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Vascular responses disrupted by fructose-induced 
hyperinsulinemia improved with delta-9-
tetrahydrocannabinol

Insulin induces glucose uptake in many metabolic tissues to 
maintain glucose homeostasis under physiological condi-

tions [1]. It has been established that vascular changes occur 
due to hyperinsulinemia (HI) , which is a symptom of insulin 
resistance, and is therefore an important cardiovascular risk 

factor [2]. Recent studies have shown that high consumption 
of refined carbohydrates increases the risk of developing in-
sulin resistance [3]. A high-fructose diet disrupts the function 
of tissues and organs and supports the development process 
of metabolic syndrome and insulin resistance [4]. Fructolysis, 
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or fructose metabolization, largely occurs in the liver, produc-
ing primary metabolites and by-products, such as glucose, 
very low-density lipoprotein-triglyceride, lactate, free fatty 
acid, and uric acid [5]. 
Delta-9-tetrahydrocannabinol (THC), the most important psy-
choactive ingredient of Cannabis sativa, acts through cannabi-
noid-1 (CB1) and cannabinoid-2 (CB2) receptors [6]. Recent 
preclinical and clinical studies have shown that cannabinoid re-
ceptor activation is related to weight gain and insulin resistance, 
and that cannabinoids have beneficial effects for increased en-
ergy intake, impaired glucose, and lipid metabolism [7]. In ad-
dition, cannabinoids have demonstrated beneficial effects on 
diabetes and lipid metabolism by activating peroxisome pro-
liferator-activated receptors (PPARs) [8]. PPARs are part of the 
nuclear receptor superfamily, and involved in the regulation of 
lipid metabolism, insulin sensitivity, glucose homeostasis, and 
hepatic expression of peroxisomal enzyme, and PPARγ agonists 
are used to reduce blood glucose levels and treat insulin resis-
tance and type 2 diabetes mellitus (T2DM) [9]. 
Recent research has shown that cannabidiol caused vasorelax-
ation of the human mesenteric artery and may be an effective 
treatment for diabetes-related cardiovascular complications 
[10]. Cannabinoid receptors may be a novel pharmacological 
target for restoration of cardiovascular function [11]. Both CB1 
and CB2 receptors are expressed in endothelial and vascular 
smooth muscle cells. However, the effect of cannabinoids on 
the vessels does not always occur through the cannabinoid re-
ceptors [7]. PPARs contribute to the relaxant effect of cannabi-
noids on the vessels [12]. The objective of this research was to 
explore whether the non-specific cannabinoid receptor ago-
nist THC improved suitable fructose-induced HI and to exam-
ine changes in the vascular response caused by HI.

Materials and Methods
Subjects
A total of 24 male Sprague-Dawley rats aged 8-10 weeks were 
used in this study. The animals were housed with a 12/12-hour 
light-dark cycle and provided with standard feed and water. 
Four groups were formed with random selection: control 
(n=6), HI (n=6), THC (n=6), and THC+HI (n=6). The study was 
approved by the Istanbul University Animal Research Local 
Ethic Committee (2015/66). The HI group was given drinking 
water containing 10% fructose for 12 weeks, and THC was ad-
ministered intraperitoneally at 1.5 mg/kg for the last 4 weeks, 
according to the study method of Beydogan et al. [13]. On the 
last day of the study, all of the animals fasted overnight and 
body weight was recalculated. Anesthesia was administered 
before blood samples were taken.

Drugs
The THC product used in this study was THC-1098 from THC 
Pharm GmbH, Frankfurt, Germany. All other chemicals used 
were purchased from Merck KGaA, Darmstadt, Germany.

Glucose and insulin level measurement
The fasting blood glucose level was measured with a glu-
cometer using blood samples collected from the tail of the 
rats (Accu-Chek; Roche Diagnostics, Basel, Switzerland). The 
blood samples were centrifuged at 2000 g for 15 minutes and 
the serum insulin level was evaluated with an enzyme-linked 
immunosorbent assay commercial kit (Rat/Mouse EZRMI-13K; 
Merck KGaA, Darmstadt, Germany).

