
Imprinting disorders are a group of congenital diseases caused by dysregulation of genomic imprinting, affecting prenatal and postnatal 
growth, neurocognitive development, metabolism and cancer predisposition. Aberrant expression of imprinted genes can be achieved 
through different mechanisms, classified into epigenetic - if not involving DNA sequence change - or genetic in the case of altered 
genomic sequence. Despite the underlying mechanism, the phenotype depends on the parental allele affected and opposite phenotypes 
may result depending on the involvement of the maternal or the paternal chromosome. Imprinting disorders are largely underdiagnosed 
because of the broad range of clinical signs, the overlap of presentation among different disorders, the presence of mild phenotypes, the 
mitigation of the phenotype with age and the limited availability of molecular techniques employed for diagnosis. This review briefly 
illustrates the currently known human imprinting disorders, highlighting endocrinological aspects of pediatric interest.
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Introduction

The imprinting disorders are a group of congenital 
diseases caused by dysregulation of genomic imprinting 
that can affect fetal and postnatal growth, neurocognitive 
development, metabolism and cancer predisposition with 
relevance to pediatricians, geneticists, endocrinologists 
and other specialists (1,2,3,4,5,6). Genomic imprinting 
mediates the expression of specific genes in a parent of 
origin specific manner. While most genes are expressed 
biparentally, imprinted genes are expressed only from the 
paternal or the maternal allele. Imprinted genes are often 
arranged in clusters and expressed under a coordinated 
epigenetic regulation (4,7). Human imprinting disorders 
result from dysregulation of the normal expression of 
imprinted genes, causing altered dosage or function of such 
gene transcripts. This can be achieved through different 
mechanisms, which may involve DNA expression only 
(epigenetic mechanisms) or may also encompass DNA 
sequence (genomic mechanisms). While the former are 
mostly sporadic, the latter result in familial forms with a 
parent of origin inheritance pattern (5).

The molecular mechanisms responsible for altered 
imprinted gene expression (Figure 1) are classified into: 

1.	Uniparental disomy (UPD), which consists of the 
inheritance of two copies of a chromosome (or part of a 
chromosome) from one parent and no copy from the other 
parent. UPD can be heterodisomy, when both homologue 
chromosomes from the transmitting parent are present, 
or isodisomy, when two identical chromosomes from the 
same parental homologue are present (8). 

2.	Abnormal methylation (also termed epimutation) 
including excessive methylation (hypermethylation or 
gain of methylation - GoM) and reduced methylation 
[hypomethylation or loss of methylation (LoM)]. Abnormal 
methylation can be primary (i.e. in the absence of an 
underlying genomic cause) or secondary (i.e. due to an 
underlying genomic cause). While the former is sporadic, the 
latter is associated with a recurrence risk, in an autosomal 
dominant manner with parent of origin effect.

3. Chromosomal abnormalities (deletions, duplications and 
balanced rearrangements).

4. Intragenic variants in imprinted genes resulting in loss or 
gain of function.

For all these four mechanisms, the phenotype depends 
on the affected parental allele; in some cases, aberrations 
at the same locus involving either the maternal or the 
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paternal chromosome result in opposite phenotypes 

(Table 1). Although each imprinting disorder is characterized 

by specific clinical features, shared phenotypic features 

are common and clinical overlap occurs. Moreover, mild 

phenotypes, a broad clinical spectrum, mitigation of 

the presentation with age and limited availability of the 

molecular techniques employed for diagnosis probably lead 

to a relevant underdiagnosis (4,5).

Most patients with an imprinting disorder are affected by 
a single disease-specific locus with a definite phenotype. 
However, cases with multilocus methylation imprinting 
disturbances (MLID) and consequent complex phenotypes 
are increasingly described and further complicate the 
clinical evaluation. Of interest, the frequency of some 
of the imprinting disorders is increased in the offspring 
of subfertile parents and likely connected with artificial 
reproductive techniques (9,10).
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Figure 1. Schematic representation of the molecular mechanisms responsible for altered imprinted gene expression. At the 
top normal functioning of a paradigmatic chromosomal region subjected to imprinting is reported: on the allele inherited 
from parent 1, the imprinting center (IC) is unmethylated and gene A is expressed, while on the allele inherited from parent 2, 
gene A is silenced by IC methylation. This leads to a balanced expression of gene A, corresponding to the normal phenotype. 
Conversely, imbalance between the expression of the imprinted gene leads to a pathological phenotype: a deficiency of gene 
A leads to phenotype 1, while an excess of gene A leads to phenotype 2. Phenotype 1 and phenotype 2 may have antithetical 
characteristics (mirror phenotypes). In the left column, epigenetic anomalies leading to disturbed expression of imprinted 
genes are shown. In the middle column, point mutations and in the right column, uniparental disomy, deletion and duplication 
affecting the imprinted gene are reported. If the point mutation or the deletion/duplication hits the expressed gene, it will lead 
to a phenotype while, on the opposite, if they involve a normally silenced gene, they will not result in a phenotype: in both 
cases, the genetic anomaly could be transmitted to the offspring
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Table 1. Summary of the clinical features and the molecular mechanisms of the human imprinting disorders
Imprinting syndromes

Chr 6 Transient neonatal diabetes mellitus type 1 Maternal uniparental disomy of chromosome 
6 (controversial)

Phenotype Hyperglycemia without ketoacidosis, IUGR, 
macroglossia, umbilical hernia, type 2 or gestational 
diabetes later in life

