## INTERNATIONAL JOURNAL OF

# MEDICAL BIOCHEMISTRY

DOI: 10.14744/ijmb.2025.60973 Int J Med Biochem 2025;8(4):272–281

# Research Article



# Tau protein expression and phosphorylation in a glucoserepressed yeast model: Insights into the cancer-alzheimer's disease link

Merve Yilmazer, Semian Karaer Uzuner

Department of Molecular Biology and Genetics, Istanbul University Faculty of Science, Istanbul, Türkiye

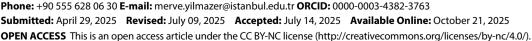
#### **Abstract**

**Objectives:** The microtubule-associated protein tau, responsible for stabilizing microtubules, plays a role in the pathology of neurodegenerative diseases called tauopathies, including Alzheimer's disease. In Alzheimer's disease, neurofibrillary tangle formation is observed as a result of tau hyperphosphorylation. Although it is known that tau protein plays a role in many cellular processes, all of its functions have not yet been elucidated. The inverse relationship between Alzheimer's disease and cancer has been a topic of research that has attracted attention in recent years. In addition, the role of tau protein in cancer has also gained importance with the determination of its direct relationship with DNA. In particular, the negative correlation between Alzheimer's disease and cancer points to two extremes of a common mechanism. Discovering a common molecule or pathway will allow understanding the cause of both diseases and developing treatments.

**Methods:** In this study, we obtained a cell model that mimics cancer metabolism by creating aerobic glycolysis-like conditions with glucose repression in *S. pombe* cells heterologously expressing human tau protein. We examined tau protein expression and phosphorylation (S262, S396 and S404) and various cellular processes (glucose metabolism, stress response, ER stress, autophagy, 20S proteosome activity, intracellular oxidation) at the molecular level in model cells.

**Results:** Under aerobic glycolysis-like conditions, we observed an approximately 2-fold increase in tau protein expression. In addition to this increase, we determined that the amount of phosphorylation at S396 residue of tau protein was decreased, while phosphorylation at S262 and S404 residues was increased.

**Conclusion:** These findings suggest a potential divergence in tau regulation under altered metabolic conditions, warranting further investigation.


**Keywords:** Cancer, glucose repression, heterologous expression, tauopathy, tau protein

**How to cite this article:** Yilmazer M, Uzuner SK. Tau protein expression and phosphorylation in a glucose-repressed yeast model: Insights into the cancer-alzheimer's disease link. Int J Med Biochem 2025;8(4):272–281.

Microtubules play a role in morphogenesis, cell division, intracellular transport of macromolecules and organelles, and motility [1]. These processes occur through dynamic restructuring of microtubules mediated by microtubule-associated proteins such as tau. Tau protein is responsible for the stabilization of microtubules [2]. There is great interest in tau protein because it plays a major role in neurodegenerative diseases referred to as tauopathies, including Alzheimer's disease

(AD) [3]. There is increasing evidence that tau protein, in addition to its microtubule stabilizing function, is implicated in many significant signaling pathways, including proliferation, morphogenesis, and cell differentiation [4]. A lesser-known property of tau is its ability to bind to cancer-associated protein kinases. This suggests that tau has a potential role in regulating microtubule-independent cellular pathways [3]. It has also been determined that tau protein can bind to nu-

**Address for correspondence:** Merve Yilmazer, MD. Department of Molecular Biology and Genetics, Istanbul University Faculty of Science, Istanbul, Türkiye







cleic acids [5]. Tau has been suggested to be a DNA protector, specifically by preventing stress-induced DNA breaks [6, 7].

Over 55 million individuals globally suffer from dementia, with AD constituting 60-70% of these instances. The global prevalence of Alzheimer's disease is projected to surpass 138 million by 2050 [8]. Another leading disease with a high mortality rate is cancer. Approximately 10 million deaths attributed to cancer were reported globally in 2020, along with 19.3 million newly diagnosed cases of cancer. [9, 10]. In AD, alterations in behavior and cognitive impairments linked to neurodegeneration typically manifest around a decade following the beginning of protein pathy. Its two characteristic features are AB plaques, and neurofibrillary tangles caused by tau hyperphosphorylation [11]. Cancer is a disease in which some cells uncontrolled divide by genetic mutations and they spread to other parts of the body. Brown and colleagues define cancer as a disease characterized by the uncontrolled multiplication of altered cells that undergo evolution through natural selection [12]. Multiple epidemiological studies indicate a negative correlation between cancer and AD [13]. This intriguing correlation is limited to certain types of cancer and neurodegenerative diseases. However, the underlying mechanisms of the two diseases are very different. While cancers evade cell death, neurodegeneration leads to cell death. As a result, it is possible that people with a neurodegenerative disease might have a lower likelihood of developing specific kinds of cancer, and the opposite might also be true [14]. Even though the underlying physiological processes of cancer and AD have been extensively researched, they are not yet distinctly understood [10].

