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Introduction

The activity level of the hypothalamo-pituitary-gonadal (HPG) 
axis is remarkably variable throughout life. A gradual increase 
of HPG activity around the beginning of the second decade 
of life brings about sex-specific, secondary sexual features 
and a maturing reproductive system. This specialized phase 
of human development is called puberty and lasts from 
two to five years. Absence of puberty manifests itself as 
sexual immaturity and reproductive incompetence, which 
can be succinctly termed as hypogonadism. If lack of such 
development is due to anatomical or functional defects, 
resulting in reduced gonadotropin releasing hormone 
(GnRH) and/or gonadotropin release, the condition is called 
hypogonadotropic hypogonadism (HH). 

1. Idiopathic Hypogonadotropic Hypogonadism

The term idiopathic HH (IHH) is used to define those 
IHH cases with no apparent causes. Traditionally, IHH is 
divided into two major categories: Kallmann syndrome 
(KS) and normosmic IHH (nIHH). IHH can be congenital 
or acquired. The great majority of hereditary causes of 
IHH are congenital. Typically, in girls there is no clinical 
manifestation of IHH before the early teen years. In boys, 
since the HPG axis is very active roughly between the 16th 
and 22nd week of gestation and androgenic end products of 
this period are required for normal virilization of the 46,XY 
fetus, male infants with IHH may have micropenis and/or 
cryptorchidism at birth. Under-virilization of the male can 
be severe enough to call for an evaluation of a “disorder of 
sexual development”. A slight and temporary reactivation of 
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the HPG axis in early infancy (around four to sixteen weeks) 
is called “minipuberty” and provides a unique opportunity 
to diagnose both male and female infants with congenital 
IHH (1).

KS is often due to the embryonic maldevelopment and/
or interrupted migration of GnRH specific neurons. Since 
the embryonic migration of GnRH neurons from the nasal 
placode towards their final destination in the hypothalamus 
occurs in association with olfactory receptor neurons, the 
resulting phenotype includes anosmia in addition to HH. 
KS cases often have additional congenital anomalies such 
as cleft palate, unilateral renal agenesis, split hands and 
feet, short metacarpals, deafness, and mirror movements 
(synkinesia).

In contrast nIHH refers to those IHH cases not associated 
with anosmia (2). nIHH results from the dysfunction of the 
normally sited GnRH neurons in the hypothalamus. These 
cases typically do not have any accompanying congenital 
lesions. 

However, one should be careful when using these terms 
because the line between KS and nIHH is sometimes blurred, 
as most typically seen with FGFR1 mutations. Furthermore, 
there may be pathophysiological overlaps between the two 
entities. For example, patients with CCDC141 or IGSF10 
mutations have nIHH despite showing in vitro evidence of 
impaired migration of the GnRH neurons (3,4).

Pubertal delay is the most typical presentation of IHH. 
Pubertal delay is defined as absence of breast development 
(Tanner breast stage 1) in a girl at age 13 or failure to 
achieve a testicular volume of 4 mL in a boy by age 14 
(5). By far the most common cause of delayed puberty 

is constitutional delay in growth and puberty (CDGP), 
which is not a disease per se but a maturational delay in 
development at the extreme of the population standards. 
CDPG accounts for pubertal delay in two third of boys and 
one third of girls (6). CDGP is a diagnosis of exclusion and 
should often be considered in the differential diagnosis of 
IHH. To distinguish between these two conditions often 
requires lengthy workup and observation periods. 

It has been shown that some variants in known puberty 
genes such as TAC3 and TACR3 are shared by individuals 
with IHH or CDGP within the same family, suggesting that 
CDGP shares an underlying pathophysiology with IHH, only 
representing a milder form of the same genetic dysfunction 
(7). Clinicians often successfully try a low dose sex steroid 
course to “jump start” pubertal development in patients with 
suspected CDGP. It is now well established that about 10-20% 
of IHH cases recover either spontaneously or more typically 
after receiving some sex steroid replacement therapy (8,9). 
These foregoing observations further suggest that CDGP and 
IHH may have common pathophysiological underpinnings. 
Therefore, it appears that there is a continuum of phenotype 
from normal timing of pubertal development all the way to 
extreme IHH, encompassing CDGP along the way. 