IUGR, heterogeneous clinical features

Mirror 
mechanisms

UPD(6)pat 
Paternal duplication 6q24
LoM at PLAGL1:alt-TSS-DMR

UPD(6)mat 

Chr 8 Birk-Barel mental retardation syndrome

Phenotype Severe neonatal hypotonia, transient neonatal 
hypoglycemia, joint contractures, wide alveolar ridges, 
cleft palate, microretrognathia, developmental delay, 
intellectual disability

Mechanism Maternal c.770G>A, p.Gly236Arg mutation in the 
KCNK9/TASK3 gene (chromosomal region 8q24)

Chr 11 Beckwith-Wiedemann syndrome Silver-Russell syndrome

Mirror 
phenotypes

Neonatal macrosomia
Postnatal overgrowth
Lateralized overgrowth
Relative microcephaly
Macroglossia
Hyperinsulimenic hypoglycaemia

IUGR
Postnatal growth failure
Body hemihypoplasia
Relative macrocephaly
Micrognatia and microstomia
Non-hyperinsulinemic hypoglycemia

Others Abdominal wall defects, ear pits and creases, glabellar 
naevus flammeus, organomegaly, nephroureteral 
malformations, embryonal tumors in infancy

Feeding difficulties, triangular face, low muscle 
mass, fifth finger clinodactyly, central precocious 
puberty, insulin resistance in adulthood

Mirror 
mechanisms

UPD(11)pat
Paternal duplication 11q15.5
GoM at H19/IGF2:IG-DMR (IC1)
LoM at KCNQ1OT1:TSS-DMR (IC2) 
Chromosomal rearrangements 11q15.5
Maternal CDKN1C loss of function mutations

UPD(11)mat
Maternal duplication 11q15.5
LoM at H19/IGF2:IG-DMR (IC1)
GoM at KCNQ1OT1:TSS-DMR (IC2) (associated 
with genomic imbalances)
Chromosomal rearrangements 11q15.5
Maternal mutations increasing CDKN1C stability

Others UPD(7)mat 
Paternal IGF2 loss of function mutation 
chromosomal rearrangements 7q, 7p
HMGA2 and PLAG1 mutations

IMAGE syndrome

Phenotype IUGR, metaphyseal dysplasia, congenital adrenal 
hypoplasia, genital anomalies

Mechanism Maternal CDKN1C gain of function mutations

Chr 14 Kagami-Ogata syndrome Temple syndrome

Mirror 
phenotypes

Placentomegaly and neonatal macrosomia
Overgrowth

IUGR
Failure to thrive, short stature

Others Polyhydramnios, abdominal wall defects, hypotonia, 
developmental delay, intellectual disability, 
hepatoblastoma

Hypotonia, motor delay, joint laxity, precocious 
puberty, truncal obesity

Mirror 
mechanisms

UPD(14)pat
Maternal deletion 14q32
GoM at MEG3:TSS-DMR

UPD(14)mat
Paternal deletion 14q32
LoM at MEG3:TSS-DMR



Recent advances in this field suggest that the range of 
imprinting disorders could be greater than those currently 
described. In this article we review those described hitherto, 
ordered by chromosome.

Chromosome 6

Transient Neonatal Diabetes Mellitus Type 1

Transient neonatal diabetes mellitus type 1 (TNDM1, OMIM 
#601410) has a prevalence of approximately 1 in 500,000 
births (11) and it is characterized by intra-uterine growth 
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Table 1. Continued
Imprinting syndromes

Chr 15 Prader-Willi syndrome Angelman syndrome

Phenotype Hyperphagia
Central apnoea and hypoventilation
Hypotonia, reduced spontaneous motility
Hypothermia and absence of fever response

Anorexia and eating disorders 
Seizures, sleep disruption
Excessive and unmotivated laugh, 
hyperexcitability, hyperactivity and hyperreflexia, 
happy demeanor
Sensitivity to heat

Others Mild to moderate intellectual disability, central obesity, 
hypogonadotrophic hypogonadism, short stature

Severe intellectual disability, microcephaly, 
severe speech impairment, ataxia

Mirror 
mechanisms

UPD(15)mat
Paternal deletion 15q11q13
GoM at MKRN3:TSS-DMR

UPD(15)pat
Maternal deletion 15q11q13 
LoM at MKRN3:TSS-DMR

Others Maternal UBE3A loss of function mutations

Schaaf-Yang syndrome

Phenotype Neonatal hypotonia, developmental delay, intellectual 
disability, hypogonadism, autistic behavior, joints 
contractures

Mechanism Paternal MAGEL2 truncating mutations

Central precocious puberty 2

Phenotype Premature activation of the reproductive axis

Mechanism Paternal MKRN3/ZFP127 loss of function mutations

Chr 16 Maternal uniparental disomy of chromosome 16 
(controversial)

Phenotype IUGR, elevated risk of malformation

Mechanism UPD(16)mat 

Chr 20 PHP1A POH

Phenotype Rickets and poor mineralization due to 
hypoparathyroidism, Albright hereditary 
osteodystrophy, generalized hormone resistance, 
obesity

Heterotopic bone formation with progressive 
cutaneous and subcutaneous ossification

Mirror 
mechanism

Maternally-inherited inactivating GNAS mutations Paternally-inherited inactivating GNAS mutations

