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Soluble FMS-like tyrosine kinase-1: An overview

Soluble FMS-like tyrosine kinase-1(sFLT-1) is the soluble 
variant of the Vascular Endothelial Growth Factor (VEGF) 

receptor-1, a protein tyrosine-kinase with anti-angiogenic 
characteristics. It was first discovered by Kendall and Thomas 
in 1993 [1]. VEGF is a physiological regulator of angiogenesis 
in the skeleton, growth of the embryo, and also involved in 
vasculogenesis, angiogenesis, and lymphangiogenesis during 
embryonic and postnatal development in reproduction [2].
sFLT-1 binds both PlGF and VEGF, thereby reducing their con-
centration in free form and inhibiting angiogenesis. It is there-
fore an important regulatory component of angiogenesis in 
various tissues within the body and implicated in numerous 
disease conditions with abnormal vascular growth.

sFLT-1 Structure
Kendall et al. [1] determined that alternative splicing of VEGF 
pre-mRNA produces two diverse products (Fig. 1):
VEGF-R1/ FLT-1 is the complete-length membrane-traversing 
receptor that facilitates VEGF mitogenic action promoting an-
giogenesis and sFLT-1 is a truncated soluble form of VEGF-R1 
without the transmembrane domain and consequent ab-
sence of mitogenic activity.
sFLT-1 has a unique 31 amino acid sequence on the C termi-
nal which is different from VEGF-R1. The latter has additional 
transmembrane and intracellular domains responsible for 
its VEGF binding activity. sFLT-1 also has a six N-terminal im-
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munoglobulin-like domain along with a site for binding PlGF 
and VEGF on the second domain from the N terminal [1]. There 
is a binding site for heparin made of ten basic amino acids in 
the third domain from the N terminal. The pI of sFLT-1 is 9.51, 
so at physiological status, it has a positive charge [3].

Isoforms of sFLT-1
According to the UniProt database, there are eight isoforms 
of the VEGF receptor 1 [4]. The VEGFR-1, sVEGFR-1(sFLT-1), 
and sFlt1-14 relate to isoforms 1, 2, and 3, respectively. Iso-
form 4 is additionally another extracellular soluble protein, 
smaller than sFlt1-14 and sVEGFR-1, and formed by prote-
olytic cleavage. Isoforms 5 to 8 are linked to the intracellu-
lar area of this receptor. Isoform 5 encompasses the entire 
tyrosine kinase area, while isoforms 6, 7, and 8 are truncated 
forms lacking various N-terminal regions of the tyrosine ki-
nase domain. The biological significance of isoforms 4 to 8 is 
at present unknown.

sFLT-1 Gene and mRNA Expression
The gene for sFLT-1 is positioned on chromosome 13q12.3, which 
is the long (q) arm of chromosome 13 at the position of 12.3. Holt 
et al. [5] identified a unique endogenous factor, Raver2, which 
furthers the production of sFLT-1. They localized Raver2 and PTB 
FLT pre-mRNA and evidenced that Raver2 enhances PTB’s link 
with FLT-1 pre-mRNA. They suggest that this promotes a specific 
type of RNA processing called intronic polyA activation resulting 
in production of the soluble variant of the receptor.

The same gene is responsible for the production of VEGFR1 
and sFLT-1-alternative splicing of the mRNA leads to produc-
tion of the two different receptor subtypes. The sequence 3' 
of the sFLT mRNA splice site (GUGAGC) nevertheless looks 
like an unprocessed donor site (GURAGU). The mRNA cod-
ing region distinctive to this cDNA has been confirmed to be 
present in vascular endothelial cells. Thus, sFLT mRNA arises 
from the absence of processing this potential splice site re-
sulting in a direct read-through of the contiguous intron 
sequence that can alternatively be removed to generate 
mRNA encoding the mitogenically functional membrane-
spanning FLT receptor.
Similar splice-site skipping of 3’ introns accounts for the 
generation of mRNAs that encode soluble forms of several 
other proteins including immunoglobulin heavy chains, in-
terleukin-5 (IL-5) receptor A subunits, and FGF receptors [6]. 
The competitive processing of alternative polyadenylylation 
sequences represents a general mechanism for generating 
soluble forms of membrane- bound receptors, regulating 
their expression and consequently modulating the biological 
responses mediated by these genes. An AATAAA polyadenyly-
lation consensus signal sequence identified in the 3’ non-cod-
ing region near the end of the 2.6-kb sFLT cDNA clone could, 
in part, regulate the FLT/sFLT switch [1].