2. Genes Associated with Idiopathic Hypogonadotropic 
Hypogonadism 

Currently known genetic defects account for up to 50% of all 
IHH cases (10). To date mutations in around 50 genes have 
been reported to cause IHH. The full current list of genes 
associated with IHH is shown in Table 1. Presence of more 
than one IHH-associated mutant gene in a patient/pedigree 
(oligogenic inheritance) is thought to account for 10-20% 
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Table 1. Genetic causes of idiopathic hypogonadotropic hypogonadism

Category Mutated genes	

Disorders of the embryonic migration of the GnRH 
neuron (Kallmann syndrome)

ANOS1 (KAL1), FGFR1, FGF8, FGF17, IL17RD, DUSP6, SPRY4, FLRT3, KLB, 
PROK2, PROKR2, HS6ST1, CHD7, WDR11, SEMA3A, SEMA3E, IGSF10, 
SMCHD1, CCDC141, FEZF1

Disorders of the GnRH pulse generator TAC3, TACR3, KISS1, KISS1R, GNRH1

Developmental disorders of Hypothalamic-pituitary 
region

NR0B1 (DAX1), NR5A1, SRA1, HESX-1, LHX3, PROP-1, SOX2

Disorders of the pituitary gonadotropes GNRHR, FSHB, LHB

Disorders of IHH associated with obesity LEP, LEPR, PC1

Disorders of IHH associated with neurodegenerative 
syndromes

Gordon Holmes syndrome: Cerebellar ataxia +/- retinal dystrophy 
(PNPLA6, RNF216, OTUD4, STUB1)
4H syndrome: Hypomyelination, hypodontia (POLR3A, POLR3B)
Warburg Micro syndrome/Martsolf syndrome: microcephaly, 
microcornea, mental retardation, optic atrophy (RAB3GAP1, RAB3GAP2, 
RAB18, TBC1D20)
DMXL2: non-autoimmune insulin deficiency diabetes mellitus, 
hypoglycemia, central hypothyroidism, mental retardation, and peripheral 
demyelinating sensorimotor polyneuropathy
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of all IHH cases (11,12,13,14). With the increasing use of 
unbiased comprehensive genetic studies such as whole 
exome sequencing (WES), it is now known that oligogenic 
inheritance is more common than previously thought in 
various Mendelian disorders (15). 

2a. Kallmann Syndrome Associated Genes

X-linked recessive, autosomal dominant (AD) and 
autosomal recessive (AR) patterns of inheritance have 
been reported. However, KS is often sporadic; even if it is 
familial, a substantial variability in clinical phenotype of 
the same genetic defect among affected family members 
may be seen (16,17,18). According to the presence of 
certain associated clinical features, genetic screening for 
particular gene(s) may be prioritized: synkinesia (KAL1), 
dental agenesis (FGF8/FGFR1), digital bony abnormalities 
(FGF8/FGFR1) and hearing loss (CHD7, SOX10) (19). As a 
common pathophysiological denominator with KS genes, 
fibroblast growth factor signaling, prokineticin signaling 
and Anosmin-1 appear to interact with heparin sulfate 
glycosominoglycan compounds within an extracellular 
signaling complex to promote GnRH neuronal migration 
(20,21). 

ANOS1 (KAL1) 

The ANOS1 gene, encoding an extracellular glycoprotein 
called Anosmin-1, associates with the cell membrane via 
heparin sulphate proteoglycans (HSPG) (22). Ten to twenty 
percent of males with KS carry KAL1 mutations or intragenic 
microdeletions are present (23,24). Most pathogenic 
mutations entirely disrupt protein function. The inheritance 
pattern is X-linked recessive. The KS phenotype produced 
by ANOS1 mutations seem not only more severe but also 
less variable than that seen with other known molecular 
defects (24,25). Accompanying clinical features include 
synkinesia and unilateral renal agenesis, which occurs in 
75% and 30% of patients respectively (26). 