PHP1B Maternal uniparental disomy of chromosome 20

Phenotype Isolated renal PTH resistance IUGR, short stature, extreme feeding difficulties, 
failure to thrive

Mirror 
mechanism

UPD(20)pat UPD(20)mat

Other 
mechanism

LoM at GNAS A/B:TSS-DMR

IUGR: intrauterine growth restriction, UPD: uniparental disomy, GoM: gain of methylation, LoM: loss of methylation, PTH: parathyroid hormone, POH: 
progressive osseous heteroplasia, DMR: differentially methylated region



restriction (IUGR) and infantile hyperglycemia in the absence 
of ketoacidosis. Macroglossia and umbilical hernia are often 
present. TNMD1 features are evident in infants during the 
first weeks of life, usually presenting with dehydration, and 
generally disappearing by the age of 18 months. Insulin 
treatment is usually required. However, diabetes may 
relapse later in life in approximately half of the patients, 
showing characteristics of type 2 diabetes mellitus. Women 
may relapse during pregnancy presenting with gestational 
diabetes mellitus (12). 

TNDM1 can be caused by three different molecular 
mechanisms (12):

1. Paternal UPD of chromosome 6 (41%).

2. Duplication of the paternal allele at 6q24 (29%).

3. Hypomethylation of the maternal differentially methylated 
region (DMR), PLAGL1: alt-TSS-DMR (30%).

This latter mechanism can be due to either an isolated 
imprinting variant or as part of a generalized hypomethylation 
at imprinted loci (MLID), due to recessive loss of function 
ZFP57 mutations in almost half of the cases (13). TNDM1- 
MLID patients may have further phenotypic manifestations, 
such as structural brain abnormalities, developmental delay 
and congenital heart disease (14).

All three molecular mechanisms accounting for TNDM1 
lead to over-expression of the PLAGL1/ZAC gene which 
regulates apoptosis and cell cycle arrest (15). The protein 
encoded by the PLAGL1/ZAC gene is a zinc finger protein and 
regulates PACAP1 that has a key role in stimulating insulin 
secretion by pancreatic beta cells. Moreover, PLAGL1/ZAC1 
gene overexpression may reduce the number of beta cells 
or impair their function, stopping cell cycling and inducing 
apoptosis (12). 

Maternal Uniparental Disomy of Chromosome 6

Maternal UPD of chromosome 6, abbreviated to UPD(6)
mat, has been hypothesized to be associated with IUGR 
and other heterogeneous clinical features, especially 
intellectual disability (16). However, homozygosity of a 
recessive allele and/or placental trisomy 6 mosaicism is 
likely to be the pathogenic mechanism in some of these 
patients. These data suggest that a specific imprinting 
disorder associated with UPD(6)mat does not exist 
and that the heterogeneous clinical features in UPD(6)
mat patients are either caused by placental trisomy 6, 
undetected trisomy 6 cell lines or by homozygosity for 
recessive mutations (5,17). However, given the small 
number of patients described to date and the presence of 

an imprinted region on chromosome 6q24 further studies 
are required to clarify this contentious issue.

Chromosome 7

Maternal UPDs of chromosome 7 are responsible for a 
small subset (5-10%) of Silver-Russell syndrome (SRS). 
Since the majority of SRS cases are due to chromosome 
11 abnormalities, this topic is extensively described in the 
chromosome 11 section.

Chromosome 8

Birk-Barel Syndrome

Birk-Barel syndrome (OMIM #612292) is characterized 
by severe neonatal hypotonia, transient neonatal 
hypoglycemia, joint contractures, wide alveolar ridges, cleft 
palate, microretrognathia, developmental delay and variable 
intellectual disability. Distinctive facial features include 
dolichocephaly, bitemporal narrowing, short philtrum, 
tented upper lip and medially flared eyebrows (18,19).

This disorder is caused by a specific missense mutation 
(c.770G>A, p.Gly236Arg) in the maternal copy of the 
KCNK9/TASK3 gene, located in chromosomal region 8q24. 

The 8q24 chromosomal region includes two imprinted 
genes: PEG13, expressed by the paternal allele and KCNK9, 
expressed by the maternal allele. The reciprocal expression 
of these genes is regulated by a maternal methylated region 
located within the  PEG13  transcript, named PEG13:TSS-
DMR (20).

The KCNK9/TASK3 gene encodes a member of the two 
pore-domain potassium channel subfamily (18,19). TASK3 
channels are widely expressed, especially in the brain, 
where they play a role in the migration of cortical pyramidal 
neurons regulating both neuronal activity and neuronal 
development. Of note, nonsteroidal anti-inflammatory 
fenamic acid drugs, especially flufenamic acid, are able to 
stimulate the two pore-domain potassium channels, partially 
rescuing the reduced outward current through mutated 
KCNK9 channels, suggesting that fenamic acid compounds 
might be useful in treating this condition (18). 

Chromosome 11

Beckwith-Wiedemann Syndrome

Beckwith-Wiedemann syndrome (BWS) (OMIM #130650) 
is the most common congenital overgrowth condition 
(1:10,500 live births) (21) and represents the paradigm 
of genetic imprinting disorders and cancer predisposition 
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syndromes. Clinical features include neonatal macrosomia, 
postnatal overgrowth, macroglossia, abdominal wall 
defects ranging from severe (omphalocele, gastroschisis) 
to moderate (umbilical hernia) and mild (diastasis recti), 
ear pits and creases, glabellar naevus flammeus, lateralized 
overgrowth (previously termed hemihyperplasia) (22), 
organomegaly, nephroureteral malformations (23), 
hyperinsulinism or transient hypoglycaemia (1), placental 
mesenchymal dysplasia and predisposition to the 
development of embryonal tumors in infancy (24). These 
features combine variably accounting for the different 
degree of severity of presentation and depicting a broad 
phenotypic spectrum (25,26,27,28,29), including cases 
with isolated lateralized overgrowth (22). The diagnosis is 
clinical, based on criteria and a scoring system which has 
been recently revised (1).

