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Introduction

Thyroid hormones, along with insulin, growth hormone,
glucocorticoids, insulin-like growth factor-1 (IGF-1) and other
hormones, regulate body protein metabolism and, thereby,
are closely linked to the processes involved in growth and
development. This paper reviews the literature about the
regulatory role of thyroid hormones in growth, in health and
disease and concentrates on common clinical problems that
can alter thyroid hormone status and, therefore, may play 
an important role in growth retardation observed in such
conditions.  

Role of the Thyroid Gland in Normal Growth 
The first clues for a role of thyroid hormones in 

the regulation of cell proliferation were obtained from 
observations on amphibian metamorphosis. These 
observations have also revealed that other hormones including
insulin, glucocorticoids, growth hormone  and prolactin 
participate in cell proliferation by antagonizing the effect of
thyroxine (T4), at least in amphibians (1,2,3,4). During the
process of development, apoptosis and cellular proliferation
are balanced by this multihormonal mechanism, the major
actor of which is triiodothyronine (T3) (5,6). Animal 
studies have demonstrated that T3 is a liver mitogen and
promotes proliferation of hepatocytes, if given after partial
hepatectomy and, its effect depends on the type and 
developmental state of the cell (7,8).  T3 also has positive
effects on wound healing and on proliferation of cells,
including cultured bovine thyroid cells, bone marrow pro-B
cells, pancreatic acinar cells and renal proximal 
tubular epithelial cells (9,10,11,12,13). There are indications
that T3 is required for branching morphogenesis and 
epithelial/mesenchymal differentiation of the lungs (14).
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Finally, T3 influences directly the linear growth, which may
be via its stimulating effect on DNA synthesis in
osteoblasts and in other cells (15). In contrast, T3 treatment
has been reported to block proliferation and induce differen-
tiation of oligodendrocyte progenitor cells, neuroblastoma
N2a/b cells, and erythroid progenitors (16,17,18). 

Previous research has demonstrated that approximately
149 genes, including fibrinogen, transferrin, fibronectin
(FN), androgen receptor (AR)-associated protein (ARA70),
and dehydroepiandrosterone sulfotransferase family 1A
member 2 (SULT2A1) genes, are positively regulated by T3.
T3-target genes were investigated by microarray assay 
in hepatocellular carcinoma cell lines, and genes involved 
in metabolism, detoxification, signal transduction, cell 
adhesion and cell migration, as well as transcription factors,
oncogenes, and the cell cycle were recognized to be 
up-regulated by treatment with T3 (2).  

T3 and its nuclear receptors modify expression of 
different genes/proteins involved in cell cycle control. This
effect extends from growth factors [such as epidermal
growth factor (EGF) and transforming growth factor 
(TGF)-β], to cell surface receptors (EGFR) as well as to  
proteins acting at the cell membrane level (Ras), various
transcription factors (c-Fos, c-Myc, E2F1), cyclins, Cip/Kip
family of cdk2 inhibitors, and p53 inhibitor Mdm2. The
effect of thyroid hormones on these genes seems to vary
with the type and developmental state of the cell and
whether it is a normal or tumor cell (19).   

The biological effects of T3 depend on various 
factors including amount of bioavailable hormone, levels of
different thyroid receptor (TR) isoforms and of 
post-transcriptional modifications of TRs, type of their 
heterodimerization partners - retinoid X receptors (RXRs), 
interaction with co-repressors and co-activators , and on the
structure of thyroid hormone response elements (TREs) in
the target gene promoters  (20,21,22,23,24,25,26).