Dysregulation of cellular energy metabolism is one of the hallmarks of cancer [15]. The Warburg effect refers to the transition from aerobic respiration to aerobic glycolysis, resulting in the production of lactate from glucose as the end-product. Warburg reported that even when oxygen is sufficient in an environment, cancer cells generally use glucose via glycolysis rather than oxidative phosphorylation [16]. Cancer cells typically exhibit increased glycolysis and diminished oxidative phosphorylation. While this long-term metabolic reprogramming is known as the Warburg effect, the short-term, reversible alteration of this metabolic process is known as the Crabtree effect [17]. The Warburg effect provides an advantage for cancer cells to survive and progress. In order to achieve high aerobic glycolysis rates, some types of cancer cells are induced to possess specific isoforms of glycolytic enzymes [18]. This metabolic adaptation helps cancer cells to proliferate and become more invasive. The relationship between high glucose and cancer development is still being investigated [19].

Glucose is the preferred carbon source for most living cells, and glucose metabolism provides the energy necessary for cell survival [20]. In yeast, glucose can induce the expression of various genes encoding some glucose transporters, ribosomal proteins, and glycolytic enzymes, by a process known as glucose induction. At the same time, the expression of numerous genes involved in respiration, gluconeogenesis, and the

utilization of alternative carbon sources can be suppressed, in the process named glucose repression. Yeasts are easy to use as models in studies examining glucose perception and signal transduction because of their similarity to complex multicellular eukaryotes in terms of glucose metabolism. Although yeast cells can use a wide variety of carbon sources, the presence of abundant glucose suppresses the utilization of alternative carbon sources, cellular respiration, and gluconeogenesis [21]. Schizosaccharomyces pombe, the fission yeast, is a single-celled model organism that can be used in studies on glucose sensing, intracellular signaling, and signal response processes. It shows high similarity with multicellular eukaryotic organisms in terms of molecular processes [22, 23].

Genes involved in various processes in human have orthologs in *S. pombe*, and *S. pombe* has 1514 orthologous transcripts (proteins and ncRNAs) associated with human diseases [24, 25]. Phosphorylation of tau protein, which plays a role in various diseases, is carried out by glycogen synthase kinase 3 beta (GSK-3 $\beta$ ), cyclin-dependent kinase 5 (CDK-5), and cAMP-dependent protein kinase A (PKA) and the orthologous of the human GSK3 $\beta$  gene, which is the major kinase in the phosphorylation of tau protein, exists in the *S. pombe* genome [26–28]. Moreover, in our previous studies, we showed that human tau protein is phosphorylated in the *S. pombe* model, and we detailed several cellular processes [29, 30].

In this study, based on the inverse correlation seen in cancer and neurodegenerative diseases, we investigated the relationship between tau protein and the aerobic fermentation process observed in cancer, which we mimicked by glucose repression metabolism in yeast. We hypothesize that one of the factors affecting the dysregulation of glucose metabolism in neurodegenerative diseases and cancer may be the tau protein, which stands out with its role in microtubule stabilization and has a potential effect on glucose metabolism. In the present study, the conditions of glucose repression in S. pombe were referred to as "aerobic glycolysis-like state". For this purpose, we cultured *S. pombe* cells heterologously producing human tau protein under high glucose conditions (5%) to create glucose-repression and mimicked aerobic fermentation in cancer cells. We studied various processes at the molecular level in model cells with aerobic glycolysis-like metabolism in the presence of tau protein. In our model cells, a decrease in stress response was seen, as in cancer cells. We determined that under aerobic glycolysis-like conditions, the expression of tau protein in cells increased approximately 2-fold. Additionally, we observed a decrease in the phosphorylation level at the S396 site of tau protein and an increase in the phosphorylation levels at the S404 and S262 regions. Contrary to expectations under aerobic glycolysis-like conditions, the increase in tau level and the decrease in hexokinase, which plays a role in glycolysis, suggested that tau protein has a greater role in glucose metabolism than is known. The findings suggest that the inverse relationship between neurodegenerative diseases and cancer may be due to differences in the phosphorylation level of tau protein, which plays a role in