BWS is caused by several epigenetic and genetic defects. 
In approximately 85% of patients disturbed expression 
of imprinted genes located into two separate domains on 
chromosome 11p15.5 is found. In this chromosomal region, 
two differentially methylated imprinting centers (IC) (H19/
IGF2:IG-DMR and KCNQ1OT1:TSS-DMR, commonly referred 
to as IC1 and IC2, respectively) control the expression of 
genes involved in cell cycle progression and somatic growth 
control. Five mechanisms leading to the disruption of the 
expression of such genes are currently known:

1.	Approximately 50% of cases are caused by LoM at 
IC2 (IC2-LoM) leading to reduced expression of CDKN1C, 
normally expressed by the maternal chromosome only. 
IC2-LoM is usually a sporadic primary epigenetic defect, 
however rare familial cases carrying genetic mutations 
causing secondary hypomethylation have been described 
(30). An increasingly growing fraction of patients with 
IC2-LoM also display methylation abnormalities at other 
imprinted loci leading to additional phenotypes (MLID) 
(31,32). Disruption of trans-acting mechanisms regulating 
the normal imprinting at the 11p15.5 ICs as well as other 
differentially methylated regions can be responsible for 
such cases; rare inheritable mutations in the NLRP family 
genes have been described (33,34,35). NLRP proteins 
are members of the NLR family of proteins and are 
important components of inflammasomes with a major 
role in innate immunity (36). Interestingly, a subset of 
NLRP genes is expressed in oocytes and early embryos 
(37). Females with mutations in NLRP2 and NLRP7 
gave birth to few or no liveborn children (38). Germline 
mutations in NLRP2 are responsible for a familial form 
of BWS caused by a trans-acting mechanism, consistent 
with the hypothesis that NLRP2 has a role in establishing 
or maintaining genomic imprinting in humans (33). 

NLRP5 mutations have also been reported in five 
mothers of offspring with MLID, linking this gene with 
a maternal effect on reproductive fitness, epigenetic 
and developmental reprogramming of zygotes and 
reproductive outcomes (32,39). 

2.	Mosaic segmental paternal UPD of chromosome 11, 
accounting for 20% of the cases, leads to altered expression 
at both gene clusters (1) with IC2-LoM and IC1-GoM. 
Genome-wide UPD of chromosome 11 is found in a subset 
of cases and associated with higher cancer risk (40).

3.	IC1-GoM results in biallelic expression of the IGF2 gene 
which is normally expressed by the paternal allele only and 
reduced expression of the H19 gene, an oncosuppressor 
gene normally expressed by the maternal allele. IC1-GoM 
is found in 5-10% of cases and in a subset of patients is 
caused by microdeletions encompassing the OCT4/SOX2 
binding site localized inside IC1, leading to a maternally 
transmitted BWS phenotype (41,42).

4.	Maternal CDKN1C loss-of-function mutations are 
responsible for maternally inheritable BWS and account for 
5-10% of cases. 

5.	Finally, approximately 1% of BWS cases are caused by 
chromosomal rearrangements (duplications, translocations, 
inversions, deletions) involving the 11p15.5 chromosomal 
region and causing secondary IC1-GoM or IC2-LoM (24). 

About 15% of clinically diagnosed BWS cases have no 
detectable molecular defect when investigated using 
commonly employed diagnostic molecular techniques. 
However, low somatic mosaicism of the above mentioned 
defects is increasingly found by using novel molecular 
techniques (43) and analysing tissues other than blood 
(e.g. buccal smear) (44). It cannot be excluded that in a 
fraction of patients the molecular defect has not yet been 
discovered. 

Besides providing diagnostic confirmation and the possibility 
of genetic counselling, molecular anomalies detected in 
BWS have implications for the clinical management of 
patients and prognostic value. Indeed, specific correlation 
between epigenotype and phenotypic features are present, 
especially concerning cancer risk (26,27,28,45). BWS 
molecular subtypes are characterized by a gradient in 
cancer development probability and display different 
histotypes allowing differentiation of tumor surveillance 
protocols according to the epigenotype. This facilitates 
the early detection of relevant associated tumors, with 
special reference to Wilms’ tumor and hepatoblastoma 
(26,45,46,47,48,49,50,51,52).
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Silver-Russel Syndrome

SRS (OMIM #180860) is the phenotypic and genetic 
opposite disorder of BWS, has an estimate incidence of 
1:30,000 to 1:100,000 (2) and represents the paradigm of 
genetic restricted growth imprinting disorders and poor 
feeding predisposition.

The phenotypic clinical spectrum of SRS includes severe 
IUGR, postnatal growth failure with no catch-up, body 
hemihypoplasia with body asymmetry, relative macrocephaly 
with triangular face, typical facial appearance (prominent 
forehead, narrow chin, small jaw and downturned corners 
of the mouth), low muscle mass, fifth finger clinodactyly, 
feeding difficulties, recurrent hypoglycemia, premature 
adrenarche, rapidly progressing and/or central precocious 
puberty (CPP) and insulin resistance in adulthood (2,53). 

