of IQ data in signal 
processing [10]. The IQ data are crucial for defining the 
amplitude and phase of the Bluetooth signal, which can be 
used to derive more precise information.
To effectively utilize Bluetooth 5.1 technology in close contact 
tracing, we propose the implementation of a Binary Contact 
Detection Model. The proposed model operates by utilizing 
the IQ data from the Bluetooth 5.1 signal, which is pivotal for 
capturing precise and granular interaction data. Alongside the 
Binary Contact Detection Model, integrating the alpha shape 
algorithm allows for sophisticated delineation of high-risk 
areas on the ship. This integrated approach not only facilitates 
the rapid identification of potentially infected individuals and 
high-risk areas and significantly improves the precision and 

efficiency of public health interventions. By implementing 
these advanced technological tools, we can better manage 
and contain outbreaks in complex environments like cruise 
ships, thereby ensuring passenger safety and public health. To 
address these pressing challenges, technological innovations 
that provide more accurate and automated solutions. This 
necessity forms the basis for the proposed Binary Contact 
Detection Model, which is designed to harness advanced 
Bluetooth 5.1 technology to realize more precise interaction 
tracking.
The primary contribution of this paper is the proposed 
Binary Contact Detection Model, which is designed to 
enhance disease management on cruise ships. This model is 
then innovatively integrated with Bluetooth 5.1 technology 
and the alpha shape algorithm, enabling precise tracking 
of interpersonal interactions and detailed mapping of high-
risk areas. By leveraging Bluetooth 5.1’s advanced signal 
processing capabilities, including IQ data, this approach 
offers a novel method for accurately identifying close contacts 
and potential transmission hotspots. Consequently, it provides 
a more effective strategy for outbreak containment and 
management onboard cruise ships, significantly improving 
public health surveillance.
The paper is structured to provide a comprehensive 
understanding of the study, and its findings as follows: Section 
2, entitled “Previous Works”, reviews the existing literature 
to highlight past methodologies and technologies used in 
tracking and managing disease outbreaks, setting the stage 
for the innovations introduced in this paper. Section 3, “Close 
Contact Tracing and Risky Area Identification”, details the 
implementation of Bluetooth 5.1 technology integrated with 
the Binary Contact Detection Model and the alpha shape 
algorithm, describing how these tools are specifically applied 
to cruise ships. Section 4, “Performance Evaluation”, presents 
an analysis of the effectiveness of the proposed models in real-
world scenarios. Section 5, “Discussion”, briefly addresses 
the implications of the results and identifies potential areas 
for improvement. Finally, Section 6 presents the conclusions, 
summarizing the key findings and suggesting directions for 
future research.

2. Previous Works
In ship environments, Bluetooth is favored over alternative 
wireless technologies for health monitoring and contact 
tracing because of its numerous benefits, such as low 
power usage, affordability, easy setup, spatial flexibility, 
precision, immediacy in data transmission, and robust 
privacy and security features. In particular, the Bluetooth 
Low Energy (BLE) variant is tailored for short-distance 
communications and consumes minimal power, enabling 
prolonged operation of devices without the need for 
frequent recharging [11]. These devices are cost-effective 
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and can be extensively implemented throughout a cruise ship 
without significant upfront investment. Unlike more complex 
technologies like Wi-Fi, Bluetooth is easier to configure and 
maintain, which is essential for swift deployment and usability 
on cruise ships by staff without technical expertise [12].
Bluetooth technology enables direct device-to-device 
communication without relying on internet connectivity, 
thereby safeguarding data privacy and security-critical 
for handling sensitive personal health information. These 
attributes make Bluetooth the optimal choice for executing 
health surveillance and epidemic tracking onboard ships [13].
Bluetooth-enabled devices such as wristbands or badges are 
employed to track interaction patterns among passengers 
and crew, thereby facilitating the identification of close 
contacts. This technology’s capability for quick and 
automated data collection diminishes the need for manual 
documentation and enhances the accuracy and efficiency of 
tracking efforts. Furthermore, Bluetooth can monitor and 
analyze movements and congregations on the ship, thereby 
identifying areas of high risk. When infections are identified, 
these data becomes essential for swift implementation of 
control measures like quarantines and sanitation procedures. 
Employing this technology not only aids in curbing the 
spread of infectious diseases but also bolsters the ability to 
manage public health crises, significantly supporting health 
and safety management on ships [14].
In ship environments, Bluetooth is chosen over other wireless 
technologies as the primary tool for health monitoring and 
close contact tracing primarily due to its advantages in low 
power consumption, cost-effectiveness, ease of deployment, 
spatial adaptability, accuracy, real-time capabilities, and 
privacy and security. Bluetooth, especially the BLE version, is 
designed for short-range communication and consumes very 
little power, allowing devices to operate for extended periods 
without frequent charging. Moreover, Bluetooth devices are 
generally low-cost and can be deployed on a large scale across 
a cruise ship without substantial investment. Compared to 
Wi-Fi, Bluetooth is simpler to configure and maintain, which 
is crucial for rapid deployment and operation on cruise ships, 
even by non-technical personnel [15]. Bluetooth technology 
allows direct communication between devices without the 
need for internet connectivity, enhancing the privacy and 
security of data, which is especially important for applications 
involving personal health data [16]. Collectively, these factors 
make Bluetooth an ideal choice for health surveillance and 
epidemic tracking in ship environments.
Research on Bluetooth technology in ship environments 
for health primarily involves real-time monitoring and data 
collection to support epidemic management and control 
measures. By using Bluetooth devices, such as wristbands or 
badges, the contact patterns of passengers and crew aboard 