FGFR1, FGF8 and Related Genes (FGF17, IL17RD, DUSP6, SPRY4, 
FLRT3, and KLB) (20,27,28)

FGFR1 requires both HSPG as a co-receptor and Anosmin-1, 
which is also HSPG-associated. Anosmin-1 is likely to 
play a role in mediating FGFR1 signaling (21). Loss of 
FGFR1 function has been reported to elicit reproductive 
abnormalities ranging from severe AD KS through fully 
penetrant nIHH to delayed puberty (29,30,31,32,33). 
Around 10% of patients with KS were found to have 
inactivating mutations in FGFR1 (20,29,30). More recently, 
loss-of-function mutations in FGFR1 were detected in 7% of 
134 nIHH patients, suggesting that FGFR1 should be one of 
the major genes in screening panels for nIHH patients (34).

In 2008, FGF8, one of 11 ligands of FGF signaling was found 
to be mutated in six out of 461 (1.5%) IHH patients. These 
patients exhibited varying levels of olfactory function and HH 
(27). Furthermore, mice homozygous for the hypomorphic 
FGF8 allele exhibited absent olfactory bulbs and lacked 
GnRH neurons in the hypothalamus (27). As for the features 
of FGF8/FGFR1 loss of function, cleft palate is found in up 
to 30% of patients, while cartilage abnormalities in either 
ear or nose and some digital anomalies have been reported 
(26). Further screening for FGF8 related genes in a group of 
388 congenital IHH patients revealed inactivating variants 
in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 (28).

KLB 

KLB is the most recently reported Fibroblast growth factor 
related IHH gene (35). KLB encodes for Beta-Klotho, which 
is a co-receptor in FGF21 signaling through the FGFR1 
product. The authors of this paper screened more than 300 
IHH patients and found 13 patients with loss of function 
mutations. They also reported that the majority of patients 
with KLB mutations exhibited some degree of metabolic 
defect such as insulin resistance or dyslipidemia. The KLB 
knock out mouse model revealed a milder hypogonadal 
phenotype when compared to the corresponding human 
phenotype (35). 

PROKR2 and PROK2

The PROK2 gene encodes prokinetecin 2, an 81 amino 
acid peptide that signals via the G protein-coupled product 
of the PROKR2 gene. This ligand and its receptor were 
recognized as strong candidates for KS as PROK2 (36,37) 
or PROKR2 knockout mice had defective olfactory bulbs 
and failed migration of GnRH neurons (38). Subsequently, 
inactivating variants in PROKR2 or PROK2 were detected 
in KS patients. Most of these mutations were heterozygous, 
although both homozygous and compound heterozygous 
mutations have been described (39). Patients with PROK2 
or PROKR2 mutations have considerable phenotypic 
variability (37,40,41), ranging from KS to nIHH. A variety of 
accompanying clinical features including fibrous dysplasia, 
synkinesia and epilepsy have been reported in patients with 
PROK2 or PROKR2 mutations. It appears that mutations in 
PROKR2 and PROK2 are often found in combination with 
other mutations in IHH with oligogenic inheritance. 

CHD7

The CHD7 gene encodes a chromatin-remodeling factor 
and is mutant in CHARGE syndrome, which has the 
constellation of Colobomata, Heart Anomalies, choanal 
Atresia, Retardation, Genital and Ear anomalies (42). 
Some patients also have IHH and hyposmia. Based on the 
hypothesis that KS and nIHH may be a milder allelic variant 
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of CHARGE syndrome, CHD7 was screened in 197 patients 
with KS or nIHH but devoid of CHARGE features. Mutations 
were identified in three KS and four nIHH patients (43). In 
another study, three of 56 KS/nIHH patients had mutations 
in CHD7 (44). The authors suggest that patients diagnosed 
with KS should be screened for clinical features consistent 
with CHARGE syndrome. If such features are present, 
particularly deafness, anomalous ears, coloboma and/
or hypoplasia or aplasia of the semicircular canals, CHD7 
should be tested (44).

WDR11

The WDR11 gene product partners EMX1, a homeodomain 
transcription factor involved in the development of olfactory 
neurons. By positional cloning, heterozygous mutations 
were discovered in several patients with KS (45). Recently, a 
digenic combination of monoallelic variants in PROKR2 and 
WDR11 has been reported to be responsible for a pituitary 
stalk interruption syndrome in a child (46).