The diagnosis of SRS is clinical and molecular testing is 
used for confirmation and phenotype stratification. Given 
the broad spectrum of presentation, the diagnosis is based 
on the Netchine-Harbison scoring system (54), having 
high sensitivity and predictive value. A molecular cause 
can be identified in approximately 60% of patients with a 
clinical diagnosis (2), while the molecular aetiology remains 
unknown in a substantial proportion of patients:

1. The most common mechanisms is LoM at IC1 on 
the paternal chromosome 11p15 (IC1-LoM), which is 
detected in 40-60% of patients. IC1-LoM results in 
reduced  IGF2  expression and increased  H19  expression 
(2,55). 

2. Besides IC1-LoM, a variety of rearrangements involving 
the 11p15.5 region resulting in a SRS phenotype have been 
described (56,57).

3. From 5 to 10% of cases are caused by maternal UPD of 
chromosome 7 (2). 

4. Mirroring BWS molecular alterations in chromosomal 
region 11p15.5, the SRS phenotype also results from 
alterations at the centromeric IC2 of 11p15.5. Genomic 
imbalances involving IC2 resulting in gain of methylation at 
this center have been rarely described (58). 

5. Rare monogenic causes have been described including 
a mutation increasing CDKN1C stability in a family with 
maternally transmitted SRS (59), IGF2 loss-of-function 
mutation in a family with paternally transmitted SRS (60) and 
HMGA2 and PLAG1 mutations with dominant transmission 
regardless of maternal or paternal transmission (61,62,63). 
Coding variants in these genes are overall very rare (2).

Differential diagnosis of SRS includes other genetic 
syndromes characterized by growth restriction, including 

single gene disorders such as IMAGE syndrome (discussed 
immediately below) and Temple syndrome (discussed in 
the chromosome 14 section) and chromosomal anomalies 
and copy number variants (2). The differential diagnosis can 
have extremely important implications for management 
since SRS treatment may include growth hormone (GH) 
therapy (53) and response to treatment. For instance, GH 
treatment is contraindicated in patients with chromosome 
breakage disorders due to the associated risk of malignancy 
(2). 

IMAGE Syndrome

IMAGE syndrome (OMIM #614732) results from a gain-
of-function mutation in the CDKN1C gene, negatively 
regulating cellular proliferation. Since CDKN1C is expressed 
only from the maternal allele, IMAGE syndrome occurs only 
when the CDKN1C gain-of-function mutation is inherited 
from the mother (64). This syndrome is characterized by 
SRS phenotype associated with metaphyseal dysplasia, 
congenital adrenal hypoplasia with adrenal insufficiency, 
and almost always includes genital anomalies (65). 

Chromosome 14

Temple Syndrome

Temple syndrome (OMIM #616222) is characterized by 
prenatal and postnatal growth failure and early onset 
of puberty with final short stature, hypotonia, feeding 
difficulties in early childhood, motor delay, joint laxity, 
truncal obesity and minor dysmorphic features such as 
broad forehead and short nose with wide nasal tip and 
small hands and feet (66). Due to relatively mild and 
age-dependent characteristics, the prevalence of Temple 
syndrome in the general population is unknown and the 
disorder is likely underdiagnosed in clinical practice (66).

Temple syndrome shows several nonspecific clinical 
features overlapping with Prader-Willi syndrome (PWS) and 
SRS (67,68,69). The treatment may include GH therapy (70).

The syndrome is caused by alteration of imprinted gene 
expression at chromosome 14q32.2. This region contains 
a cluster of imprinted genes including three paternally 
expressed genes (DLK1,  DIO3  and  RTL1)  and multiple 
maternally expressed non-coding RNAs (MEG3, RTL1as, 
MEG8, snoRNAs, and microRNAs) (71). The parental origin-
dependent expression patterns are regulated by a germline-
derived primary  intergenic DMR (MEG3/DLK1:IG-DMR) 
and a postfertilization-derived secondary DMR (MEG3:TSS-
DMR), both normally methylated only on the paternal allele 
(72). Mechanisms that result in functional hemizygosity of 
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14q32 imprinted genes can cause the clinical phenotypes 
(4), including: 

1. Chromosome 14 maternal UPD (78%) (73).

2. Isolated methylation deficiency at MEG3:TSS-DMR in the 
14q32.2 imprinted region (12%) (74).

3. 14q32 deletions of paternal origin (10%) (71).

Maternal UPD of chromosome 14 represents the major 
molecular cause of Temple syndrome. However, some 
evidence indicate that UPD over-representation among the 
molecular causes of Temple’s syndrome could be due to an 
ascertainment bias and it is possible that frequencies of the 
molecular findings in Temple syndrome will be updated in 
the coming years (75).

Kagami-Ogata Syndrome 

Kagami-Ogata syndrome (OMIM #608149) includes 
overgrowth (typically with birth weight disproportionately 
greater than length), polyhydramnios, placentomegaly, 
poor sucking and hypoventilation in the neonatal period, 
abdominal wall defects ranging from omphalocele to 
diastasis recti, a distinctive facial appearance (full cheeks, 
depressed nasal bridge, micrognathia, short webbed neck 
and protruding philtrum), small bell-shaped thorax with 
coat-hanger ribs, and variable developmental delay and/or 
intellectual disability. Some features are rather nonspecific 
and can be also observed in BWS. Kagami-Ogata 
syndrome is associated with increased risk of developing 
hepatoblastoma (9%) and a neonatal mortality rate as high 
as 20-25% (76). 