a ship can be tracked, thereby aiding in the identification 
of close contacts [17]. The application of this technology 
allows for the rapid and automatic collection of contact data, 
thus reducing reliance on manual recording and improving 
the accuracy and efficiency of tracking. Additionally, 
Bluetooth technology can be used to monitor and analyze 
the movement and gathering of people on the ship, thereby 
identifying high-risk areas. When cases are detected, this 
information is crucial for quickly implementing control 
measures such as lockdowns and disinfection. The use of this 
technology not only helps control the spread of infectious 
diseases but also improves the capacity to handle public 
health emergencies, providing significant support for health 
and safety management on ships [18].
Studies on the spatial transmission of contagious diseases 
have extensively utilized Global Positioning System data 
from mobile devices to track human movement and identify 
infectious sites, proving critical in monitoring and predicting 
virus spread based on subjects’ position histories during key 
infection periods [19]. Explores the use of BLE technology for 
close contact tracing, highlighting challenges due to varying 
signal strengths influenced by handset models, orientations, 
physical obstructions, and environmental reflections, which 
complicate accurate proximity detection necessary for 
effective coronavirus disease-2019 (COVID-19) contact 
tracing efforts [20]. Focuses on leveraging BLE technology 
for proximity detection, emphasizing the need for efficient, 
privacy-preserving methods and exploring various machine 
learning classifiers to enhance the accuracy and reliability 
of detecting high-risk contacts based on proximity data 
collected from smartphones [21]. Investigates smartphone-
based applications utilizing both geolocation and Bluetooth 
technologies aimed at identifying and mitigating the spread 
of COVID-19, raising concerns regarding their practical 
implementation in densely populated areas and potential 
privacy issues associated with the tracking technologies [22]. 
Explores Bluetooth-based and decentralized approaches to 
balance effectiveness with privacy concerns, focusing on 
minimizing reliance on central authorities while addressing 
device compatibility and the operational complexities 
introduced by decentralized models [23]. Primarily focused 
on using BLE technology to estimate proximity through 
signal attenuation, with many studies highlighting its 
limitations under various environmental conditions and 
proposing enhancements involving machine learning models 
to leverage additional signal features and contextual data 
from smartphones to improve accuracy in both indoor and 
outdoor settings [24]. Utilized device-to-device interactions 
via technologies like Bluetooth, facing challenges such as low 
interoperability, modest user adoption, and privacy concerns 
[25]. There is an increasing focus on enhancing these 
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systems through epidemiological modeling and integration 
of environmental data to improve effectiveness and adoption 
rates.
Previous studies have laid a solid foundation in the use of 
technology for disease surveillance; however, they also reveal 
significant gaps in current methodologies, particularly in 
environments as complex as cruise ships. We provide the 
Binary Contact Detection Model. The integration of the alpha 
shape algorithm with the Binary Contact Detection Model 
represents an evolution in the field, aimed at overcoming this 
limitation.
Bluetooth 5.1 technology has been increasingly adopted 
in consumer electronic products, especially smartphones 
and wearable devices. However, considering the diversity 
of devices carried by cruise ship passengers, our system 
design does not require passengers to purchase Bluetooth 5.1 
devices. Instead, the system simply needs to attach low-cost 
tags to the smartphones of passengers to enable positioning 
functionality. This approach not only reduces the barrier for 
passengers but also ensures broad device compatibility.
Implementing Bluetooth 5.1 AoA positioning technology 
involves certain costs, primarily based on the procurement 
of locators and tags. The cost of locators is relatively 
high; however, the cost of tags is relatively low. In a ship 
environment, cruise companies can significantly reduce 
overall costs by purchasing bulk tags. Additionally, the 
lightweight and easy-to-distribute nature of the tags 
simplifies logistics management, allowing cruise companies 
to distribute tags uniformly to passengers upon boarding, 
thereby ensuring efficient system operation.
The placement of antenna arrays plays a crucial role in 
the positioning accuracy of Bluetooth 5.1 AoA. However, 
antenna array optimization typically requires hardware 
adjustments and upgrades. Although optimizing the locator 
deployment positions can improve the positioning accuracy, 
the need to frequently adjust the locator positions in the 
highly dynamic environment of a ship presents certain 
operational challenges and limitations.
Although Bluetooth 5.3 introduces several enhancements, 
such as improved power efficiency, faster data transmission, 
and better connection stability, it does not offer specific 
improvements in indoor positioning accuracy compared to 
Bluetooth 5.1. The key feature for high-precision indoor 
positioning, namely the AoA functionality, is introduced in 
Bluetooth 5.1 and remains the core technology for accurate 
position tracking.
To address this issue, we adopt machine learning algorithms, 
such as the Random Forest (RF) algorithm, to mitigate the 
impact of environmental changes on positioning accuracy. 
Specifically, by filtering out noise features before model 

training, we can enhance the quality of the input data to 
ensure that the model can maintain high positioning accuracy 
in dynamic environments. The proposed method reduces the 
reliance on frequent hardware adjustments, thereby allowing 
the system to more flexibly adapt to environmental changes 
while still providing reliable positioning results.

3. Close Contact Tracing and Risky Area 
Identification
In this section, we present our comprehensive approach for 
tracing close contacts and identifying risky areas on cruise 
ships. Given the unique challenges posed by the cruise ship 
environment-such as high-density populations, enclosed 
spaces, and complex interpersonal interactions-it is essential 
to employ advanced technologies and models to effectively 
monitor and control the spread of infectious diseases. Our 
method integrates Bluetooth 5.1 technology for precise in-
ship positioning, a Binary Contact Detection Model for 
accurate identification of close contacts, and an alpha shape 
algorithm to delineate high-risk areas based on the spatial 
distribution of individuals. The following subsections 
describe each component of the proposed approach.

3.1. Problem Definition
The rapid spread of infectious diseases in cruise ship 
environments poses a significant public health challenge. As 
a closed and densely populated setting, a cruise ship’s unique 
environmental conditions-such as high-density interpersonal 
interactions and frequent social activities-greatly increase the 
risk of disease transmission. Traditional disease monitoring 
and control methods often fail to address the rapid spread 
of diseases within high-density, enclosed spaces, making 
efficient tracking and control difficult. Specifically, the 
critical issue that needs to be addressed is how to effectively 
and accurately track close contacts and identify high-
risk transmission areas on a cruise ship. In the cruise ship 
environment, traditional contact tracing methods primarily 
rely on manual records or low-precision technological means, 
which are insufficient for handling the complex and variable 
patterns of interpersonal interactions inherent to cruise 
ships. Additionally, the enclosed environment facilitates the 
widespread dissemination of pathogens, further complicating 
disease control efforts.
To address these challenges, this study proposes an innovative 
approach that integrates Bluetooth 5.1 technology, a Binary 
Contact Detection Model, and the alpha shape algorithm 
to enhance disease monitoring and response capabilities on 
cruise ships. Specifically, the proposed method leverages 
the high-precision data capture capabilities of Bluetooth 5.1 
in combination with a Binary Contact Detection Model to 
achieve accurate tracking of interactions between individuals. 
Concurrently, the alpha shape algorithm helps identify 
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areas most susceptible to disease transmission, providing 
an effective means to quantify the risk of infectious disease 
spread on cruise ships.
Through this comprehensive technological approach, our 
research aims to play a crucial role in disease prevention 
and control by slowing the rate of virus transmission and 
containing the spread within defined limits, thereby ensuring 
the health and safety of cruise passengers and staff. This 
not only offers an advanced disease monitoring solution for 
the cruise industry but also provides valuable insights for 
controlling infectious diseases in other high-density, enclosed 
environments.

