
Address for correspondence: Faiz Marikar, MD. Department of Biochemistry, General Sir John Kotelawala Defence University, Ratmalana, Sri Lanka
Phone: +941 112 635268 E-mail: faiz@kdu.ac.lk ORCID: 0000-0003-4579-7263

Submitted: October 13, 2022 Revised: October 23, 2022 Accepted: October 27, 2022 Available Online: January 12, 2023

DOI: 10.14744/ijmb.2022.94834
Int J Med Biochem 2023;6(1):57-62

INTERNATIONAL JOURNAL OF 

MEDICAL BIOCHEMISTRY

Review

OPEN ACCESS  This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Metal-binding protein: Metallothionein

Metallothioneins (MTs) were first discovered from horse kid-
ney by Morgoshes and Vallee in the 20th century (1957) and 
was subsequently purified and characterized by Kägi and 
Vallee [1]. This discovery marked a field of research focused 
on the study of a low-molecular-weight polypeptide super-
family, the MTs. MTs are cysteine rich, low-molecular-weight 
(6–7 kDa), non-enzymatic, intracellular proteins ubiquitous 
in all eukaryotes (often discovered in encoded multiple copy 
genes), as well as some prokaryotes [2, 3]. In the mouse, there 
are four MT genes (MT-1, 2, 3, and 4) that reside in a 50 kb re-
gion on chromosome 8, whereas in the humans in addition to 
the four genes, numerous isoforms of MT-1 are clustered on 
chromosome 16q13 [4, 5]. Human MT proteins are encoded by 
ten genes: MT-1A, MT-1B, MT-1E, MT-1F, MT-1G, MT-1H, MT-1X, 
MT-2A, MT-3, and MT-4. In addition to these ten functional iso-
forms, there are seven non-functional isoforms encoded by, 
in mice MT-1C, MT-1D, MT-1I, MT-1J, MT-1K, MT-1L, and MT-2B 
[6]. The MT-1 and MT-2 in addition to these isoforms, which 
differ by only a single negative charge, are the most widely 

expressed isoforms in different tissues. In the human, MT2A 
gene is clusterd on chromosome 16q12 (Fig. 1).

Synthesis and Regulation of Synthesis
MT harbors high metal content. Mammalian MTs contain 20 
cysteine residues, which are central to the binding of metals. 
The stoichiometry is such that there are seven bivalent ions 
for every 20 cysteines, which form metal thiolate complexes, 
therefore enabling the MT to bind between 7–10 atoms of 
metal/mol MT in a two domain structures [6]. The protein 
has the shape of a dumbbell and envelops the metals that it 
contains in two separate domains. It is most remarkable that 
the metals are arranged in a cluster structure unique to biol-
ogy. Total length of the MT2A is 60 amino acid long protein. 
Its molecular weight is about 6 kD. In one cluster (N-termi-
nal α-domain), four metal atoms are bound to 11 cysteines, 
five of which bridge the metals in a two domain structures; 
the other (C-terminal β-domain) has three metal atoms and 
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nine cysteines with three bridges (Fig. 2) [7]. Zinc is bound 
extremely tightly to α-domain and cupper is mostly bound 
to β-domain of MT2A.
Intramolecular metal linkages can stabilize the MT protein 
secondary structure; therefore, loss of metal can cause struc-
tural changes, rendering the polypeptide chain vulnerable to 
proteolysis [8]. Stability is also influenced by the nature of the 
metals bound to MT. Predominantly, Zn++ but sometimes also 
Cu++ are bound in vivo under physiological conditions. How-
ever, several less abundant transition metals, such as Cd++, 
Bi+++, Pt++, Ag+, and Hg++ also bind eagerly to MT in vitro. The 
binding affinity of different metals for MT2A varies consider-
ably and has the following order: Zn++<Pb++<Cd++<Cu+<Ag+ = 
Hg++ is bound Bi++, therefore making zinc readily displaceable 
by other metal ions [9].