Kagami-Ogata syndrome can be caused by three different 
molecular mechanisms (4):

1. Paternal UPD of chromosome 14 (65%).

2. Microdeletion affecting the maternal 14q32.2 imprinted 
region (20%).

3. Hypermethylation (15%) affecting the MEG3:TSS-DMR in 
the maternal 14q32.2 imprinted region (77).

While UPD(14)pat and hypermethylation are sporadic, 
microdeletions can lead to a maternally transmitted Kagami-
Ogata syndrome. Recently it has been shown that causal 
deletions do not necessarily include the DMRs; therefore, a 
normal methylation pattern does not exclude the syndrome 
(78).

As discussed for Temple’s syndrome, it has been proposed 
that over-representation of UPD(14)pat among the 
molecular causes of the Kagami-Ogata syndrome could be 
secondary to an ascertainment bias and the frequencies of 

the molecular causes could change as availability of specific 
molecular tests increases (75).

Chromosome 15

Angelman Syndrome

Angelman syndrome (AS) (OMIM #105830) is characterized 
by developmental delay, intellectual disability with severe 
speech impairment, microcephaly and seizures. The 
symptoms usually appear in the first year of life (79). 
Seizures typically occur between one and three years 
of age and can be associated with generalized, specific 
electroencephalographic changes (80). Patients also present 
with sleep disruption, excessive laughter, happy demeanor, 
gait ataxia, tremulousness of the limbs and protruding 
tongue. AS prevalence is approximately one in 12,000-
24,000 live births (80).

AS can be caused by four different mechanisms:

1. Maternally derived de novo deletion of 15q11-q13 (70-
75%).

2. Paternal UPD of chromosome 15 (3-7%).

3. Imprinting defect at MKRN3:TSS-DMR in the maternal 
chromosome 15q11.2-q13 locus (2-3%).

4. Maternally inherited mutations in UBE3A gene (10-15%) (5).

The phenotype is usually more severe in patients with large 
deletions. All genetic mechanisms result in lack of expression 
of the maternally expressed 15q11-q13 UBE3A gene. UBE3A 
is normally expressed exclusively from the maternal allele 
in human fetal brain and in adult frontal cortex. Duplications 
of this gene have been linked to autism spectrum disorder, 
developmental delay and neuropsychiatric phenotypes (81), 
further supporting the hypothesis that UBE3A plays a pivotal 
role in neurodevelopment. AS patients have a paternal copy 
of UBE3A, but it is silenced by a nuclear localized long non-
coding RNA, known as UBE3A antisense transcript (UBE3A-
ATS) (82). Antisense oligonucleotides treatment aimed at 
reducing the UBE3A-ATS in order to unsilence the paternal 
UBE3A gene is under study (82). 

Prader-Willi Syndrome

PWS (OMIM #176270) includes variable characteristics 
according to the age of the patient. Decreased fetal 
movement, abnormal fetal position at delivery, and 
increased incidence of assisted delivery or cesarean section 
are common. Hypotonia of central origin with poor sucking 
and feeding difficulties resulting in failure to thrive are 
prevalent in the neonatal period and in the first year of life. 

8

Carli D Et al. 
Imprinting Disorders in Humans

J Clin Res Pediatr Endocrinol
2020;12(1):1-16



Subsequently, progressive hyperphagia with central obesity 
occurs. Hyperphagia is linked to a hypothalamic dysfunction 
resulting in lack of satiety and food-seeking behavior 
with central obesity being the result of both hyperphagia 
and a reduced total energy expenditure connected with 
decreased physical activity and decreased lean body mass. 
Extreme obesity and related complications represent 
the major causes of morbidity and mortality in PWS 
(83). Hypothalamic hypogonadism with cryptorchidism, 
incomplete genital development, delayed and incomplete 
puberty and infertility are typical (84). Short stature is 
very common and is usually treated with GH replacement 
therapy, with the additional benefit of acquisition of lean 
mass. Abnormalities of GH function in PWS have been 
reported and other hypothalamic hormones can also be 
deficient causing tertiary hypothyroidism, and central 
adrenal insufficiency (85). PWS patients may exhibit 
developmental delay of variable severity. Behavior problems 
are common and manifest with a typical pattern including 
temper tantrums, controlling and manipulative behavior 
and compulsivity. Current trials are underway to evaluate 
oxytocin as a potential therapeutic agent for controlling 
behavior issues in PWS patients (86,87).

Characteristic facial features may develop over time and 
include narrow bifrontal diameter and nasal bridge, almond-
shaped palpebral fissures, thin vermilion of the upper lip 
with down-turned corners of the mouth.

Diagnosis and molecular testing is based on clinical criteria 
(88). 

PWS is caused by lack of expression of imprinted genes 
on chromosome 15q11.2-q13 gene cluster, defined as  the 
“PWS critical region”. Alterations not involving this critical 
region are not associated with PWS. The PWS critical region 
encompasses imprinted genes normally expressed only on 
the paternal allele: MKRN3, MAGEL2, NDN, PWRN1, C15orf2, 
SNURF-SNRPN and several snoRNA genes. The deficiency of 
one of these snoRNA (SNORD116) is believed to elicit the 
key features of PWS phenotype (89,90). 