Experimental procedures for vascular assessment
Following administration of anesthesia with sodium thiopen-
tal, the experimental animals were sacrificed and the thoracic 
aorta was immediately removed. The aortas were kept in Kreb-
s-Henseleit solution (KHS; sodium chloride: 119 nM, potassium 
chloride: 4.70 nM, magnesium sulfate: 7 nM, water: 1.20 nM, 
potassium dihydrogen phosphate: 1.20 nM, calcium chloride: 
2.50 nM, sodium bicarbonate: 25 nM, glucose: 11.1 nM). The 
aorta was cut into 3-4 mm rings and fixed with 1 g resting ten-
sion in an isolated organ bath (4050; Ugo-basile, Gemonio, Italy) 
with 25 mL KHS, ventilated at 37°C (95% molecular oxygen and 
5% carbon dioxide). A force-displacement transducer (MP36; 
Biopack Systems Inc., Goleta, CA, USA) and integrated Tissue 
Bath Sysytem (ITBS08, Commat Ltd., Ankara, Turkey) were used 
to analyze the isolated aortic rings isometrically. After an hour of 
incubation, a noradrenaline (NA) concentration-response curve 
was determined by raising the concentration of NA (10–9–10–4 
mol/L) until there was no further increase in contractile force 
and maximal cumulative response was observed. Each dose 
was added following observation of a plateau response. After 
each aortic ring was submaximally (EC90 10–5) pre-contracted 
with NA, a cumulative relaxation graph for acetylcholine (ACh) 
(10–9–10–4 mol/L) was created. The thoracic aortic tissue was 
dried, measured, and weighed at the end of each experiment.
Agonist doses were expressed as base-10 logarithm (M) in 
the dose-response graph. The sensitivity of agonists was ex-
pressed as the negative logarithm of the molar concentration 
that produces the half-maximum effect (pD2 = -log EC50). The 
ACh relaxation responses were presented as the maximum 
percentage inhibition on NA-induced contraction (Inhmax %). 
The NA contraction responses were expressed as maximum 
response (Emax). Contractile-relaxation responses were calcu-
lated as a rise or fall of tension in milligrams per aorta (mg ten-
sion/mg wet weight=mg/mg ww).

Statistical analysis
The statistical calculations were performed using Prism 9.0.0 
software (GraphPad Software, San Diego, CA, USA). Statistical 
analyses were performed using two-way analysis of variance 
(ANOVA), followed by Tukey’s multiple comparison test for 
isolated organ bath experiments. pD2 (M), Emax and Inhmax data 
were calculated using non-linear regression analysis. Serum 
insulin level, glucose level, and body weight data were calcu-
lated using Kruskal-Wallis non-parametric ANOVA, followed 
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by the Mann-Whitney U test. All of the data were presented 
as the mean±SEM to display variations in groups. P<0.05 was 
considered statistically significant.

Results
Body weight
A comparison of the final body weight of all of the experimen-
tal groups is displayed in Figure 1. The body weight of all of 
the subjects was measured before and after THC treatment. 
There was no statistically significant difference in body weight 
in the control group or the HI group; fructose intake did not 
have a direct effect on the weight of the rats. However, there 
was a significant decrease in body weight of animals in THC 
group compared with the control and the HI group (p<0.01) 
and body weight also decreased in HI+THC group compared 
with the HI group (p<0.01).

Insulin and glucose levels
The serum insulin level of all of the subject groups is displayed 
in Figure 2. The serum insulin level increased in the HI group 
compared with the control group and the THC group, while 
THC administration decreased the insulin level in the HI+THC 
group (p<0.01).

The blood glucose level of the subjects is presented in Figure 
3. The blood glucose level was statistically significant in the 
control group compared with the HI, THC, and HI+THC groups 
(p<0.01, p<0.05). 

Noradrenaline contractile response
The NA contraction response pD2 and Emax values of all of the 
groups are displayed in Table 1. Comparison of the NA pD2 
values of the HI group (8.16±0.15 M) and the control group 
(7.76±0.32 M), and the HI+THC group (8.08±0.20 M) and the 
THC group (8.49±0.40 M) yielded no statistically significant 
difference. The Emax value was considerably lower in the THC 
group in comparison with the control group (339.01±43.25 
mg/mg ww) and the THC group (240.39±10.31 mg/mg ww) 

(p<0.01). Similarly, when the HI group (396.14±33.72 mg/mg 
ww) and the HI+THC group (255.76±17.23 mg/mg ww) were 
compared, the Emax response was considerably lower in the 
THC treatment group (255.76±17.23 mg/mg ww) (p<0.05).