| Table 1. Primer sequences used in real-time PCR |                              |                               |         |
|-------------------------------------------------|------------------------------|-------------------------------|---------|
| Gene                                            | Forward Primer               | Reverse Primer                | Tm (°C) |
| gpdh                                            | 5' ggtgacaaccactcctccat 3'   | 5' tcaacaacacggtgggagta 3'    | 55      |
| mapt                                            | 5' caagtgtggctcaaaggataat 3' | 5' ggtttatgatggatgttgcctaa 3' | 55      |
| hxk2                                            | 5' caacaaggactttgcccaat 3'   | 5' aaggtgtcgctctcctttga 3'    | 55      |
| fbp1                                            | 5' gtatggtgcttcggctcatt 3'   | 5' ttcatgtttcgatgggtcaa 3'    | 55      |
| sod1                                            | 5' attggccgtaccattgtcat 3'   | 5' gacaccacaagcgttacgtg 3'    | 55      |
| ctt1                                            | 5' atcctcaatccgaccacttg 3'   | 5' aacgtcggtaatttcgtcca 3'    | 55      |
| ire1                                            | 5' attctcgacattcttcgggt 3'   | 5' aacttgtgaatccgtctggt 3'    | 55      |
| atg14                                           | 5' tcaccctagtttactctcaaca 3' | 5' cggcaaatgtccataaaaactc 3'  | 55      |
| gsk3                                            | 5' gatgcttctcctcgtcatt 3'    | 5' catcaagtttcacgggtaaag 3'   | 55      |
| pp2a                                            | 5' tattgttatcgctgtggtaatc 3' | 5' ggtgtccttcgagctatt 3'      | 55      |

the molecular mechanisms of both diseases, or to an as-yet-unknown function of tau protein in glucose metabolism.

## **Materials and Methods**

#### Yeast strain and culture conditions

In the present study, we used *S. pombe* cells (pMS-mapt) that produce human tau protein, which we obtained in our previous study [29]. pMS-mapt cells are auxotrophic for guanine and carry the human *MAPT* gene in the pSGP572 plasmid. pSGP572 contains the *ura4* marker gene, and the *GFP* gene at the 3'-terminal in the cloning site. So, the tau protein produced is a fusion protein with GFP. The *MAPT* and *GFP* genes are under the control of the *nmt* promoter, which is an inducible promoter and is repressed by thiamine [31].

In this study, we investigated the relationship between aerobic fermentation conditions and tau protein. Firstly, tau protein production was induced in pMS-mapt cells [24], then these cells were grown under different glucose conditions. For this purpose, cells were grown in standard EMM (1% glucose) medium containing thiamine (15  $\mu$ M) and guanine (50 mg/L) at 30°C for 24 hours. Then, the cells were washed with PBS and cultured in standard thiamine-free EMM medium with guanine for 20 hours. After incubation, cells were washed with PBS and cultured in EMM containing different concentrations of glucose (3% and 5%) at 30°C for 4 hours.

Cell densities of pMS-mapt cells were measured spectrophotometrically at 600nm wavelength for 32 hours, and their growth under different conditions were compared. Cells grown under different glucose concentration conditions were examined under the microscope.

#### **Gene expression analysis**

After cells collected, total RNA isolation was performed by using "Thermo Scientific GeneJET RNA Purification Kit", according to the manufacturer's instructions with a minor modification. Cells in PBS were mechanically homogenized by using glass beads. After RNA isolation, cDNA was synthesized from 2 µg of total RNA by using a "Roche Transcriptor High Fidelity cDNA Synthesis Kit", according to the manufacturer's instructions.

We examined the expression level of genes related to various cellular mechanisms, including glucose metabolism (hxk2, fbp1), stress response (sod1, ctt1), ER stress (ire1), autophagy (atg14), and regulators of tau phosphorylation (gsk3, pp2a). Additionally, mapt gene expression was also examined.

Real-Time PCR was performed using "ThermoScientific Applied Biosystems PowerUp SYBR™ Green PCR Master Mix" kit and the primers, which we used in our previous study, listed in Table 1 [24]. Pairs of primers were designed using the "IDT PrimerQuest Tool". S. pombe gapdh gene was used as the reference gene. We applied the Pfaffl equation to analyse the relative expression levels of genes and we used gapdh gene expression levels for normalization [32]. All experiments were performed in three biological and technical replicates.