Function
Despite the accumulation of detailed information on both 
the biochemical and molecular aspects of MT structure and 
expression, its biological role is still not clearly understood 
more that 40 years after its discovery. The fact that there are 
multiple copies of MT genes expressed in distinct patterns, 
and the relatively rapid turnover of the protein suggests that 
they should have important functions. Its biological role has 
not been clearly understood for more than 40 years since 
its discovery. Zn++ provides essential structural and catalytic 
functions to a variety of proteins. Zn++ is also crucial in the 
regulation of gene expression because numerous transcrip-
tion factors have “zinc finger motifs” that are maintained by 
Zn++. Apo-MT (MT with no metals bound) role in maintaining 
the essential metal homeostasis is a Zn++ acceptor due to the 
abundance of free sulfhydryl groups and their high affinity 
for Zn++. However, the sulfhydryl groups are highly reactive, 
and Zn++, although bound with high affinity, can undergo ex-

change reactions, which allows Zn++ to be transferred from 
MT to other proteins [10–13]. The affinity of sulfhydryl groups 
for Zn++ can also make MT an efficient metal ion scavenger. 
This implies a possible regulatory role of MT in the activation 
or inactivation of various molecular effectors is a Zn++ accep-
tor due to the abundance of free sulfhydryl groups and its 
high affinity for Zn++. Such a possibility was demonstrated by 
showing that apo-MT can chelate Zn++ out of the transcrip-
tion factor IIIA (TFIIIA), a process that inactivates TFIIIA [14]. 
Therefore, it is tempting to speculate that MT might be es-
sential for Zn++ homeostasis by regulating Zn++ absorption or 
as a donor of Zn++ to various enzymes and transcription fac-
tors during development or protein synthesis. The affinity of 
sulfhydryl groups for Zn++ can also turn MT into an efficient 
metal ion scavenger.
There is strong evidence that MTs play an important role in 
protection against metal toxicity. In unicellular eukaryotes, 

Figure 1. (a) The CCDS10763 (MT2A) locus on human chromosome 16q12. (b) Physical map of the CCDS10763 (MT2A) locus on chromosome 
16 showing the relative position of MT2A gene in humans, MT2A gene is clustered. Image generated from http://www.ensembl.org/Homo_
sapiens/index.html.

a

b

Figure 3. Schematic drawing of mts functions.
MT: Metallothionein.
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MTs bind copper predominantly [2, 3]. Mutations that pre-
vent MT synthesis confer copper sensitivity, whereas excess 
expression of MTs confers resistance to copper toxicity [7, 
15]. There is strong evidence that MTs can play an important 
role in the protection against Cd++ toxicity and lethality, but 
it provides much less protection against the lethality of the 
other metals such as, Zn++, Cu+, Fe, Pb++, Hg++, and As [15]. Cad-
mium is a ubiquitous and insidious pollutant. A by-product 
of zinc production by humans and a component of volcanic 
eruption by nature, the element is chiefly used in the indus-
trial plating process and can be found in products as diverse 
as solder, artists’ pigments, and rechargeable batteries ubiq-
uitous and an insidious pollutant. It is even used to absorb 
neutrons in the control rods and shielding of nuclear reactors. 
Depending on the dose, route, and duration of exposure, Cd++ 
can cause damage to various organs including the lung, liver, 
kidney, bones, testis, and placenta [16–20]. It is even used for 
absorbing to Cd++ produces hepatic, pulmonary, and testicu-
lar injury, whereas chronic exposure results in renal and bone 
injury and cancer [21]. The Agency for Toxic Substances and 
Disease Registry currently ranks Cd++ 7th on its priority list of 
hazardous substances. Moreover, various mammalian cell 
lines that cannot synthesize any MT are sensitive to cadmium 
toxicity, whereas mice and the cells that overexpress MT are 
resistant to Cd++ [22, 23]. In fact, selection for cadmium resis-
tance with mammalian cells results in up to 80-fold amplifica-
tion of the entire MT-locus. MT that is sensitive to cadmium 
toxicity disposition has been examined in MT-transgenic mice. 
In this model, MT does not inhibit intestinal Cd++ absorption, 
nor does it affect initial Cd++ distribution to various tissues [24, 
25]. However, MT decreases Cd++ elimination through the bile 
and is a major factor for tissue retention of Cd++ [25–27]. The 
results of a number of studies with humans environmentally 
exposed to Cd++ demonstrated that proteinuria is the main re-
nal injury in these subjects [28]. The results of several studies 
Cd++ injures proximal tubules of kidney, an increased excretion 
of protein into urine is observed. A novel fusion expression 
vector for Escherichia coli was developed based on the pTΏRG 
plasmid, a derivative of the pET32a. This vector, named pT7MT 
(GenBank access No: DQ504436), carries a T7 promoter and it 
drives the downstream gene encoding MT 2A (MT2A) [29].