The deiodinase (D) enzyme system is an important 
regulator of thyroid status via both pre- and posttranslational
mechanisms that consequently play a significant role in 
regulating the availability of thyroid hormones to the tissues
(27,28). As discussed in an extensive review by Germain 
et al (29), there are three types of D (D1, D2, D3) with 
different properties in terms of their activity in various 
tissues and their roles in states of hypothyroidism and
hyperthyroidism.  The activities of D2 and D3 are designed
to maintain local tissue T3 content as normal as possible in
the face of altered serum hormone levels. In states of
iodine deficiency and hypothyroidism, in order to maintain
the available amount of T3 within the normal range, D2
activity is markedly up-regulated and D3 activity is
decreased to increase the proportion of T3 formed locally
and to lessen its degradation (30,31). Opposite changes in

D2 and D3 activity occur in hyperthyroidism (32).
Thyrotropin (TSH) stimulation of the thyroid gland in primary
hypothyroidism results in increased D1 activity, which may
serve to increase the conversion of T4 to T3 (33). 

The deiodinases are also important determinants of
alterations in systemic thyroid hormone levels observed in
illness and nutritional deficiency. Euthyroid sick syndrome
or non-thyroidal illness  is considered as an adaptive
response of the organism, although this definition is still
controversial (34,35). Serum T4 and T3 levels are markedly
decreased without a compensatory rise in the serum 
TSH level during severe illness and nutritional deficiency
(36,37,38), leading to a significant decline in basal metabolic
rate along with a decrease in protein and fat 
catabolism (39,40). Alterations in deiodinase activity 
have been postulated to be responsible for this adaptive
suppression of the thyroid axis. Decreases in hepatic D1
activity and increases in hepatic and skeletal muscle D3
activity have been reported in this setting (36,41). On the
other hand, more recent research has implied that 
alterations in D activity may be a consequence rather than
a cause of the decrease in the serum T3 level (42,43). It was
demonstrated that administration of supraphysiological
amounts of T4 and/or T3 to rabbits with systemic illness
was necessary to regulate the serum concentrations of
these hormones, suggesting that enhanced hormonal
degradation and/or excretion, rather than diminished 
thyroidal secretion or decreased T4 to T3 conversion, had a
dominant role in the response to non-thyroidal illness (44).

Recent research has suggested that induction of D3
activity in response to tissue injury and inflammation, due to
hypoxic or oxidative stress, may influence healing or 
regenerative processes (45,46,47). However, more studies
are needed to confirm these results.

Thyroid and Growth in Disease
Hypothyroidism is a well-known cause of growth 

retardation. Height prognosis in children with late-
diagnosed congenital hypothyroidism is guarded. Although
treatment leads to an initial catch-up growth spurt, 
prolonged hypothyroidism may result in compromised adult
height (48). On the other hand, hyperthyroidism has been
reported to accelerate growth in normal children and in
patients with Turner syndrome (49). However, whether this
temporary growth spurt increases final height is not known.

Thyroid Physiology in Systemic Disease      
Taking into account the important role of thyroid 

hormones in the regulation of growth, alterations in thyroid
physiology must also be considered when evaluating the
growth of a child with systemic disease. 

Thyroid Function in Neuropsychiatric Disease
Depression causes a blunted TSH response to 

thyrotropin-releasing hormone (TRH) stimulation and 
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the expected nocturnal rise in TSH may be absent or 
diminished. The peripheral conversion of T4 to T3 is also
decreased, a finding consistent with non-thyroidal illness or
euthyroid sick syndrome (50). Lithium, used as a therapeutic
agent in depression and psychosis, is notorious for causing
hypothyroidism (51). 

Euthyroid sick syndrome may also occur in anorexia 
nervosa. The abnormal thyroid functions frequently include
a low T3, high reverse T3 (rT3), normal or low T4, low-normal
free T4 (fT4), and normal TSH (52). The TSH response 
to TRH and the iodine uptake on thyroid scan are 
often diminished. Even after a successful treatment of
anorexia nervosa, the recovery period for thyroid hormones,
particularly for T3, may be prolonged (53). Therefore,
growth velocity of patients with anorexia nervosa may not
normalize immediately after weight gain.  On the other
hand, thyroid hormone treatment has also been advocated
for patients with anorexia nervosa. It is doubtful that 
exogenous thyroid hormone can maintain normal growth in
a state of energy deprivation. 