3.2. In-Ship Positioning Using Bluetooth 5.1
Bluetooth 5.1’s AoA indoor positioning technology is 
an advanced wireless positioning method that primarily 
determines a device’s position by measuring the angles 
of incoming wireless signals [26]. In an AoA positioning 
system, a positioning tag (e.g., a device equipped with a 
Bluetooth transmitter) emits signals at specific frequencies. 
The signals are captured by a receiver equipped with multiple 
antennas. The receiver utilizes its antenna array to measure 
the angles of arrival of the signals, which includes both the 
azimuth angle (the angle on the horizontal plane) and the 
elevation angle (the angle on the vertical plane) [27]. This 
measurement typically involves advanced signal processing 
techniques, such as phase-difference measurements, where 
the receiver calculates the differences in signal arrival times 
across various antennas to infer the angles of arrival. By 
integrating multiple angle measurements, the system can 
accurately calculate the tag position in 3D space. 
The internal environment of ships is complex, with 
many metallic structures and devices that can affect the 
propagation of wireless signals. Bluetooth 5.1 technology 
can provide more accurate positioning in such environments 
because it does not rely on signal strength. Known for its low 

energy consumption, Bluetooth technology is well-suited for 
long-term operation in environments with limited power 
sources, which is a significant advantage for devices on 
ships. Compared to other advanced positioning technologies 
like Wi-Fi or Ultra-Wideband, Bluetooth devices generally 
have lower costs and are easier to deploy on a large scale. 
Bluetooth technology supports a wide range of devices 
and applications, is easy to integrate into existing ship 
management systems, and can support future expansions and 
upgrades.
Figure 1’s left side shows a direction-finding antenna array 
labeled with specific antenna numbers from 1 to 16. This 
array is used to capture signals sent from various angles. 
Each antenna’s position and angle are designed to maximize 
the capability to receive signals from different directions. 
When a tag with a Bluetooth transmitter emits a signal, 
the antenna receives the signal and calculates the angle of 
arrival based on the differences in the signal arrival times. 
The middle panel of Figure 1 displays a three-dimensional 
view of the positioning principle.
Figure 1 illustrates the AoA positioning technique used in 
Bluetooth 5.1 for indoor positioning. The left schematic in 
Figure 1 shows the direction-finding antenna array used to 
detect the AoA of the Bluetooth signal. The schematic on 
the right of Figure 1 shows how the system determines the 
tag’s position in a three-dimensional space (X, Y, Z planes) 
using the elevation and azimuthal angles. By measuring 
the angle between the Bluetooth tag and multiple locators, 
the system can calculate the tag’s precise position. The 
locators are placed at different positions, which allows the 
system to triangulate the tag’s position using these angle 
measurements. Figure 1 highlights the tag’s positioning in 
relation to the locators and explains how the azimuthal and 
elevation angles contribute to determining the position of the 
tag within the indoor environment.

Figure 1. Illustration of how Bluetooth 5.1 uses the angle of arrival technique for precise indoor positioning by measuring the arrival 
angles of signals at a receiver antenna array
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The hardware shown on the right side of Figure 1 is actually 
a tag equipped with a Bluetooth chip, which is used to 
emit signals containing specific frequencies and coding 
information. This transmitter is likely designed to have low 
power consumption and is therefore suitable for applications 
requiring long run times. Its main function is to continuously 
emit signals that are received by the direction-finding antenna 
array. With the combination of precise hardware and complex 
signal processing algorithms, high-precision position 
information can be obtained in complex environments. This 
technology is particularly suitable for scenarios requiring 
precise positioning, such as on ships, in large factories, or in 
other environments with complex physical structures. With 
Bluetooth 5.1 indoor positioning technology, devices can 
achieve efficient spatial position monitoring and management 
with low energy consumption [28].

3.3. Methods to Obtain IQ Data
Constant Tone Extension (CTE) is a technology used in 
Bluetooth signal transmission, specifically designed to support 
AoA indoor positioning functions [29]. Essentially, CTE is a 
continuous single-frequency tone appended at the end of a 
data packet. The primary function of the proposed system is 
to provide a stable reference point, enabling receiving devices 
to precisely measure the signal angle of arrival by analyzing 
its phase information [30]. A tag emits a Bluetooth signal 
containing CTE, which, following conventional data, such 
as device ID and other communication information, includes 
the additional CTE portion, as shown in Figure 2. Locators 
equipped with multiple antennas receive the transmitted 
signal. Each antenna records the signal arrival time and phase 
information upon receipt. The processing system within the 
locator calculates the phase differences of the signals received 
by each antenna. 

Because CTE is a continuous single-frequency tone, it 
makes the phase information very clear and stable, thereby 
facilitating high-precision measurements. By analyzing the 
phase differences received from different antennas, the locator 
can determine the signal’s angle of arrival, including both 
azimuth and elevation angles. These angles are determined 
based on the relative positions of the signal to each antenna. 
By combining the angle information provided by more 
locators, the system uses geometric triangulation to calculate 
the exact position of the tag. If the locators are fixed and their 
positions are known, then the exact coordinates of the tag in 
3D space can be accurately determined.
Through this method, CTE enables Bluetooth technology 
to achieve precision positioning similar to that of radar and 
sonar. This high-precision angle measurement capability is 
particularly suitable for complex environments such as ships 
and large factories. Therefore, CTE not only improves the 
accuracy of Bluetooth positioning technology and expands 
its application scenarios, making it a versatile and efficient 
positioning tool.
In Bluetooth technology, the relationship between IQ data 
and CTE is central to the implementation of high-precision 
positioning technologies, such as AoA positioning. IQ 
data represent the I and Q components of a signal. These 
components are used to describe the signal’s amplitude and 
phase and are fundamental to signal analysis in wireless 
communication. Using these data, the signal’s waveform 
can be reconstructed and its transmission characteristics 
analyzed. Thus, IQ data form the basis for implementing 
various signal processing techniques, including frequency 
modulation, phase modulation, and other complex 
modulation-demodulation methods [31].
The antenna arrays capture CTE signals, recording the I 
and Q components of the signal received by each antenna. 

Figure 2. IQ sampling upon receiving CTE packets

IQ: In-phase and Quadrature, CTE: Constant Tone Extension
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Analysis software or hardware devices use the collected IQ 
data to calculate the signal’s phase and amplitude [32]. For 
AoA positioning, phase differences are particularly important 
because they can reveal the angle of the transmitter’s position 
relative to the receiver. Because CTE provides a continuous and 
stable signal, the receiver can perform multiple measurements, 
thereby enhancing the angle estimation accuracy. Accurate 
capture of IQ data is crucial to this process. In real 
environments, multipath effects and environmental noise may 
interfere with the accuracy of IQ data; thus, high-quality signal 
processing algorithms and hardware are necessary to ensure 
correct signal interpretation and precise calculation of phase 
differences. The combination of IQ data and CTE achieves 
high-precision three-dimensional positioning in Bluetooth 
technology, providing an effective solution for tracking and 
locating devices in complex environments.
The right panel of Figure 3 illustrates the data points of the I and 
Q components changing over time. The blue curve represents 
the I data, indicating changes in the I component over time, 
while the orange curve represents the Q data, indicating 
changes in the quadrature component. The fluctuations of 
these two curves depict the dynamic characteristics of the 
signal, with each point’s vertical position representing the 
amplitude of the component at specific moments in time.