MTs are cysteine-rich molecules. Therefore, it is reasonable to 
expect that sulfhydryl-rich MTs may function in a manner sim-
ilar to GSH, wherein MT provides an intracellular nucleophilic 
sink to “trap” electrophiles, alkalyting agents, and free radicals 
[30, 31]. The multiple cysteine residues of MT can be oxidized 
during oxidative stress, and the subsequent release of alky-
lating Zn++ has been proposed to be important in protecting 
against oxidative damage [32, 33]. However, it has been diffi-
cult to demonstrate oxidation of MT in vivo. Therefore, there 
have been controversial reports on the role of MT during ox-
idative stress. While it has been difficult to demonstrate the 
oxidation of MT in vivo, reports on the role of MT during oxida-
tive stress show controversial results.

Role in the Pathogenesis of Diseases 
Including Apoptosis/Angiogenesis/Oxidative 
Stress
A variety of stimuli such as metals, hormones, cytokines, 
and a range of other chemicals, inflammation, and stress 
can induce MTs. Some of these stimuli include metals, 
hormones, cytokines, a range of other chemicals, inflam-
mation, and stress [34]. The most extensively studied of 
these inducers are metals and glucocorticoids, both being 
efficient inducers of MT. However, both of these entities 
display species differences in isoform induction. In mice, 
both metals and glucocorticoids equally induce MT-1 and 
MT-2; in man, metals induce all the MT isoforms, whereas 
glucocorticoids only induce MT-2A and MT-1E [35, 36]. In 
human, MT isoforms are regulated independently of each 
other, whereas, in mouse, the MT-1 and MT-2 isoforms are 
co-ordinately regulated [34, 37, 38]. With the exception of 
glucocorticoids, only metals have been shown thus far iso-
forms, whereas mice MT-1 and MT-2 isoforms are to be ca-
pable of inducing the human MT-1. This demonstrates the 
apparent simplicity of the human MT-1 promoter region 
compared with that of MT-2A, which contains several en-
hancer regions [36]. Considerable progress has been made 
in the mechanism by which metals induce MT and the 
way, in which expression of this protein is regulated, even 
though the regulation of protein expression not yet fully 
understood [39]. Exposure to heavy metals leads to a sig-
nificant MT synthesis and this synthesis is the regulation of 
protein expression which is not yet thought to be mediated 
through cis-acting DNA sequences or metal responsive el-
ements (MREs) which are present as multiple copies in the 
promoter region of all the MT genes [40, 41]. These cis-act-
ing regions are conserved among many diverse organisms 
but are not all functionally equivalent [42]. Moreover, vari-
ations in the ability of different MREs to mediate metal-ac-
tivated transcription of MT genes have been reported [43].
Proteins which are thought to be positively acting transcrip-
tion factors bind with MREs in a metal-dependent manner 
during metal induction of MT [44]. Following metal exposure, 
different proteins from nuclear extracts of cells of both rodent 
and human origins have been identified as possible regula-
tors of metal mediated gene transcription [45]. These include 
metal response element binding factor-I, zinc-activated pro-
tein, and zinc-regulated factor. These proteins have different 
binding affinities for the various MREs and it is not clear if the 
binding of these proteins is metal specific [46]. These proteins 
are metal specific which is identified from nuclear extracts of 
HeLa cells do affect metal-mediated MT gene transcription. 
These are MREBP (MRE binding protein) that specifically binds 
MREs of the human MT-2A gene and MTF-1 (MRE binding 
transcription factor), constitutively active zinc sensitive factor. 
MREBP is thought to inhibit transcription, whereas MTF-1 is 
thought to have an important role in the control of MT gene 
expression [41, 47–49] (Fig. 3).
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In resting cells, most MTF-1 localizes in cytoplasm from 
which it is translocated to the nucleus under several differ-
ent stress situations [50, 51]. The finding that MTF-1 requires 
elevated concentrations of zinc for strong binding to DNA 
suggests that MTF-1 is activated by allosteric regulation of 
DNA binding through binding of metals to the transcription 
factor itself [48, 52, 53]. Although heavy metals readily in-
duce MT gene transcription in cultured cells, none of them 
can substitute zinc in cell-free DNA binding reaction of MTF-
1 [52]. The most likely scenario is the replacement of zinc 
by other heavy metals in cellular and/or extracellular zinc 
storage proteins, which leads to concomitant activation of 
MTF-1 by the released zinc. In addition, MTF-1 can be phos-
phorylated on metal induction, as a result of the activation 
of a complex kinase signaling transduction pathway which 
includes protein kinase C, phosphorinositol-3 kinase, c-Jun 
N-terminal kinase, and a tyrosine-specific kinase [54].
The accumulation of the MT 1/2 protein as detected 
through immunohistochemistry has different prognostic 
significance in various human tumors [55]. In tumors such 
as colonic and bladder cancers, MT 1/2 overexpression is 
frequently associated with well differentiated and lower 
histological grade tumors [56, 57]. Whereas in tumors such 
as ductal breast cancer, cervical carcinoma, endometrial 
carcinoma, and pancreatic carcinoma, MT over expression 
appears to be predominantly associated with more aggres-
sive and higher-grade tumors [58, 59]. The expression of MT 
was also analyzed in normal breast tissue and in variety of 
benign, preinvasive, and malignant breast lesions. Normal 
breast tissue did not stain for MT [60]. The available informa-
tion on the character and consequences of MT overexpres-
sion associated with human cancer is presently too limited 
to offer a complete understanding.