Long-term medications for various entities must be
carefully assessed for their possible side effects on thyroid
functions.  Methylphenidate, used for the treatment of
attention deficit hyperactivity disorder, may cause modest
reductions in serum T4 and TSH levels (1,54). However, it
has also been reported that the serum concentrations of
these hormones remain within normal range and that
height, weight, body mass index (BMI), IGF-1, and IGF 
binding protein-3 (IGFBP-3) values are not significantly
affected (54).  Many antiepileptic drugs also cause 
modest suppression of the hypothalamic-pituitary-thyroid
axis, but clinical hypothyroidism is not reported (1,54). The
long-term effects of such medication on linear growth
remain to be elucidated. 

Thyroid Functions in Hepatogastrointestinal Disease
Since the liver is the major organ responsible for the

metabolism and clearance of hormones, liver disease
affects the serum concentration and activity of the 
hormones. Serum T4 concentration is increased in acute
hepatitis, but clinical hyperthyroidism does not occur. This
is due to the decreased clearance of T4 and to an increase
in T4-binding globulin (TBG) levels as part of the 
acute-phase response to inflammation. The release of
presynthesized TBG from damaged hepatocytes into the
circulation is another cause of increment in TBG levels in
these patients (55,56,57). Because T4 and TBG are
increased simultaneously, hyperthyroidism is rarely a 
problem. Total and free T3 are usually decreased and rT3 -
increased in acute hepatitis. However, T3, T4, and TSH may
all be suppressed in fulminant hepatitis (58,59). 

Autoimmune liver disease may be associated with
Hashimoto’s thyroiditis. Serum T3 is decreased in chronic

liver disease due to the diminished activity of the hepatic
enzyme 5-monodeiodinase, leading to reduced conversion
of T4 to T3. Although total T4 is reduced, fT4 is usually 
normal (58). 

Certain medications used in liver disease may also alter
thyroid function. Dexamethasone and propranolol inhibit D1
and contrast media used in cholangiography such as iopanoic
acid and ipodate block the activity of both D1 and D2. All
these medications reduce peripheral conversion of T4 to T3
and diminish clearance of T4, leading to increased T4 and
decreased T3 concentrations. Consequently, serum rT3 and
TSH are increased (60,61).

Thyroid Functions in Renal Disease
Similar to liver disease, peripheral conversion of T4 to T3

is diminished in chronic renal failure. Serum T4 and T3
levels are usually decreased, but unlike other systemic 
conditions that cause euthyroid sick syndrome, rT3 is 
usually normal.  The plasma TBG level is also usually 
normal, but TSH response to TRH and the thyroid response
to TSH are reduced. Radioactive iodine uptake by the 
thyroid gland may be reduced, probably due to the
increased serum concentration of free iodine which dilutes
the radiolabeled iodine (62,63,64)

Thyroid Functions in Malnutrition and Obesity
Serum TSH and TSH response to TRH have been 

reported to be diminished with acute fasting in adults
(65,66). Adolescents with growth failure due to fear of 
obesity show a delayed TSH response to TRH (67). TSH
response to TRH may be normal or delayed in patients with
anorexia nervosa and nutritional dwarfing. Studies in both
children and rats have demonstrated reduced T3 and
increased  rT3 in this setting  (67,68,69).

Serum T4, T3, fT4, and TSH concentrations were 
reported to be normal in exogenous obesity (70). However,
more recent research findings indicate that serum fT4 is
inversely and TSH is positively correlated with BMI, 
suggesting a state of subclinical hypothyroidism despite 
the presence of serum hormone concentrations within the
normal range (71). 

Conclusion

Although thyroid functions are affected by many 
systemic diseases, growth retardation in these conditions
is often multifactorial and it is difficult to attribute the 
retardation to thyroid dysfunction per se. The hypothalamic-
pituitary-IGF-1 axis as well as the target tissues are also
adversely affected in most of the conditions discussed
above. Therefore, mechanisms that regulate growth during
disease processes are complicated. Interactions within the
endocrine system as well as the cross-talk between 
the immune, neuronal, and endocrine systems remain to be
further elucidated to understand and manage the growth
retardation associated with specific diseases.              
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