SEMA3A

SEMA3A encodes for semaphorin 3A, a protein that 
interacts with neuropilins. Mice lacking semaphorin 3A 
expression have been demonstrated to have a Kallmann-
like phenotype. Screening large groups of patients with KS 
revealed a variety of monoallelic mutations. Some of these 
mutations coexist with other KS causing gene mutations, 
further showing oligogenic inheritance in IHH (47,48). In a 
recent study in patients with IHH, heterozygous missense 
variants in SEMA3A and SEMA7A were found in association 
with second variants in other IHH genes (49).

SEMA3E

Semaphorin 3E (SEMA3E) is a secreted protein that modulates 
axonal growth. A SEMA3E missense mutation was recently 
reported in two brothers with KS (50). Functional studies 
have shown that SEMA3E may act as a survival factor for 
maturing hypothalamic GnRH neurons.

SOX10

Inactivating mutations in SOX10 cause Waardenburg 
syndrome, a rare disorder characterized by pigmentation 
abnormalities and hearing impairment. Screening for 
SOX10 mutations in KS patients with deafness revealed 
inactivating variants in approximately one-third of them. 
SOX10 knockout mice showed absence of olfactory 
ensheathing cells along the olfactory nerve pathway (51).

HS6ST1

HS 6-O-sulfotransferase 1 is a sulfation enzyme that 
specifically and non-randomly modifies heparan sulfate, 
an important extracellular matrix component, which is 

probably required for optimal cell-cell communication, such 
as during olfactory neuronal migration and ligand-receptor 
interactions. Recently, inactivating HS6ST1 mutations, 
in association with other KS gene mutations, have been 
reported in seven families with KS (52).

CCDC141

CCDC141 encodes a coiled-coil domain containing protein 
that is expressed in GnRH neurons. We have reported 
inactivating CCDC141 variants in four separate families with 
IHH. Affected individuals had normal olfactory function 
and anatomically normal olfactory bulbs (53). In a rodent 
nasal explant model, knockdown of CCDC141 resulted 
in decreased embryonic GnRH cell migration without 
interrupting olfactory axon outgrowth (3).

FEZF1

FEZF1 encodes a transcriptional repressor that is expressed 
during embryogenesis in the olfactory epithelium, amygdala 
and hypothalamus. The FEZF1 gene product promotes the 
presence of a protease to enable olfactory receptor neurons, 
and thus accompanying GnRH neurons, to enter the brain 

(54). Recently, using autozygosity mapping and WES in a 
cohort of 30 individuals with KS, we identified homozygous, 
loss-of-function mutations in FEZF1 in two independent 
consanguineous families, each with two affected siblings 
(55). 

IGSF10

IGSF10 is a member of the immunoglobulin superfamily. 
Howard et al (4) obtained WES data on more than 100 
individuals with delayed puberty and identified IGSF10 
mutations in six families. The knock down studies revealed 
reduced GnRH migration in the GN11 cell line. Despite 
having impaired migration of GnRH neurons, the patients 
carrying these mutations had a normal sense of smell. The 
authors suggested that reduced number or delayed arrival 
of neurons in the hypothalamus leads to a somewhat milder 
functional defect in the formation of the GnRH neuronal 
network with eventual delayed puberty but not permanent 
IHH. Interestingly, they also identified mutations in adult 
individuals with functional hypothalamic amenorrhea, 
which is considered a form of mild, transient HH (4).

SMCHD1

SMCHD1 encodes for an epigenetic repressor which is 
expressed in the human olfactory epithelium. Shaw et al 
(56) demonstrated inactivating SMCHD1 mutations as the 
cause of congenital absence of nose in 41 cases. The great 
majority of patients (97%) also had hypogonadal features 
such as cryptorchidism, microphallus or amenorrhea, along 
with absent olfactory structures and anosmia.
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2b. Normosmic Idiopathic Hypogonadotropic Hypogonadism 
(nIHH) Associated Genes

nIHH-causing genes are more pertinent to the understanding 
of the function of the HPG axis and puberty. Identified 
mutations in familial cases of nIHH has led to greater 
understanding of this function. In a study on 22 consecutive, 
multiplex families with nIHH, we identified mutations in five 
genes (GNRHR, TACR3, TAC3, KISS1R, and KISS1) in 77% 
of them. GNRHR and TACR3 mutations were the two most 
common causative mutations, occurring with about equal 
frequency in two third of the mutation identified cases (57). 