3.4. Pairwise Combined IQ Data
The Binary Contact Detection Model identifies close 
contacts using Pairwise Combined IQ Data. The proposed 
method combines the identification results from the Binary 
Contact Detection Model and the corresponding positions 
with the alpha shape algorithm to identify risky areas. 
Positions are precisely determined by affixing BLE tags to 
user smartphones and leveraging Bluetooth 5.1 technology 
for data acquisition. The core concept of directly converting 
IQ data into features acceptable by a model lies in fully 
utilizing the rich information contained within the IQ data 
to simplify the data processing workflow and enhance model 
performance. IQ data can comprehensively describe the 
amplitude and phase information of signals, which is crucial 
for many applications. By directly using these raw IQ data 
as input features for models, more useful information can 
be retained, thereby avoiding information loss during the 
data preprocessing stage and simplifying the complexity of 
data processing. Directly using IQ data as features can also 
improve the predictive performance of the model, as these 
data contain complete signal information that helps in more 
accurately capturing signal characteristics.
Figure 4 illustrates the entire process of transmitting IQ data 
from a BLE Tag to a Locator via Bluetooth 5.1 and eventually 

Figure 3. Visualization of IQ data

IQ: In-phase and Quadrature

Figure 4. The IQ data processing flow from BLE tag to model-ready features

IQ: In-phase and Quadrature, BLE: Bluetooth Low Energy
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converting it into features acceptable to the model. The icon 
on the left represents the BLE Tag, which transmits data 
via Bluetooth 5.1. The icon in the middle panel of Figure 
4 represents the locater. The locater receives the signals 
transmitted from the BLE Tag and performs IQ sampling. IQ 
sampling is achieved by extracting the I and Q components 
from the received signal. The arrow labeled “IQ Sampling” 
in Figure 4 illustrates this process, with the (I, Q) symbols 
next to it representing the collected IQ data.
Subsequently, these IQ data are converted into features 
that can be directly used as model input. The arrow labeled 
“Convert to Features” in Figure 4 indicates this conversion 
process. The converted feature data are shown in the yellow 
box on the right (labeled I and Q, indicating the directly used 
feature data. The key to this step is that it does not require 
complex feature extraction methods; it simply involves using 
raw IQ data directly as model input, which simplifies the 
data processing workflow.
Figure 4 shows the process of transmitting signals from 
the Tag device via Bluetooth 5.1, performing IQ sampling 
with the locater, and eventually converting these IQ data 
into features for direct use in model input. This approach 
not only simplifies the data processing workflow but also 
retains crucial signal information, potentially enhancing 
model performance and enabling functionalities such as 
localization and signal classification.
IQ data between close contacts may be similar or exhibit 
certain patterns. Therefore, assuming that we already know 
that an individual is a COVID-19 patient or has close contact 
with other individuals, we can combine the IQ data of other 
individuals with the IQ data of the known individual in pairs 
to provide input features to the model. If the model outputs a 
result of 1, then the individual and the known close contact 
are also closely connected. Until the identification results of 
all individuals are obtained, all individuals are considered 
potential close contacts.
Specifically, the first step is to identify and confirm COVID-19 
patients or known close contacts whose IQ data served as the 
reference baseline. Then, the IQ data of other individuals are 
combined with the IQ data of a known individual in pairs to 
form new feature pairs. These paired IQ data can be used as 
input features for the machine learning model, which makes 
predictions based on them. If the model outputs a result of 1, 
it indicates that the individual has close contact with a known 
close contact; if the result is 0, it indicates no close contact. 
Based on the model prediction results, new close contacts 
can be identified and marked. Until the identification results 
of all individuals are obtained, all individuals are considered 
potential close contacts.

During data collection and preprocessing, IQ data can be 
normalized or standardized to reduce noise and interference 
effects on the model, thereby improving the prediction 
accuracy and stability of the model. Using the data of known 
COVID-19 patients and close contacts, the machine learning 
model can be trained to recognize patterns in the IQ data. An 
RF classifier can be used to train and optimize the model. 
After training the model, it can be tested using a validation 
dataset to evaluate its accuracy. By continuously adjusting 
the model parameters and improving the algorithms, the 
model’s performance can be enhanced.
Deploy the trained model into practical applications and 
monitor its prediction results in real time to ensure that it 
accurately identifies potential close contacts. Continuously 
collect new IQ data to update and optimize the model, and 
address any changes or challenges that may arise. Through 
these steps and methods, an efficient COVID-19 close-
contact identification system can be established to help 
promptly detect and isolate potential infected individuals, 
effectively controlling the spread of the pandemic. This 
approach not only simplifies the data processing workflow 
but also improves identification accuracy and efficiency, thus 
contributing to public health management and pandemic 
prevention.
Figure 5 illustrates the concept of using the IQ data of already 
labeled close contacts to identify potential close contacts. At 
the top of Figure 5, the IQ data of close contacts (represented 
by blue dots) are displayed. The middle panel of Figure 5 
presents two sets of IQ data: the upper panel presents the IQ 
data of known close contacts (blue dots), and the lower panel 
presents the IQ data of potential close contacts (red dots). The 
bottom section of Figure 5 provides a solution, indicating 
that the IQ data of known and potential close contacts 
should be considered as one group and input into a classifier 
for identification. This process is further emphasized by a 
yellow arrow, explaining the specific operation of combining 
the two sets of IQ data and inputting them into the model for 
classification. To expand on this, the workflow depicted in 
Figure 5 involves several key steps. First, the IQ data from 
known close contacts, represented by blue dots, are used as 
baseline data. Then, the IQ data of potential close contacts 
(red dots) are paired with these known data to form new data 
pairs. Next, these paired data are input into a classification 
model for training and prediction. By learning the features 
within these IQ data pairs, the model can identify which 
individuals are likely to be new, close contacts.
The underlying logic of the proposed method is that the IQ 
data of close contacts may exhibit similar feature patterns. 
By using a machine learning model, these feature patterns 
can be recognized automatically, thereby allowing accurate 
identification of potential close contacts.
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3.5. Binary Contact Detection Model
The sigmoid function is a commonly used activation function 
in machine learning and neural networks. The characteristics 
of the sigmoid function make it particularly suitable for 
binary classification problems, where it can map input real 
numbers to a range of (0,1), representing the probability 
of a particular class. For example, in binary classification 
models, the output processed by the sigmoid function can 
be interpreted as the probability that a sample belongs to a 
certain class. However, in some practical applications, the 
standard sigmoid function may not sufficiently meet the 
requirements; thus, we propose the Shifted-Scaled Sigmoid 
Function.
The proposed Shifted-Scaled Sigmoid Function is proposed 
because the standard sigmoid function may have limitations 
in some application scenarios and may not fully meet the 
actual requirements. The standard sigmoid function is 
centered at 0, which means that its symmetry is centered 
around 0. The standard sigmoid function has an output range 
of (0,1) with a smooth transition at 0.5, which is an ideal 
threshold. However, in many cases, the distribution of input 
data is not symmetric, or the characteristics of the data are 
not suitable for being centered around 0.
For example, in some detection and classification tasks, 
the mean or median of the input data may be offset from 
0. In such cases, using the standard sigmoid function 
would lead to biased classification results and would not 
accurately reflect the actual situation. Therefore, adjusting 
the position of the sigmoid function so that its symmetry 
is centered around the median of the data can improve the 
model’s prediction accuracy. Furthermore, the steepness 
of the standard sigmoid function is fixed; thus, it may not 
provide sufficient discriminative power for tasks requiring 

more sensitive threshold transitions. In these tasks, we want 
the function to have a more rapid transition near a specific 
point, which allows the model to make clearer classifications 
for data points close to the threshold. This requires adjusting 
the steepness of the function to accommodate different 
application requirements. Table 1 provides a detailed 
description of the symbols and notations used throughout 
this paper.
In Equation (1), we define “predictioni” as the models 
predicted output for the i-th sample, which is expressed as

            (1)

where f  represents the model’s prediction function, and   x  i    is 
the input feature vector of the i-th sample.
By employing the Shifted-Scaled Sigmoid Function, we 
can shift the center of the sigmoid function from 0 to other 
specific values in the data, thereby making the classification 
threshold more reasonable and accurate. Before introducing 
the Shifted-Scaled Sigmoid Function, we first need to 
understand two important parameters: k and x (Equation 2).