Altered expression can be caused by four mechanisms:

1. Deletion of the 15q11-q13 imprinted loci on the paternal 
allele (up to 70-75% of cases).

2. Maternal UPD of chromosome 15 (up to 20-25%).

3. Imprinting defects due to primary epimutations at 
MKRN3:TSS-DMR (2%) (84,91).

4. Small deletions within the IC critical region which may 
or may not lead to an imprinting deficiency detectable by 
methylation analysis (<0.5%) (84,91,92).

Most PWS cases are sporadic. Inheritable PWS is rare and 
can be due to deletions caused by unbalanced chromosome 
rearrangement or paternally inherited IC deletion. The 
diagnosis is confirmed through DNA methylation analysis, 
with subsequent cytogenetic testing, fluorescence in situ 
hybridization and microsatellite marker analysis, which 
define the genotype classifications (93). 

Schaaf-Yang Syndrome

Schaaf-Yang syndrome (OMIM #615547) is a PWS-like 
disease, due to truncating mutations in the MAGEL2 gene, 
which is located in the PWS critical region (chromosome 
15q11-q13) and is normally maternally imprinted and 
paternally expressed. Schaaf-Yang syndrome is characterized 
by neonatal hypotonia, developmental delay and intellectual 
disability, hypogonadism, autistic behavior and joints 
contractures. The typical PWS features of hyperphagia and 
obesity are usually absent. Consequently, the phenotypic 
overlap with PWS is preeminent in the neonatal period. The 
phenotypic spectrum ranges from severe fetal akinesia to 
mild expression including intellectual disability and finger 
contractures (94).

Paradoxically, while truncating mutations in the MAGEL2 
gene cause Schaaf-Yang syndrome, MAGEL2 whole gene 
deletions cause on slight or even absent expression of the 
clinical phenotype (94). It is likely, as MAGEL2 is a one-exon 
gene, that truncating mutations may result in a shortened 
protein with a dominant-negative effect. As an alternative 
explanation to this phenomenon, the deletion of the entire 
paternal copy of the gene, including its promoter, could lead 
to leaky expression of the maternal copy of the gene (94).

Central Precocious Puberty 2 

CPP (OMIM #176400) also known as gonadotropin 
dependent precocious puberty, is characterized by a 
premature activation of the reproductive axis, before the 
age of eight years in girls and nine years in boys (95). 
Prevalence of CPP has been estimated at approximately 
1.1:100,000 with an overall male to female ratio of at least 
1:10 (96). Subjects affected by CPP present with pubertal 
signs such as breast development or testicular enlargement 
and acceleration of growth and bone age, consistent with 
elevated basal and GnRH-stimulated LH levels (97).

CPP 2 (CPPB2, OMIM #615346) is caused by heterozygous 
loss of function mutations in the MKRN3/ZFP127 gene, 
located in the PWS critical region (chromosome 15q11-q13). 
An antisense RNA of unknown function overlaps this gene, 
probably regulating MKRN3/ZFP127 expression. MKRN3/
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ZFP127 is maternally imprinted and paternally expressed. 
Therefore only mutations inherited from fathers are 
disease-causing (97). It is noteworthy that a high frequency 
of MKRN3/ZFP127 mutations was reported in a cohort of 
CCP males with anticipated puberty (98).

Puberty in humans normally starts when pulsatile GnRH 
is released from hypothalamic neurons. Indeed, the onset 
of puberty requires both a decrease in factors that inhibit 
the release of GnRH and an increase in stimulatory factors. 
MKRN3/ZFP127 protein levels declined prior to clinical onset 
of puberty and thereafter through puberty, which correlated 
negatively with gonadotropin concentrations in prepubertal 
girls (99) and its circulating levels declined during puberty 
in healthy boys (100). The expression pattern of MKRN3/
ZFP127 suggests the hypothesis of an inhibitory effect on 
GnRH secretion (101) but the precise mechanism by which 
its deficiency leads to an early reactivation of pulsatile GnRH 
secretion remains to be elucidated (95).

GnRH agonists have been the standard of care for the 
management of CPP in order to decrease bone maturation, 
growth velocity and progression of clinical signs of puberty 
(102).

Chromosome 16

Maternal Uniparental Disomy of Chromosome 16

UPD(16)mat has a high frequency since it is caused by 
trisomy 16 rescue (103). UPD(16)mat is associated with 
IUGR with an elevated risk of malformation but without a 
unique and specific phenotype. The heterogeneity of the 
phenotype suggests that placental insufficiency or mosaicism 
for trisomy 16 may be responsible for symptoms in such 
patients (36,104,105). Taken together, these data seem to 
indicate, as for UPD(6)mat, that a specific chromosome 16 
associated imprinting disorder does not exist (105). On the 
other hand, some imprinted genes with unknown function 
have been identified on chromosome 16 and further studies 
are required to clarify the issue (106).

Chromosome 20

Pseudohypoparathyroidism

Pseudohypoparathyroidism (PHP) is a heterogeneous group 
of endocrine disorders characterized by renal resistance 
to parathyroid hormone (PTH), causing hypocalcaemia, 
hyperphosphatemia and elevated circulating PTH levels 
(3,107). Depending on the molecular defect, PHP includes other 
endocrine deficiencies related to hormone action resistance 
and other non-endocrine features. Overall, prevalence of PHP 
has been estimated to be 1.1 in 100,000 (108,109,110).