LEP and LEPR

Leptin deficiency with mutations in either encoding leptin 
(LEP) or encoding the leptin receptor (LEPR) is associated 
with IHH (58,59). The administration of leptin in LEP-
deficient patients restores normal pubertal development 
but does not cause early puberty in prepubertal children, 

which implies that leptin is a permissive factor for the 
development of puberty in humans (60). These patients are 
easily recognizable among other IHH patients with because 
of the presence of early onset obesity and hyperphagia. 

NR0B1 (DAX1)

NR0B1 is an orphan member of the nuclear receptor 
superfamily. Inactivating variants in the NR0B1 gene cause 
X-linked congenital adrenal hypoplasia with HH (61). Adrenal 
hypoplasia typically presents as adrenal insufficiency during 
infancy, whereas HH becomes manifest in affected males 
who survive into the second decade of life.

SRA1

SRA1 was the first gene shown to function through both its 
protein and noncoding, functional RNA products (62). These 
products act as co-regulators of nuclear receptors, including 
sex steroid receptors as well as SF-1 and LRH-1, the master 
regulators of steroidogenesis. SRA1 is required for the 
synergistic enhancement of SF-1 transcriptional activity 
by DAX-1 (NR0B1), mutations in which also cause IHH, 
as discussed above (63). WES and autozygosity mapping 
studies revealed three independent families in which IHH 
was associated with inactivating SRA1 variants (64).

GNRHR and GNRH1

GNRH1 and GNRHR are the most obvious candidate gene 
in the etiology of IHH. GNRHR defects produce AR, isolated 
nIHH, with no evidence of accompanying developmental 
defects such as hyposmia (65,66,67). GNRHR mutations 
have been suggested to account for about 40-50% of familial 
AR nIHH, and around 17% of sporadic nIHH (66). In a 
recent survey of 110 patients with nIHH, eleven IHH patients 
(10%) carried biallelic GNRHR mutations while none of the 

50 patients studied with CDGP had any deleterious variants 
(68). To date, more than 25 different mutations have 
been reported. Interestingly, only seven years ago the first 
inactivating homozygous mutations in GNRH1 itself causing 
IHH were reported by two independent groups (69,70). In 
these cases IHH was shown to be reverseable by pulsatile 
GnRH administration, confirming the pivotal role of GnRH 
in human reproduction (69). Out of 310 patients with IHH, 
only one case was found, attesting to the rarity of mutations 
in this gene as a cause of IHH (70). We recently reported 
further GNRH1 mutations located in the region encoding the 
decapeptide which is the same region involved in earlier 
reported mutations (71). 

KISS1R and KISS1

KISS1R (formerly GPR54) encodes for the receptor for small 
peptides derived from the KISS1 gene and it was previously 
thought not to play a role in the HPG axis (72). Mutations in 
KISS1R were first reported in IHH familial multiplex cases 
in 2003 (73,74). Ensuing studies established kisspeptin 
signaling as an essential, positive regulator of GNRH 
secretion. In a mutational screening study, only five out 
of 166 (3%) probands with nIHH were found to have rare 
variants in KISS1R (75). Studying a large, consanguineous 
family with four sisters with nIHH, we found inactivating 
mutations altering the 4th amino acid of Kisspeptin-10. 
Overnight frequent LH sampling did not reveal any LH 
pulsatility, further confirming the essential role of kisspeptin 
signaling in the GnRH pulse generator (76).

TACR3 and TAC3

Tachykinin receptor-3 encoded by TACR3 is the mediator of 
biologic actions of neurokinin B (NKB) encoded by TAC3. In 
an effort to identify novel genes playing a role in driving the 
HPG axis, based on autozygosity mapping (77), we identified 
homozygous non-synonymous mutations in the coding 
sequences of TAC3 or TACR3 in nine patients from four 
families with an nIHH phenotype (78). With the additional 
cases identified in our cohort, it became clear that TACR3 
mutations are almost as common as GNRHR mutations (57). 
Other groups have made similar observations concerning 
the prevalence of TACR3 mutations. Gianetti et al (79) found 
19 among 345 (5.5%) cases while a very similar rate (5.2%) 
was observed by Francou et al (80) from a cohort of 173 
cases of familial and sporadic nIHH. The frequent presence 
of a micropenis and cryptorchidism in mutant TACR3 male 
patients indicates that intact TACR3 function is also required 
for normal fetal gonadotropin secretion, which stimulates 
testicular size and descent and penile growth (1). 