            (2)

where k is the amount of input data. x is the cumulative 
average of the model’s output values. After introducing k 
and x, we introduce the Shifted-Scaled Sigmoid Function. 
The Shift-Scaled Sigmoid Function is formulated as 
Equation (3).

            (3)

Figure 5. Using IQ data on labeled close contacts to identify close contacts

IQ: In-phase and Quadrature
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where the shift parameter 0.5 moves the center from 0 to 0.5, 
thereby making the function symmetrical around 0.5. The 
choice of 0.5 as the shift parameter is intended to align the 
decision threshold of the sigmoid function with the standard 
for binary classification problems, thereby enhancing 
classification accuracy and interpretability while ensuring 
model consistency and natural symmetry. The scaling 
parameter k controls the function steepness. Larger k values 
make the function steeper at approximately 0.5, which makes 
the distinction between 0 and 1 in classification tasks more 
clear. Therefore, if the output value is greater than 0.5, it is 
classified as 1; otherwise, it is classified as 0.
For example, the distribution of Pairwise Combined IQ 
Data may be asymmetric, and the feature center of the data 
may deviate from 0. By using the Shifted-Scaled Sigmoid 
Function, we can ensure that the model’s classification 
threshold is closer to the actual data feature center, thereby 
avoiding classification errors caused by the standard sigmoid 
function’s center deviation. At the same time, by adjusting 
the scaling parameter k, the model can more flexibly adapt 
to different data distributions, which improves the accuracy 
and stability of the classification results.
In summary, the shift-scaled sigmoid function overcomes 
the limitations of the standard sigmoid function in terms 
of center position and steepness by shifting and scaling it, 
making it better suited for various practical applications. By 
adjusting the values of x and k, the model’s classification 
accuracy and stability can be improved, making it suitable 
for tasks that require flexible adjustment of classification 
thresholds and rapid response to changes.
Cruise ships are constructed with extensive metal structures, 
including hulls, decks, and bulkheads, which can cause 

significant signal reflection, absorption, and multipath 
propagation. These metal surfaces can distort Bluetooth 
signals, leading to errors in the angle estimation and reduced 
reliability of AoA measurements. Additionally, the complex 
layout of ships, with numerous confined spaces and obstacles 
such as walls, furniture, and equipment, contributes to signal 
obstructions. The dynamic movement of passengers and 
crew members adds another layer of complexity, as human 
bodies can absorb and reflect signals, causing fluctuations in 
signal strength and quality.
To mitigate these environmental factors and enhance the 
accuracy of Bluetooth 5.1 AoA technology on cruise ships, 
this study employs a method that involves optimizing the 
features of the input signal. Signal data are used as features 
and input to machine learning algorithms, such as the Light 
Gradient Boosting Machine (LightGBM), to perform feature 
filtering. This process forms a feature filter that removes noisy 
features, effectively addressing the inherent interference 
problem. By filtering out these noisy features-which 
represent manifestations of environmental interference-
the overall impact of interference in the ship environment 
can be mitigated. This optimization enhances the quality of 
the data used for angle estimation, leading to more reliable 
AoA measurements and improved positioning accuracy. 
Moreover, our approach does not require the assistance 
of the Wireless Fidelity (WiFi) and the Radio Frequency 
Identification (RFID) to improve accuracy, thereby avoiding 
increased hardware costs.
The Binary Contact Detection Model is a machine learning 
model designed to identify close contacts. Its core idea is 
to use Pairwise Combined IQ Data as features, undergo a 
series of feature selection and classification processing 

Table 1. Notations and symbol descriptions

Symbol Description
f(xi ) The function represents the model’s prediction function, and is the input feature vector of the i-th sample

predictioni The models predicted output for the i-th sample

k Amount of input data used to calculate the average prediction

x Cumulative average of the model’s output values

h(p) Prediction function for close contact between devices

ei The positional coordinate of the i-th device pair is predicted as “1” (close contact)

E Set of positional coordinates of all device pairs predicted as “1”

σ A simplex with a circumcircle radius in the Delaunay triangulation

Del(E) Delaunay triangulation of position set E, a geometric structure that connects points to form triangles where no point is 
inside the circumcircle of any triangle

r(σ) The radius of the circumcircle

Alpha The parameter that controls the tightness of the shape

n Number of positions in the input set E

γ Adjustment factor for the alpha value (typically set to 1)
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steps, and finally use the Shifted-Scaled Sigmoid Function 
to output the result, determining whether an individual is in 
close contact. The specific process is as follows: first, the IQ 
data are paired to form Pairwise Combined IQ Data, which 
generates the initial feature set. Then, through Controllable 
Feature Selection (CFS), including feature importance 
calculation using LightGBM, sorting features by importance 
in descending order, forward feature selection, and RF 
classifier validation, the optimal feature set is finally output. 
The optimal feature set forms a feature filter that screens 
the most important features. The features processed by the 
Feature Filter are then input into a trained RF classifier for 
initial classification, and the final classification result is 
input into the Shift-Scaled Sigmoid Function. If the output 
is 1, the individual is considered to have close contact; if 
the output is 0, the individual is considered to have no close 
contact.
Figure 6 illustrates the overall process of the Binary Contact 
Detection Model, including two main stages: the offline 
and online stages, used to identify close contacts. In the 
offline stage, IQ data are paired to form Pairwise Combined 
IQ Data, generating the initial feature set. Next, CFS is 
performed, which includes feature importance calculation, 
sorting features by importance in descending order, forward 
feature selection, and RF classifier validation. These steps 
ultimately output the optimal feature set.

In the online stage, the input Pairwise Combined IQ Data is 
represented by green dots. First, this data is screened through 
a feature filter formed using the optimal feature set obtained 
in the offline stage to filter out important features. Then, the 
features processed by the Feature Filter are input to a trained 
RF classifier for initial classification. The classification 
result is then processed by the Shift-Scaled Sigmoid 
Function, which ultimately outputs 0 or 1. If the result is 1, 
the individual is judged to have close contact; if the result is 
0, the individual is judged to have no close contact.
Through this process, the Binary Contact Detection Model 
can effectively identify close contacts, improving the model’s 
classification accuracy and stability, making it suitable for 
public health management and epidemic prevention.