Acetylcholine relaxation response
The endothelial-dependent relaxation response (pD2 and 
Inhmax %) in the rat aortic rings pre-contracted with NA (sub-
maximally, EC90) are shown in Table 2 and the ACh concen-
tration-dependent relaxation response is shown in Figure 4. 
The Ach pD2 value was significantly greater in the HI group 
(6.25±1.98 M) compared with the control group (5.87±0.74 M) 
(p<0.0001) and the HI+THC group (5.62±4.90 M) (p<0.0001). 
The ACh Inhmax value was significantly lower in the HI group 
(13.60±6.24%) in the comparison with the control group 
(93.60±0.16%) (p<0.0001), while the HI+THC group re-
sult (70.25±8.42%) was greater than that of the HI group 
(13.60±6.24%) (p<0.001). Vascular responses were better in 
the THC treatment group than in the HI group (p<0.05).

Discussion
HI, or an abnormally high level of insulin, has become more 
prevalent due to increased consumption of refined foods 

Figure 1. Body weight of experimental groups (n=6 for all groups). 
**p<0.01, THC group compared with Control and HI groups; 
##p<0.01, HI+THC group compared with Control and HI groups. HI: 
Hyperinsulinemic; THC: Delta9-tetrahydrocannabinol.
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Figure 2. Serum insulin level of experimental groups (n=6 for all 
groups). **p<0.01, HI group compared with Control group and 
THC group; ##p<0.01, HI+THC group compared with HI group. HI: 
Hyperinsulinemic; THC: Delta9-tetrahydrocannabinol.
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Figure 3. Blood glucose level of experimental groups (n=6 for 
all groups). ** p<0.01; * p<0.05, Control group compared with 
HI, THC, and HI+THC groups. HI: Hyperinsulinemic; THC: Delta9-
tetrahydrocannabinol.
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containing high fructose, and the associated cardiovascular 
changes are important risk factors that are becoming com-
mon all over the world. Cannabinoids have been shown to 
have a useful effect in diabetes treatment and its associated 
complications. In this study, THC, the principal psychoactive 

component of Cannabis sativa, was tested to examine vascular 
changes in the aorta ring of rats given high-fructose water. 
Although weight gain has been observed due to high con-
sumption of fructose in experimental metabolic disease mod-
els, there is not always a correlation between fructose intake 
and body weight [13]. Our results revealed no significant 
change in body weight due to fructose intake. 
The endocannabinoid system is one of the important neuro-
modulatory systems that influence appetite and food intake. 
Stimulation of the endocannabinoid system with synthetic 
or herbal-derived ligands such as THC typically leads to an 
increase in food intake in both humans and animals [14]. 
The CB1 receptor has been shown to mediate the effect of 
THC on nutritional intake and weight [15] and this effect has 
been suppressed by the CB1 receptor antagonist SR 141716 
(rimonabant) [16]. It has been observed that chronic THC in-
take decreased energy need in animals, suppressed nutrition, 
and caused weight loss [17]. In our study, THC did not lead to 
weight gain in any of the experimental animals; on the con-
trary, weight loss was observed. This may have been a result of 
the duration and dose of THC.
Recent research has indicated that a high-fructose diet can 
change certain metabolic conditions in humans and ex-
perimental models, causing diseases such as hypertriglyc-
eridemia, obesity, and high blood pressure, and facilitate the 
development of HI, insulin resistance, and hyperglycemia [18]. 
In our study, there was a meaningful increase in the insulin 
and glucose levels in the groups that were given fructose 
compared with the control group, but THC treatment did not 
significantly reduce the blood glucose level.
CB1 receptor signaling in adipose tissue and the liver has been 
reported to cause obesity and metabolic conditions, such as 
insulin resistance and dyslipidemia, by increasing fatty acid 
intake, lipogenesis, and adipogenesis [7]. It was reported in 
another study that CB1 receptor blockade reversed obesity-
induced insulin resistance [19]. Growing evidence in recent 
years has indicated that endocannabinoids alter insulin recep-
tor activity by affecting CB1 receptors expressed in beta cells 
[20]. In a study using the CB1 receptor antagonist ibipinabant, 
β-cell loss was reported to be reduced without affecting body 
weight [21]. It has also been established that insulin sensitiv-
ity in skeletal muscles is reduced by CB1 receptors using the 
target phosphoinositide-3-kinase-protein kinase B axis and 
the rapidly accelerated fibrosarcoma (Raf )-mitogen-activated 
protein kinase (MEK) 1-2-extracellular signal-regulated kinase 
1/2 pathways [22]. However, Beydogan et al. [13] found that 
the serum insulin level was reduced with cannabinoid recep-
tor partial agonist THC treatment. We found that the glucose 
level of the HI rats did not significantly change with THC treat-
ment, but THC regulated the increased insulin level in HI rats. It 
is clear that cannabinoids are potential therapeutic target for 
insulin resistance, but it is understood that not all the effects 
of cannabinoids on the insulin signal pathway occur through 
cannabinoid receptors.