Regulation of Gene Expression
Hypoxia is the trigger which releases copious amounts of 
sFLT-1 from monocytes or macrophages. This process is 
stimulated by granulocyte-macrophage colony-stimu-

Figure 1. Structure of sFLT-1 and its binding sites.
VEGF-R1 FLT-1 is the complete-length membrane-traversing receptor that facilitates VEGF mitogenic action promoting angiogenesis and sFLT-1 is a truncated soluble form 
of VEGF-R1 without the transmembrane domain and consequent absence of mitogenic activit. VEGF-R1: Vascular Endothelial Growth Factor receptor-1; sFLT-1: Soluble 
FMS-like tyrosine kinase-1.
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lating factor and is also dependent on hypoxia inducible 
factor (HIF)-2α [7]. Two other cytokines, namely, IL-4 in 
macrophages and IL-6 in endothelial cells were found to in-
crease the production of both the soluble forms. Geifman et 
al. [8] identified another signaling pathway indicating that 
hypoxia increased production of sFLT-1 involving activation 
of growth arrest, Gadd45a factor which causes DNA damage 
and also p38 phosphorylation.
Both VEGF-R1 and sFLT-1 are produced in endothelial cells 
while in non-endothelial cells especially the placenta, mainly 
the soluble forms, namely, sFLT-1 and sFlt1-14 are produced. 
Within the cytotrophoblasts of the placenta, an exposure to 
hypoxia results in production of both the soluble isoforms 
probably due to stabilization of HIF-1α [7]. Drugs such as 
ouabain, a cardiac glycoside, aspirin, and metformin decrease 
the production of the soluble forms in the cytotrophoblast [9]. 
Phorbol myristic acid is an activator of protein kinase C which 
increases the production of sFL-1 mRNA and the protein itself 
in endothelial cells [10]. Most importantly, the accumulation 
of VEGF-A can also stimulate the production of sFLT-1.

Physiological Roles of sFLT-1
Since sFLT-1 does not have the transmembrane domain, it is 
not bound to the cell membrane and therefore, is free to cir-
culate in the bloodstream from the site where it is secreted 
to the other sites where its action is exerted. sFLT-1 binds 
VEGF inhibiting its mitogenic activity (Fig. 2) on endothelial 
cells and negatively regulates angiogenesis in various tissues 
such as the liver, brain, and kidney. A necessary requisite for 
angiogenesis is destabilization of pericyte-endothelial cell 
interaction and an alteration in the perivascular cytoskele-
ton and modification of adhesions with the basement mem-
brane. This is effected by the soluble receptor which shifts 
α5β1 integrin signaling from a classical adhesion pathway 
to a more dynamic one [4].
Inhibition of VEGF function in vivo by sFLT could promote 
quiescence in confluent endothelial-cell monolayers, act as a 
feedback mechanism to terminate angiogenesis and vascular 

permeability, and prevent blood vessel growth into normally 
avascular tissues, such as cornea and hyaline cartilage. Eslani 
et al. [11] stated that sFlt-1 is expressed in the eye to maintain 
avascularity in the cornea.

sFLT-1 In Normal Pregnancy
Although small quantities of sFLT-1 are secreted by the mono-
cytes and endothelial cells, in pregnancy, the placenta re-
mains the major source [7]. sFLT-1 mRNA is strongly expressed 
in placenta and levels in serum decrease appreciably post-de-
livery of placenta.
A crucial aspect of successful implantation of the zygote 
within the uterine endometrium is the establishment of 
angiogenesis – the physiological process of growth of new 
blood vessels from previously existing microvasculature in-
volved in growth and repair.
In normal pregnancy, enormous quantities of VEGF are se-
creted by the macrophages at the Nitabuch’s stria of decidua 
during the first trimester of pregnancy [12]. This is where the 
process of vascular transformation is necessitated instead of 
angiogenesis. A balance between angiogenesis and vascular 
transformation is therefore necessary. Therefore, sFLT-1 may 
be involved in neutralizing the influence of VEGF on mater-
nal endothelial cells in the decidua. In a research conducted 
by us in normal pregnant women, sFLT-1 levels were ob-
served to be directly correlated to the gestational age, and 
increased with gestational age in early pregnancy [13]. A lin-
ear regression equation for predicting the sFLT-1 level based 
on the gestational age=282.57+94.23* (gestational age in 
weeks) was obtained in this study.
During placentogenesis, the extravillous cytotrophoblasts 
which are a unique type of fetal cells invade the uter-
ine spiral arteries. Due to this invasion, the epithelium of 
these arteries become more permeable to accommodate 
the augmented requirement of blood circulation during 
pregnancy. To achieve this, there is a decrease in adhesion 
molecules of the epithelium and an increase in those of the 
endothelium occurs which is called pseudovasculogenesis. 
sFLT-1 mRNA is produced by the villous trophoblast in sub-
stantial amounts all through pregnancy [12]. Since there is 
a dramatic increase in the size of the placenta and in con-
sequence that of the villous trophoblast in the course of 
pregnancy, it is to be expected that the overall sFLT-1 pro-
duction will increase.
sFLT-1 is produced by the trophoblastic cells of the placenta 
which are positioned between the mother’s blood vessels on 
one side and the umbilical vessels on the side of the fetus [14]. 
Thereby advocating that sFLT-1 traps and binds VEGF and PlGF 
forming a barricade in opposition to atypical vascular pene-
trability and aberrant angiogenesis, for instance the merging 
of foetal blood vessels to maternal capillaries. The trophoblas-
tic villi have an uninterrupted communication with maternal 
circulation within the placenta and therefore, the proteins 
produced there can be identified in maternal blood.