Moreover, MT may potentially activate certain transcrip-
tional factors by donating zinc. A number of studies have 
shown an increased expression of MT in various human 
tumors of the breast [61, 62], colon, kidney, liver, lung, na-
sopharynx, ovary, prostate [63, 64], salivary gland, testes, 
thyroid, and urinary bladder [64]. However, MT is down-reg-
ulated in certain tumors such as hepatocellular carcinoma 
and liver adenocarcinoma. The first and second MT protein 
has been shown to be a useful prognostic and diagnostic 
marker in a variety of human cancers. Subset of MT protein 
has been documented to be overexpressed in a sub-set of 
human breast cancers and that overexpression correlates 
to poor prognosis. There is strong evidence that overex-
pression of MT isoform 3 (MT-3) protein correlates to poor 
disease outcomes in subset of human breast cancers [64]. 
They reveal that certain isoforms are expressed in specific 
cell types. The factors which can influence MT induction in 
human tumors are not yet understood.

Projection for Future Studies
The four isoforms of MT are identified in mammals, three of 
which, MT-I, II and III are found in the central nervous system 
and MT-IV is found in the skin and upper gastrointestinal 
tract. tract. In the past decades, mostly isoforms such as MT-
I, MT-II, MT-III, and MT-IV. MTI and II were demonstrated and 
the studies have mainly focused on oncogenesis, tumor pro-
gression, therapy response, and patient prognosis. Studies 
have reported increased expression of MT-I and II mRNA and 
protein in various human tumors; such as breast, kidney, 
lung, nasopharynx, ovary, prostate, salivary gland, testes, 
urinary bladder, cervical, endometrial, skin, and pancreatic 
cancers, as well as in melanoma and all, where, in some 
cases, MT-I and II expression correlates with tumor grade/
stage, chemotherapy/radiation resistance, and poor prog-
nosis. It is especially important in case of heart cells. Analysis 
of MT expression in tumor cells may be useful in choosing 
a method of treatment. It is difficult to determine whether 
increased expression of MT is only an inducing factor of the 
development of the carcinogenesis, its malignances, and 
multidrug resistance, or it is a factor inhibiting the induction 
and development of cancer.
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Figure 2. Schematic drawing of zinc thiolate clusters in MT based on 
both X-ray diffraction and NMR spectroscopy data. (Adopted from 
Edmont H. Fischer and Earl W. Davie, Recent excitement regarding 
metallothionein, Proc. Natl. Acad. Sci. USA, Vol. 95, pp 3334, 1998).
MT: Metallothionein; NMR: Nuclear magnetic resonance.
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