Clinical reversibility, evident by spontaneous progression of 
puberty, often following a period of exogenous sex steroid 
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treatment, was seen in 10% of an unselected nIHH cohort 
(8). A much greater percentage of reversibility (83%) was 
reported by Gianetti et al (79) in their TAC3/TACR3 cohort 
2010 (79). In our cohort four patients from three independent 
and ethnically different families showed clinical recovery 
among 16 (25%) patients. Interestingly, all of these families 
harbored the same TACR3 mutation (p.T177K). Our studies 
are ongoing in an attempt to gain insight into the clinical 
recoverability and/or reversibility of this variant. With such 
a high rate of reversibility, a legitimate question arose as 
to whether CDGP was a form of IHH caused by TACR3 
mutations. To answer this question, Vaaralahti et al (81) 
screened these genes in 146 Finnish subjects with CDGP 
and found no variants to account for this phenotype.

Other clinical studies have provided additional valuable 
insight in to the biology of the HPG axis. Young et al (82) 
were able to produce pubertal levels of gonadotropin and 
sex steroids with repeated administration of GnRH in 
patients with Null mutations in TAC3, indicating that the site 
of NKB action is proximal to GnRH and the pituitary (82). 

3. Scientific Significance of Identifying IHH-Associated Genes

Undoubtedly, the most significant contribution of IHH-
associated gene studies has been the characterization of 
the long sought-after GnRH pulse generator. A surge of 
studies over the past ten years on Kisspeptin and NKB 
signaling, following the identifications of their inactivating 
mutations among familial patients with nIHH, has led to 
characterization of the GnRH pulse generator. According 
to the current understanding there is a network of sex-
steroid responsive neurons in the arcuate (infindubular) 
nucleus that coexpress Kisspeptin, NKB, Dynorphin and 
ERα (KNDy or Kisspeptin neurons). Within these cells, the 
stimulatory NKB starts an action potential that is suppressed 
by the inhibitory Dynorphin. When the inhibitory effect of 
Dynorphin is overcome another stimulatory NKB action 
takes over. The net result is continuous, intermittent action 
potentials. Each action potential translates into a pulsatile 
secretion of Kisspeptin on to the axons of the GnRH neurons 
in the median eminence, thence GnRH is released towards 
the pituitary gonadotropes, via the portal circulation. 
Synchronization of KNDy cells is believed to be provided 
by NKB-NK3R signaling through ipsi- and contralateral 
projections among these cells (83,84,85). 

4. Clinical Significance of Identifying IHH-Associated Genes

IHH-associated gene studies have provided clues for 
targetting diagnostic molecular genetic studies. GNRHR 
and TACR3 should be the first two genes to be screened 
for diagnostic purposes in a clinical setting for equivocal 

cases, such as constitutional delay in puberty vs. IHH. In KS, 
according to the presence of certain accompanying clinical 
features, genetic screening for particular gene(s) may be 
prioritized, for example if the patient has synkinesia then 
KAL1 would be suggested, dental agenesis is associated 
with FGF8/FGFR1, digital bony abnormalities also with 
FGF8/FGFR1 and hearing loss with CHD7 and SOX10. 

IHH-associated gene studies may be translated into new 
therapeutic modalities. For instance, an antagonist of the 
TACR3 gene product has been in clinical trial for polycystic 
ovarian syndrome (86).

5. Concluding Remarks

Currently, around half of the IHH genes remain to be 
identified. Complicated genotype/phenotype relationships 
in IHH, due to two well-established phenomena, oligogenic 
inheritance and spontaneous or induced clinical reversibility, 
make identifying these unknown genes challenging. 
Nonetheless, with the help of contemporary sequencing 
technologies, it appears that studies into the genetics of 
hypogonadotropic hypogonadism will continue to advance 
our knowledge in both the biological and clinical domains.
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