Figure 2. Action of sFLT-1 on VEGF and its receptor.
sFLT-1 binds VEGF inhibiting its mitogenic activity (Figure 2) on endothelial cells and 
negatively regulates angiogenesis in various tissues like the liver, brain and kidney. 
VEGF: Vascular Endothelial Growth Factor; sFLT-1: Soluble FMS-like tyrosine kinase-1.



120 Int J Med Biochem

The study by Lam et al. [14] in 2003 evaluated the roles of 
VEGF and its receptors in human embryo implantation. The 
results suggest that VEGF may be the essential angiogenic fac-
tor responsible for the implantation of human pregnancy and 
it may be a potential target for the treatment of EP. It has been 
demonstrated in animal models that VEGF plays a crucial role 
in pregnancy. Inhibition of VEGF action can completely block 
the implantation [2] or lead to embryonic lethality.
In the serum samples from non-pregnant women and males, 
no significant sflt-1 activity could be detected. Even if addi-
tional tissues produce sflt-1, their contribution to serum levels, 
at least in normal subjects, is significantly lower than that seen 
during pregnancy [15].
In a study by Wathén et al. [16], decreases in the levels of sFLT-
1 post a cesarean section were measured and they found the 
curve to be biphasic. According to their calculation, the half-
life was similar to total β-hCG which is roughly about 24–46 h. 
Typical of proteins, the elimination occurs in two phases: An 
initial rapid clearance probably from the intravascular space 
and a slower one possibly from the extravascular space. The 
route of elimination is unknown, but based on its molecular 
size, 110 kDa [1], it is likely to be mainly removed by the liver 
and/or the reticuloendothelial system.

sFLT-1 In Pathological Conditions (Table 1)
Large amounts of sFLT-1 were found in the fluid of non-heal-
ing wounds and chronic ulcers [17]. Increased plasma levels 
are noticed in patients with cardiovascular diseases, heart 
failure, and chronic kidney disease [18]. Its isoforms are ob-
served in varying stages of inflammation and may be deemed 
a marker of sepsis [19]. Acute pancreatitis and liver cirrhosis 
are other conditions with increased levels of sFLT-1. It is also 
being studied as a marker of atherosclerosis [20].
The findings from a familial high-risk for psychosis study 
demonstrated that sFLT-1 can predict longitudinal clinical and 
brain structural changes. Furthermore, their findings further 
support the hypothesis of altered microvascular circulation 
in schizophrenia and those at risk [21]. A study by Harris et 
al. [22] implicates this tyrosine protein kinase in Alzheimer’s 
disease. Due to its importance in normal growth and develop-
ment of the fetus, its role in abnormal and failing pregnancies 
has been greatly studied.