3.6. System Model
In this study, a risky area is defined as the convex hull 
polygon formed by a set of positions of close contacts. 
Therefore, we propose an innovative model that combines 
an alpha shape algorithm and the output of a Binary Contact  
Detection Model to precisely identify and mark risky areas. 
This method is particularly suitable for disease transmission 
and public health management, especially in environments 
where rapid identification and response to infectious disease 
outbreaks. The Binary Contact Detection Model, which is 
based on IQ data received from the locater, predicts whether 

Figure 6. Binary Contact Detection Model
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there is close contact between individuals based on the BLE 
Tags they carry. The model outputs a binary value-1 or 0. 
Here, “1” indicates that there is close contact between two 
devices, and “0” indicates non-close contact. This step is 
crucial for identifying risky areas.
All device pairs marked as “1” in the Binary Contact 
Detection Model are considered close contacts. The positional 
coordinates of these devices are extracted as inputs to the 
subsequent alpha shape algorithm. This selection process 
ensures that the alpha shape algorithm is applied only to the 
points most likely to be mediators of disease transmission, 
thereby enhancing the efficiency and focus of the overall 
analysis.
The Binary Contact Detection Model predicts the likelihood 
of close contact between each pair of individuals based on the 
IQ data from their devices. The output value of “1” indicates 
close contact, while “0” indicates non-close contact. Let {p1, 
p2, …, pn} be the set of positions, and the prediction function 
h(p) is given by Equation (4).

            (4)

The positional coordinates of all device pairs predicted as “1” 
form the input position set E for the alpha shape algorithm, 
that is Equation (5).

            (5)

Given a set of positions E the alpha shape algorithm is used to 
identify the shape formed by these positions. An appropriate 
alpha value is selected that determines the tightness of 
the algorithm boundary. The convex hull contains all the 
positions in the set. The Convex Hull is a special case of the 
alpha shape; specifically, it is the alpha shape when the alpha 
tends toward infinity. In this limit, all positions are included 
in a single convex shape without considering any internal 
structure or holes within the set of positions. The larger 
the alpha value, the more the resulting alpha shape tends to 
approximate the convex hull of the position set.
Alpha shape is used to determine the shape of a position set 
by analyzing its Delaunay triangulation. The construction 
of the alpha shape is based on the Delaunay triangulation 
of the position set. The Delaunay triangulation provides a 
well-defined circumcircle for each triangle, characterized by 
not containing any other positions. Alpha shapes compare 
the radius of these circumcircles with a given threshold 
alpha to decide which triangles should be included in the 
final shape [33]. Technically, if the circumcircle radius of a 
simplex (an edge or triangle) in the Delaunay triangulation 

is less than or equal to alpha, then that simplex is included in 
the alpha shape [34]. When the alpha value is small, only 
positions that are very close to each other are connected, 
resulting in a tighter, more detailed shape that may exhibit 
more non-convex features. As the alpha value increases, 
more simplices are included, and the alpha shape gradually 
expands until it becomes the convex hull of the position 
set when the alpha value is sufficiently large to exceed the 
maximum distance between any positions.
Using position set E as input, the alpha shape algorithm 
is used to determine the boundary of the area formed by 
these close contacts. Let Del(E) represent the Delaunay 
triangulation of the position set E, and let simplex σ ∈ Del(E) 
have a circumcircle with radius r(σ). The alpha shape can be 
described by Equation (6) [35].

            (6)

where σ represents a simplex (an edge or triangle) within 
the Delaunay triangulation, r(σ) is the radius of the 
circumcircle, and alpha is the parameter that controls 
the tightness of the shape. In the alpha shape algorithm, 
triangles whose circumcircle radius is less than or equal to 
alpha are selected as part of the alpha shape. Each triangle 
in Delaunay triangulation undergoes a filtering process, 
ultimately forming a shape that describes the original set of 
positions.
In the traditional alpha shape algorithm, alpha represents 
the radius of the largest circle (or sphere) used in the 
construction of the shape. As the number of positions 
involved in the calculation increases, the complexity of the 
Delaunay triangulation also increases. If the alpha value is 
kept constant, new positions may be added that form new 
simplices whose circumcircle radii exceed the current alpha 
value, thereby refining the alpha shape. However, if the 
alpha value increases with the number of positions, more 
triangles can be maintained within the alpha shape, making 
the shape more likely to encompass the Convex Hull, which 
includes all positions. Here, n is the number of positions in 
input set E.

            (7)

            (8)

where γ is an adjustment factor that can be modified based on 
the specific characteristics of the dataset, which is typically 
set to 1. This dynamic adjustment of the alpha shape’s size 
adapts to changes in the size of the position set, thus more 
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effectively reflecting the spatial structure and characteristics 
of the dataset. This setting allows the value of alpha to grow 
linearly with the number of positions while maintaining 
sufficient flexibility and coverage while avoiding overly 
complex shapes. In many practical application scenarios, the 
collection of positions is not static, but can change over time 
or under different conditions. Setting alpha proportional 
to the number of positions, scaled by γ, provides a natural 
mechanism by which the alpha shape dynamically adapts to 
changes in the number of positions.
Through this approach, the combination of the alpha shape 
algorithm and Binary Contact Detection Model not only 
provides precise delineation of risky areas but also makes the 
management of these areas more scientific and systematic, 
thereby effectively supporting the formulation and 
implementation of disease prevention and control measures.
Figure 7 illustrates a process for identifying risky areas, 
where the output of the Binary Contact Detection Model is 
used in the alpha shape algorithm to calculate risky areas. In 
this model, the output of the Binary Contact Detection Model 
is 0 or 1, indicating whether close contact exists between 
device pairs. If the model output is 1, then the two devices 
are determined to be in close contact, and their positions are 
marked and extracted.
Next, the positions of all devices marked as 1 by the Binary 
Contact Detection Model are collected from position set  

E, which is then inputted into the alpha shape algorithm. The 
alpha shape algorithm determines the shape boundaries by 
computing the Delaunay triangulation of these positions and 
by filtering out triangles or edges whose circumcircle radii 
do not exceed alpha.
In particular, Delaunay triangulation is first performed for 
position set E. Delaunay triangulation is a special type of 
triangular mesh in which no positions from the set are inside 
the circumcircle of any triangle. Next, alpha is calculated 
based on the number of positions n in the set E and the 
factor γ. Then, the alpha shape is constructed by filtering out 
triangles and edges from the Delaunay triangulation whose 
circumcircle radii are less than the alpha radii. The filtered 
simplices form the alpha shape.
 Through these steps, the alpha shape algorithm generates a 
shape boundary that includes all positions from point set E. 
The final output risky area is indicated by the red boundary 
in Figure 7. This method, by combining the output of the 
Binary Contact Detection Model with the alpha shape 
algorithm, not only dynamically adjusts the shape to adapt to 
changes in the dataset but also precisely identifies and marks 
the risky areas. This is of significant importance for public 
health management and disease prevention and control, as 
it helps to detect and isolate close contacts to prevent the 
spread of epidemics.