GNAS is a complex imprinting locus resulting in maternally, 
paternally, or biallelically expressed transcripts in 
differentially imprinted tissues: Gsα, the alpha-stimulatory 
subunit of the G protein; XLαs; A/B; NESP; and the antisense 
transcript GNAS-AS1. The antisense transcript GNAS-AS1, 
A/B and XLαs are transcribed from the paternal allele 
only; NESP is transcribed from the maternal allele only, 
and Gsα has a biallelical expression in most tissues, while 
its expression is restricted to the maternal allele in some 
others, including renal proximal tubule, thyroid, pituitary 
gland and gonads (111), even if the promoter of Gsα is not 
differentially methylated. The GNAS locus has two different 
IC regions (112); the first one is located within the STX16 gene 
and controls the establishment of imprinting at the GNAS 
A/B:TSS-DMR only, while the second one, encompassing 
the antisense transcript GNAS-AS1 on exons 3-4, controls 
the establishment of imprinting over the entire GNAS locus 
(111). Isolated imprinting defects at GNAS A/B:TSS-DMR are 
associated with deletions in the maternal allele affecting 
STX16 and/or NESP, while overall imprinting alteration at 
the four DMRs of the GNAS locus is caused by maternal 
deletions at exons 3 and 4, or 40 and 33bp microdeletions 
at introns 4 and 3 of GNAS-AS1 (3,111).

PHP type 1a (PHP1A, OMIM #103580) is caused by loss 
of function mutations in the maternal allele of GNAS 
gene. PHP1A patients present with generalized hormone 
resistance of variable degree, intellectual disability, obesity 
connected with decreased resting energy expenditure (113), 
and Albright hereditary osteodystrophy (AHO). AHO includes 
short stature, round facies, subcutaneous ossifications, 
brachydactyly and other skeletal anomalies (107). 

Loss of function of Gsα on the paternal allele can cause 
pseudopseudohypoparathyroidism (PPHP) (OMIM 
#612463). Since renal tubular cells predominantly express 
the maternal allele of GNAS, a paternally inherited mutation 
results in a normal renal response to PTH, causing AHO 
without concurrent endocrine abnormalities (114). Paternal 
loss of function mutations can also cause progressive osseous 
heteroplasia (OMIM#166350), a condition characterized by 
subcutaneous ossifications presenting during childhood and 
progressing to involve subcutaneous and deep connective 
tissues, in the absence of AHO or hormone resistance (115).

Both PHP1A and PPHP individuals have halved Gsα 
expression in erythrocytes, which normally have a 
biallelic expression of GNAS. AHO may be caused by Gsα 
haploinsufficiency in tissues with GNAS biallelic expression 
(116).

In contrast, PHP type 1b (PHP1B, OMIM #603233) is 
clinically characterized by isolated renal PTH resistance and 
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in some cases by thyroid stimulating hormone resistance. 
Rarely, these patients show an AHO phenotype (117). 
Interestingly, Gsα expression in erythrocytes is mildly 
reduced in patients with AHO (116). All patients with PHP1B 
have, at least, LoM at GNAS A/B:TSS-DMR, likely leading to 
the downregulated expression of the GNAS-Gsa transcript in 
imprinted tissues (111). Hormonal resistance is caused by 
LoM on the maternally inherited allele (118). Overall, 20% 
of PHP1B cases are inherited and caused by the previously 
mentioned deletions at the ICs, while the remaining 80% 
are sporadic and associated with methylation defects 
encompassing the whole GNAS locus. A small subset of the 
sporadic PHP1B cases is due to paternal UPD of chromosome 
20q (6). Duplications and deletions in the GNAS locus have 
been identified in a few patients (119) but the majority of 
cases are still of unknown aetiology.

PHP patients should be screened for GH deficiency 
with the aim of eventually starting GH replacement 
therapy. Hypocalcaemia should be treated with an 
active form of vitamin D and calcium supplementation. 
Associated endocrinopathies, such as hypothyroidism and 
hypogonadism, should be treated. Surgical excision of AHO 
subcutaneous ossifications should only be considered in the 
presence of delimited, superficial lesions associated with 
pain and/or movement impairment (3). 

Maternal Uniparental Disomy of Chromosome 20

UPD(20)mat, generally caused by trisomy rescue after 
meiosis 2 nondisjunction, is characterized by IUGR, short 
stature and extreme feeding difficulties with failure to thrive 
from birth, often requiring gastric tube feeding in the first 
years of life. GH supplementation has been suggested as 
probably safe and effective for this condition (120). UPD(20)
mat presents with phenotypic overlap with SRS, and must 
be considered in the SRS differential diagnosis (2). 

Conclusion

The imprinting disorders represent a rapidly evolving field in 
medicine and genetics. Their paradigm challenges traditional 
molecular diagnostic techniques and genetic counselling. A 
precise molecular diagnosis is essential and further clinical 
phenotyping is needed to provide the appropriate means 
for accurate management of these disorders. 

Besides those described, it is likely that more imprinting 
disorders remain to be identified. This review briefly 
illustrated the rapidly evolving advances in the understanding 
of human genomic imprinting and related disorders. Novel 
discoveries in this field will likely occur in the next decade 

and will offer the potential for more precise molecular 
diagnosis and clinical definition, as well as the model 
for novel diagnostic and therapeutic techniques directed 
towards personalized medicine in the fields of growth, 
metabolism and cancer.
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