sFLT-1 in Abnormal Pregnancies
sFLT-1 has been found to regulate not only the physiological 
but also the pathological vascular changes in the female repro-
ductive tract. Habeeb et al. [23] stated that an abundance of 
sFLT-1 was seen in parallel to a poor response to gonadotropins 
in ovarian stimulation protocols. Independent of the cause of 
an early pregnancy failure, the premature, and excessive entry 
of maternal blood inside the placenta has two effects on the 
villous tissue. First, a direct mechanical effect with most of the 
villi becoming progressively embedded inside large intervil-

lous blood thrombi and secondly an indirect widespread O2-
mediated effect causing oxidative damage leading to major 
apoptosis and necrosis of the villous trophoblast [24]. Overall, 
the consequences are placental degeneration with complete 
loss of syncytiotrophoblast function and detachment of the 
placenta from the uterine wall. This mechanism is common to 
all miscarriages irrespective of the time at which it occurs in 
the first trimester depending on the etiology.
Yousif et al. [25] showed that O2 concentration in the placental 
bed blood is inversely related to sFlt-1 in early pregnancy. A 
decreased level of sFlt-1 in maternal serum before a complete 
miscarriage suggests that impaired placentation may be asso-
ciated with placental metabolic changes before the appear-
ance of clinical symptoms of miscarriage and these changes 
are modulated by an abnormal increase in O2 concentration 
inside the placenta after implantation.

sFLT-1 in Pre-Eclampsia (PE)
In 2003–2004, numerous investigators stated that an unchar-
acteristic raise in the level of serum sFlt-1 in expectant moth-
ers is associated with the degree of PE [26]. Furthermore, 
adenoviral transfer of the sFLT-1 gene to pregnant rats has 
shown to cause a disorder similar to PE [20]. The ratio of sFLT-
1 to PlGF was found to be increased in pre-eclamptic women 
in numerous studies [27]. sFLT-1 released from the placenta 
travels in the mother’s circulation to distant target organs 
and may be responsible for the multisystem endothelial dys-
function in PE [28].

Table 1: sFLt-1 in various clinical conditions

sFlt-1 in pathological conditions

Non healing wounds and chronic ulcers
Cardiovascular disease
Heart failure 
Chronic kidney disease
Alzheimer’s disease
Schizophrenia
Acute pancreatitis 
Liver cirrhosis

sFlt-1 in abnormal pregnancies

Miscarriages
Failing pregnancies
Pre-eclampsia
Ectopic pregnancy

sFlt-1 as a therapeutic agent

In Tumor metastasis
Diabetic retinopathy
Age-related macular degeneration
Diabetic nephropathy

sFLT-1: Soluble FMS-like tyrosine kinase-1
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The two major symptoms of preeclampsia are hypertension 
and proteinuria. Hypertension and proteinuria are also the most 
common adverse effects encountered in cancer patients treated 
with VEGF-neutralizing antibody [29]. Artificial expression of 
sFlt-1 using a vector in a pregnant rat model induced hyperten-
sion and proteinuria [30]. These facts strongly suggest that sFlt-1 
overexpression in PE is a crucial cause of its symptoms.
Podocytes in the glomeruli of the kidney secrete VEGF at phys-
iological levels and maintain the glomerular endothelial cells 
in a healthy state, producing urine without leakage of serum 
proteins. Suppression of VEGF secretion from podocytes re-
sults in severe proteinuria [31]. Thus overexpression of the 
VEGF-trapping molecule sFLT-1 may block podocyte-derived 
VEGF and induce glomerular endothelial damage resulting in 
proteinuria in PE. It can also affect the development of various 
kidney diseases such as diabetic nephropathy, lupus nephritis, 
renal transplant, and chronic kidney disease [31].
VEGF signals stimulate eNOS and increase the production of 
NO, a vasodilator in endothelial cells. Furthermore, VEGF is a 
strong vascular permeability factor. Thus, a decrease in both 
NO and permeability through VEGF trapping by sFLT-1 may 
cause hypertension. Blocking NO signaling was found to in-
crease serum sFLT-1 in a rat model of PE [32].
Expression of VEGF receptors is found to be up regulated by 
hypoxia by a HIF-1 dependent mechanism. Given that tro-
phoblasts are the main source of sFLT-1 in PE, viral or bacterial 
infection, or abnormal stress, such as hypoxia in the placenta, 
may induce these cells to overexpress sFLT-1 [33]. An sFLT-1 
blocking agent that is safer to both fetus and mother can be a 
useful tool to control PE.
Beside the short-term regulation by hypoxia and NO levels, 
genetic variation also influences sFLT-1 levels. Women with a 
history of PE showed increasing sFLT-1 up to 18 months post-
partum, advocating a genetic basis [34].
Interestingly, increased sFLT-1 was detected as early as 5 
weeks before onset of symptoms in preeclamptic women 
which means it can be used as a marker of the disease [35]. 
In another study, variation in sFLT-1 was noticed only in early 
onset PE whereas the late onset disease showed only a small 
decrease in PlGF [36]. Nevertheless, elevated sFLT-1 was also 
found to be related to non-preeclampsic intra-uterine growth 
retardation of fetus, curbing its utility as a biomarker for PE 
[37]. Muller et al. [38] state that the sensitivity and specificity 
of sFLT-1 were too less to aid in prediction of PE.
The gene for sFLT-1 is located on chromosome 13q12; the cor-
relation of fetal trisomy-13 with increasing rates of PE could be 
due to the extra copy of the gene. Primiparous women have 
higher baseline sFLT-1 which could cause the higher incidence 
of PE among them [39].