Figure 7. Risky area identification process based on alpha shape algorithm and binary contact detection model
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4. Performance Evaluation 
Figure 8 shows the layout of the upper deck of the HANNARA 
ship used to collect IQ data for the close-contact experiments. 
In this experiment, BLE Tags are placed in various positions 
on the deck, and user positions (blue markers) are recorded, 
allowing the capture and recording of individual BLE tag 
IQ data. The experiment focused on pairs of individuals 
within a distance of 1.5 m. These individuals are considered 
to have close contacts because their physical distance falls 
within the possible range of disease transmission. Through 
this experimental layout and data collection, we can use the 
collected IQ data to train and validate the Binary Contact 
Detection Model.
In Figure 8, “2-12” indicates that individuals 2 and 12 form 
a group called group 1, which is abbreviated as “g_1”. 
Therefore, there are 8 groups of close contacts and 8 groups 
of non-close contacts, totaling 16 groups. The 8 groups of 
close contacts are “g_1, g_2, g_3, g_4, g_5, g_6, g_7, g_8”, 
while the 8 groups of non-close contacts are “g_9, g_10, 
g_11, g_12, g_13, g_14, g_15, g_16”. Table 2 summarizes 
the key experimental parameters and model configurations 
used in this study, including the environment, model types, 
dataset size, and performance metrics.
In Figure 9, the x-axis represents the relative importance 
calculated by the Binary Contact Detection Model, indicating 

the relative importance of each feature. This value is typically 
computed based on how the feature improves the model’s 
predictive performance, for example, in decision trees, it 
can be based on the gain during node splits. The y-axis lists 
the names of the features used for learning and prediction in 
the Binary Contact Detection Model. This graph shows the 
contribution of IQ data to the decisions made by the Binary 
Contact Detection Model. The Binary Contact Detection 
Model uses 144 IQ data points as features. For ease of 
display, the graph only lists the top 20 features. For example, 
“IQ_data_1_I_24” represents the I data of the 24th IQ data 
point from BLE Tag 1. In a ship scenario, these features can 
represent data points used to identify close contacts. The 

Figure 8. HANNARA ship upper deck layout for a close contact experiment

Table 2. Experimental setup

Parameter Description
Environment Python

Model type LightGBM, Random Forest

Number of samples 23,932

Feature count 144

Train-test split ratio 70% training and 30% testing

Performance metrics Accuracy, AUC, precision, recall, F1 
score, receiver operating characteristic

LightGBM: Light Gradient Boosting Machine, AUC: Area Under the Curve
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features are sorted by their relative importance, with the 
most important features playing a more significant role in the 
predictions made by the Binary Contact Detection Model. 
This means that these features provide the most information 
when identifying close contacts.
An in-depth examination of Figure 9 reveals that the 
top-ranked features have a significantly higher relative 
importance than the others. This indicates that a small subset 
of IQ data points strongly influences the model’s predictive 

ability. By focusing on these key features, we can potentially 
streamline the model for faster computation without 
sacrificing accuracy. Additionally, understanding the most 
impactful features can provide insights into the underlying 
patterns that signify close contacts, thereby improving 
feature engineering and data collection strategies in future 
implementations.
As shown in Figure 10, as the number of sorted features 
increases, the key evaluation metrics such as test accuracy, 

Figure 9. A graph showing the contribution of IQ data to the model’s decision

IQ: In-phase and Quadrature

Figure 10. Impact of sorted number of features on model evaluation metrics
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Area Under the Curve (AUC), precision, recall, and F1 score, 
of the model initially show signs of improvement; however, 
these performance metrics stabilize after reaching a certain 
point. The x-axis represents the “Number of Features” used 
by the Binary Contact Detection Model for prediction. These 
features may be columns of the dataset, which the model 
uses to make predictions. The y-axis represents the “Score”, 
which measures the performance of the model. The score 
ranges from 0 to 1, with a score closer to 1 indicating better 
model performance.
In particular, the data demonstrate that when the number 
of features reached above 33, the model performance 
significantly improved. Starting from the 33 features, all 
major performance metrics (accuracy, AUC, precision, 
recall, F1 score) increased significantly. This trend indicates 
that initially increasing the number of features can provide 
more information to the model, thereby enhancing its 
predictive capability. However, after reaching a certain 
number of features, performance improvement becomes very 
limited. In particular, when the number of features is small, 
model performance improved significantly, especially as the 
number of features started to increase from a lower range. In 
particular, model performance improved noticeably before 
reaching a certain threshold. This threshold represents the 
turning point at which the model transitions from acquiring 
essential information to approaching its performance 
ceiling. The test accuracy and AUC initially improved with 
an increase in the number of features, indicating that the 
model’s ability to distinguish between different categories is 
enhanced. However, after the number of features increases to 
a certain level, the improvement in these metrics diminishes 
and eventually stabilizes, which indicates that the model has 
reached its potential limit in distinguishing capability. 

The precision, recall, and F1 scores also demonstrate 
noticeable improvements when the number of features is 
small, followed by a slowdown in performance enhancement 
and stabilization as the number of features continues to 
increase. As the model processes more information, its 
ability to classify positive and negative samples reaches a 
certain balance. The results demonstrate that adding features 
significantly improves model performance when the number 
of features is small. However, beyond a certain threshold, 
the performance improvement diminishes and stabilizes, 
emphasizing the importance of fine feature selection to add 
necessary information while avoiding excessive noise or 
irrelevant information.
Ultimately, Figure 10 underscores the principle of the “curse 
of dimensionality”, where adding too many features can lead 
to diminishing returns or even degrade model performance 
due to overfitting or increased noise. This highlights the 
necessity of an optimal feature set that balances the amount 
of information provided and the potential for introducing 
irrelevant data. This balance ensures that the model remains 
both efficient and effective, maximizing the predictive 
accuracy while minimizing the computational complexity.
Figure 11 shows the receiver operating characteristic (ROC) 
curve, which shows the performance of the classification 
model at all possible classification thresholds. The AUC is a 
metric used to measure the performance of a classifier, with 
higher AUC values indicating better classifier performance. 
An ideal ROC curve bends toward the top left corner of the 
plot, which means that the classifier can achieve a high True 
Positive Rate (TPR) with a low False Positive Rate (FPR).
In Figure 11, the ROC curve is displayed in orange, starting 
from (0,0), rapidly rising to near the (0,1) point, and then 

Figure 11. Receiver operating characteristics
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gradually approaching (1,1) to the right. The blue dashed 
line represents the performance of a Random Classifier (RF), 
essentially the result of random guessing, and the slope of 
this line is 1, indicating that the TPR and FPR are equal for 
the classifier. Ideally, the ROC curve should be above the 
blue dashed line, indicating that the classifier’s performance 
is better than random guessing. In Figure 11, the ROC curve 
is clearly above the blue dashed line, indicating that the 
classifier exhibits good classification performance.
The sharp ascent of the ROC curve in Figure 11 toward 
the top left corner demonstrates the model’s strong ability 
to distinguish between the positive and negative classes. 
The substantial AUC indicates that the model performs 
significantly better than random guessing. This high AUC 
value signifies that the model exhibits a high TPR while 
maintaining a low FPR across various thresholds. Such 
performance is crucial in applications like close contact 
detection on ships, where accurately identifying potential 
risks without generating excessive false alarms is essential 
for effective disease prevention and control measures.
Figure 12 shows the results of 8 overlapping risky areas on 
the HANNARA upper deck. The x-axis represents the pixel 
width, which can be understood as the horizontal resolution 
of the image, and the y-axis represents the pixel height, 
corresponding to the vertical resolution of the image. This 
is the visual overlap of 8 risky areas identified by the model. 
The risky areas are determined based on the likelihood of 
close contact, which involves disease prevention and ship 
safety monitoring. In the daily operation of a ship, these 
results can be used to monitor the flow and activities of 
personnel to ensure the safety of passengers and crew. If a 
specific area is marked as high-risk, measures can be taken 

to restrict access to that area or increase the frequency of 
cleaning and disinfection. This not only provides an intuitive 
representation of the risky areas but also helps managers 
take preventive measures to reduce health risks on the ship. 
By monitoring and adjusting the usage patterns of the ship, 
the spread of diseases onboard can be effectively controlled 
and prevented.