Table 2. pD2 and Inhmax values for acetylcholine-induced 
relaxation responses

  Acetylcholine

 Inhmax (%)  pD2 (M)

Control 93.60±0.16  5.87±0.74

HI 13.60±6.24****  6.25±1.98****

THC 72.65±8.14  7.68±0.51

HI+THC 70.25±8.42****  5.62±4.90****

Values are mean±SEM, ****p<0.0001 Control group compared with the HI group, 
***p<0.001 HI group compared with the HI+THC group (n=6 for all groups). pD2 and 
Inhmax of ACh decreased in the fructose-induced HI group and improved with THC 
treatment. ACh: Acetylcholine, HI: Hyperinsulinemic, Inhmax: Maximum relaxation, 
pD2: Sensitivity, THC: Delta9-tetrahydrocannabinol

Table 1. pD2 and Emax values for noradrenaline-induced 
contraction responses

  Noradrenaline

 Emax (mg/mg ww)  pD2 (M)

Control 339.01±43.25  7.76±0.32 
HI 396.14±33.72   8.16±0.15
THC 240.39±10.31**  8.49±0.40
HI+THC 255.76±17.23*  8.08±0.20

Values are mean±SEM, **p<0.01 THC group compared with HI group and control 
group, *p<0.05 HI+THC group compared with HI group (n=6 for all groups). Emax: 
Maximum response, HI: Hyperinsulinemic, pD2: Agonist sensitivity, THC: Delta9-
tetrahydrocannabinol
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Figure 4. ACh relaxation response of experimental groups (n=6 
for all groups). *p<0.05; **p<0.01; ***p<0.001 HI group compared 
with Control group. #p<0.05 HI group compared with HI+THC 
groups. ACh: Acetylcholine, HI: Hyperinsulinemic, THC: Delta9-
tetrahydrocannabinol.
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PPARγ, a subtype of the nuclear receptor superfamily, has a 
significant impact on glycolipid metabolism and insulin resis-
tance. Recent studies have shown that PPARγ activation was 
very effective in alleviating the effects of T2DM [5]. Research 
has also shown that THC, which can be a PPARγ agonist, in-
creases the effects of insulin by decreasing the level of tumor 
necrosis factor alpha [23]. Safer insulin-sensitizing, selective 
PPARγ-agonist compounds have been developed in the last 
few years, since thiazolidinedione-group synthetic agonists 
used in T2DM treatment can result in cardiovascular risk, fluid 
retention, and hepatoxicity [24].

Cannabinoids have been shown to cause endothelium-de-
pendent relaxation [24, 25]. These results indicate that the 
ameliorating effect of THC against changes in both insulin re-
sistance and vascular responses may be conducted through 
PPARγ receptors. The receptor target mediating the endothe-
lium-dependent relaxing effect of cannabinoids in vessels has 
recently been shown to be PPARs [26].

There is a close relationship between an impaired insulin 
level and vascular contraction-relaxation responses. In this re-
search, we investigated the effect of THC to improve impaired 
contraction-relaxation responses in the aorta of rats as a result 
of HI induced with fructose. Our results demonstrated that 1.5 
mg/kg/day intraperitoneal THC administration for 4 weeks 
improved endothelial-dependent Ach relaxation responses 
in comparison with the HI group. Chronic THC administration 
improved the reduced relaxation responses and ACh pD2 in 
the aortic rings of rats with fructose-induced HI.

Conclusion
In this preclinical study, we demonstrated that chronic THC 
administration to HI rats decreased the insulin level with-
out weight gain. THC improved endothelial-dependent re-
laxation responses. THC application also had the beneficial 
effect of increased contractile responses to NA in HI rats. 
Chronic administration of THC did not lead to weight gain 
in rats, but longer use and higher doses may increase nu-
trient intake and cause weight gain, thereby worsening the 
prognosis of HI. The current results revealed possible posi-
tive effects of THC and altered vessel responses in an in vivo 
experimental HI model.
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