sFLT-1 in EP
Since the implantation of the EP at the tubal site is unfavor-
able, it provides an abnormal environment with insufficient 

nutrition and oxygen to the developing embryo. This hypoxic 
environment increases the expression of VEGF in the ectopic 
site. This pro-angiogenic growth factor and its receptors were 
increased in production in EP [40]. It has been identified that 
VEGF in serum of women with EP is elevated in comparison 
with intrauterine pregnancy [40]. There is also a reduction in 
the levels of sFLT-1 in EP women, but the exact mechanism 
behind the decline in sFLT-1 is unclear. It may be either due 
to the binding of sFLT-1 receptor to the excessively expressed 
VEGF or a decrease in sFLT-1 production or both. Measure-
ment of sFLT-1 therefore aids in identifying implantation of 
the embryo at an ectopic site and can therefore be used as a 
biomarker for EP.
Daponte et al. [41] suggest that a combined measurement of 
sflt-1 along with PlGF or a ratio of the two can aid in the diag-
nosis of an EP and differentiate it from missed abortion. The 
genetic expression of the above said that markers were found 
to be impaired in the trophoblastic cells of pregnant women 
with EP and missed abortion. Martínez-Ruiz et al. [42] state 
that in a comparison study of PlGF, sflt-1 and progesterone as 
markers for EP, sflt-1 had the highest potential to diagnose an 
EP and also to differentiate it from a missed abortion with a 
sensitivity of 84.5% and specificity of 86.3% . They proposed 
a cutoff value of <93 pg/mL, to differentiate between ectopic 
pregnancy and abnormal IUP. They also suggest that a com-
bination of sflt-1 with progesterone may improve the diag-
nostic accuracy. In a research study on this novel biomarker 
conducted by us, the median sFLT‑1 level in EP was 419 pg/ml 
which was significantly lower than that in normal pregnancy 
(898 pg/mL). Receiver operating characteristic curve analysis 
in our study showed that at a cutoff of 623 pg/mL, sFLT‑1 was 
able to distinguish an EP from a normal intrauterine pregnancy 
with a sensitivity of 98.6% and a specificity of 90.7% [12].

sFLT-1 as a Therapeutic Agent
Since disease-related neovascularization, such as tumor an-
giogenesis, is mediated by VEGF, exogenous sFLT could be 
a therapeutically useful agent for specifically and efficiently 
inhibiting pathological blood vessel growth and, perhaps, 
blood-borne tumor metastasis [43].
Anti-VEGF drugs are used along with laser ablation to treat 
patients with diabetic retinopathy. These drugs have short 
half-lives in the vitreous of the eye resulting in the need for 
frequent intravitreal injections. To improve the intravitreal 
half-life of anti-VEGF drugs, such as the VEGF decoy receptor 
sFlt-1, multivalent bioconjugates of sFlt-1 grafted to linear 
hyaluronic acid chains termed mvsFlt are being studied [44]. 
It is also being currently tested in the treatment of age-related 
macular degeneration [45].
Bus et al. [46] report that normalizing VEGF-A levels with sFLT-
1 might be a viable approach for treating individuals with 
existing diabetic nephropathy by reducing endothelial acti-
vation, glomerular macrophage infiltration, and glomerular 
inflammation, thereby reversing kidney damage.
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Conclusion
The role of sFLT-1 in pathological angiogenesis has gained im-
portance due to its action as a VEGF sink and may also be due 
to the inhibition of VEGFR-1 dimerization and signaling. Hy-
poxic signaling regulates the expression of this soluble recep-
tor, and due to the absence of a transmembrane domain, it is 
carried in circulation to exert effects on various target organs 
such as heart, liver, brain, and kidney. The main source of sFLT-
1 in pregnancy is the placenta and plays a major role in es-
tablishment of a balance between angiogenesis and vascular 
transformation. The interaction of sFLT-1 and its other isoform 
sFLT1-14 and their role in the regulation of angiogenesis is be-
ing studied to develop new therapeutic strategies to target 
these receptors in various diseases.
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