5. Discussion
Our experimental results demonstrate that after filtering 
out noise features, the model’s performance improved 
significantly as the number of features increased from a 
lower range [36]. This indicates that utilizing more relevant 
information greatly enhances the model’s ability to identify 
close contacts. This trend emphasizes the importance of 
providing the model with sufficient and relevant information 
to ensure accurate identification of close contacts and areas of 
transmission risk.
Our goal is to first filter out noise features and optimize 
the feature set, thereby ensuring that the model receives 
only effective information that contributes to improved 
identification accuracy. Filtering out noise features not 
only reduces the model’s complexity but also enhances its 
robustness when handling high-density, complex interpersonal 
interaction environments [37]. Subsequently, as the number 
of features increases, the model leverages more relevant 
information to further enhance its ability to identify close 
contacts and transmission risky areas. The proposed method 
effectively combines feature selection and feature expansion 
to ensure that the model remains efficient and precise while 
being information rich.

Figure 12. Results of 8 risky areas on the HANNARA upper deck
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The proposed method primarily relies on Bluetooth 5.1 
technology to track close contact between individuals and 
employs a Binary Contact Detection Model to analyze these 
data. Although this technology is highly effective at detecting 
direct interpersonal contact, it does not capture pathogens 
transmitted through the air. However, timely identification of 
close contacts can still significantly reduce the speed of virus 
transmission and help control the spread of infection.
Noise primarily causes errors in positioning systems, which is 
a challenge in any environment [38]. The proposed model has 
a strong ability to filter out noise, which improves accuracy 
in any setting. While testing in different ship environments 
is desirable and can provide additional insights, it is not 
essential for demonstrating the effectiveness of our noise-
filtering approach. The key contribution of our work lies 
in the model’s capability to handle noise effectively, which 
we have thoroughly validated through our experiments. 
The HANNARA training ship accommodates hundreds 
of students, each with their own living space. This high-
density passenger environment closely resembles actual 
operational scenarios of cruise ships, effectively simulating 
the movements and close contact among passengers of real 
cruise ships.
Compared to existing technologies for contact tracing and 
risky area identification, such as WiFi-based positioning 
systems and RFID tracking, the proposed solution 
using Bluetooth 5.1 technology combined with machine 
learning-based feature filtering offers superior accuracy, 
energy efficiency, and ease of deployment in the complex 
environment of a cruise ship. WiFi-based positioning 
systems, while utilizing existing infrastructures, consume 
significant power, making them unsuitable for the long-
term tracking of contacts. High power consumption poses 
challenges for continuous operation over extended periods. 
In contrast, Bluetooth technology offers lower power 
consumption and wider device coverage, facilitating easy 
deployment for continuous monitoring. Bluetooth devices 
are energy-efficient, enabling long-term tracking without 
frequent battery replacements or recharging [39]. 
In addition, ordinary devices can be converted into Bluetooth 
Tags by modifying the communication protocols, thus 
eliminating the need for specialized hardware and simplifying 
deployment. This adaptability allows for cost-effective 
implementation and scalability across different ship sizes 
and configurations. Traditional BLE methods without AoA 
capabilities rely on the Received Signal Strength Indicator 
values and are highly sensitive to environmental factors, 
leading to unreliable proximity detection. The proposed 
method mitigates these limitations by effectively filtering 
out noisy features that represent environmental interference, 
thereby enhancing the quality of angle estimations and 

improving the positioning accuracy, which is crucial for 
close contact detection [40]. While the initial investment 
and requirement for specific hardware are considered, the 
increased accuracy, robustness to interference, energy 
efficiency, and ease of deployment of our system present 
significant advantages over existing solutions, providing 
a robust and adaptable approach tailored to the unique 
challenges of the ship environment.
In subsequent practical applications, data anonymization 
techniques are employed to encrypt and hash passengers’ 
unique identifiers (such as device IDs) and remove sensitive 
information related to personal identities, thereby ensuring 
data privacy. All data are securely stored in high encrypted 
databases using advanced encryption algorithms (such as 
AES-256), and only authorized personnel have access. 
Additionally, the system design strictly adheres to relevant 
data protection regulations, including the European Union’s 
General Data Protection Regulation, to ensure that data 
processing activities are lawful, transparent, and fair [41]. 
Upon boarding, we ensure that passengers fully understand 
the purposes, scope, and rights of data collection and 
usage through clear notifications and easy-to-understand 
consent processes, allowing them to voluntarily participate 
in the system’s use. To prevent potential misuse of the 
technology, the system design incorporates multiple 
protective measures, such as strict access controls, data 
usage monitoring, and anomaly detection, to ensure that 
data are used solely for legitimate purposes. Implementing 
the proposed solution requires an initial investment in 
Bluetooth 5.1 devices, specifically locators and tags, and 
the necessary infrastructure on cruise ships [42]. While this 
upfront cost is a consideration, the system’s ability to rapidly 
identify and isolate close contacts can significantly reduce 
the spread of diseases, leading to substantial savings from 
preventing outbreaks and minimizing disruptions to cruise 
operations. Ongoing operational costs, such as maintenance 
and staff training, can be offset by these potential savings. 
Furthermore, the system is designed to be scalable and 
adaptable to ships of different sizes and passenger capacities; 
by adjusting the number of locators and tags deployed, 
the solution can be efficiently scaled, ensuring both cost-
effectiveness and optimal performance across various ship 
configurations.

6. Conclusion 
This study effectively integrates Bluetooth 5.1 technology 
with a Binary Contact Detection Model and an alpha shape 
algorithm to enhance disease surveillance on cruise ships. 
The key results demonstrate that when the model uses 
more than 33 features, there is a significant improvement in 
performance metrics-including accuracy, AUC, precision, 
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recall, and F1 score-leading to more accurate detection 
of close contacts. In addition, the alpha shape algorithm 
successfully identified eight overlapping high-risk areas 
on the ship’s upper deck. The main contributions of this 
paper are the development of a precise and efficient real-
time monitoring system that reduces false detections and 
enhances disease control capabilities in complex, high-
density environments, ensuring passenger safety through 
targeted interventions. Future work will focus on refining 
the algorithms to further enhance accuracy and reduce false 
positives, integrating machine learning techniques to predict 
outbreak patterns, and expanding the system’s application to 
other high-density settings. Collaborations with public health 
authorities will be essential to develop standardized protocols 
for data sharing and privacy protection, maximizing the 
system’s effectiveness while ensuring ethical considerations 
are met.
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