#### **Immunoblotting analysis**

Protein extraction from cells grown under different glucose concentration conditions was performed according to the method of Forsburg and Rhind (2006) with minor modifications [31]. The cells were mechanically homogenized by vigorous shaking using glass beads and lysis buffer (150 mM NaCl, 1mM PMSF, 0.5% (w/v) Nonidet-P40, 5 mM EDTA 50 mM Tris). SMART™ bicinchoninic acid (BCA) protein assay kit (iNtRON Biotechnology) was used to quantify total protein. Equal amounts of protein (30 µg/well) was loaded on 10% SDS-PAGE, and transferred to PVDF membrane (Thermo Fisher Scientific). After blocking, the membrane blots were incubated overnight with the following primary antibodies: Anti-tau rabbit IgG (1/1000 dilution, Tau Rabbit mAb, Abclonal) and anti-phospho-tau (Ser396) rabbit IgG (E178) (1/1000 dilution, ab32057, Abcam), phospho-tau S404 Rabbit mAb (1/1000 dilution, AP1378 Abclonal) and phospho-tau S262 Rabbit pAb (1/1000 dilution, AP0397 Abclonal). Anti-GAPDH mouse IgG (1/2500 dilution, MA5-15738 Invitrogen) was used as internal control. The washed membranes were incubated with HRP-linked secondary antibody (1/5000 dilution anti-rabbit HRP Goat Anti-Rabbit IgG, Abclonal). Following washing, the blots were visualized using SuperSignal West Pico PLUS ECL reagent (Thermo Fisher Scientific). Immunoblots (heterologous MAPT protein levels) were imaged

using the ChemiDoc XRS system (BioRad). We performed quantification by using ImageLab 6.0.1 software (Bio-Rad).

## Measurement of 20S proteasome activity

We determined 20S proteasome activity as suggested by Reinheckel et al. [33]. After protein extraction from grown cells under stated conditions, we diluted protein concentration to 50  $\mu$ g/mL with assay buffer (50 mM Tris, 20 mM KCl, 0.5M DTT, 5 mM CH3(COO)2). To measure peptidase activity, we added 99  $\mu$ L assay buffer and 1  $\mu$ L Suc-Leu-Leu-Val-Tyr-AMC (Sigma) (stock 40 mM) to 100  $\mu$ L of diluted protein sample. After 1 h incubation at 37°C, the reaction was stopped by adding an equal volume of cold ethanol and 1.6 mL of 125 mM sodium borate buffer (Na2B4O7.10H2O, pH 9.0). Then, we measured 20S proteasome activity by a spectrofluorometer plate reader (ex: 390nm, em: 470 nm).

#### **Determination of intracellular oxidation level**

We determined the intracellular oxidation level as recommended by Inoue et al. [34]. In this method, intracellular oxidation level is measured by conversion of DCFH-DA (2',7' dichlorofluorescein diacetate) to the fluorescent compound 2',7'-dichlorofluorescein. pMS-mapt cells grown in EMM media containing guanine and different glucose concentrations (3%, 5%) were centrifuged for 5 minutes at 3000 g, and cells were dissolved in 1 mL EMM media with guanine. 40 µM DHCF-DA (Sigma) solution dissolved in ethanol was added and incubated at 30°C for 1 h, and the samples were washed with PBS. We kinetically measured intracellular oxidation level with a spectrofluorometer plate reader (Bio-tek FLx800) with excitation and emission wavelengths of 490 and 524 nm.

## **Imaging by microscopy**

*S. pombe* cells grown under the stated conditions were fixed using 10% formaldehyde, and the cells were washed with PBS. Then, cells were examined under the microscopy (Olympus BX53).

#### Statistical data

We expressed all of our data as mean±SD. We used GraphPad Prism 9 software for statistical comparisons based on Student's t-test. The value of p<0.05 was considered statistically significant.

## Results

## Microscopic examination of the cells

We examined pMS-mapt cells grown under different glucose concentrations under the microscope, and observed morphological differences in cells grown under aerobic glycolysis-like conditions for 4 hours (Fig. 1a). Additionally, the absorbance graph of cell cultures measured every two hours at 600 nm wavelength for 32 hours is given in Figure 1b.

## Aerobic glycolysis-like conditions

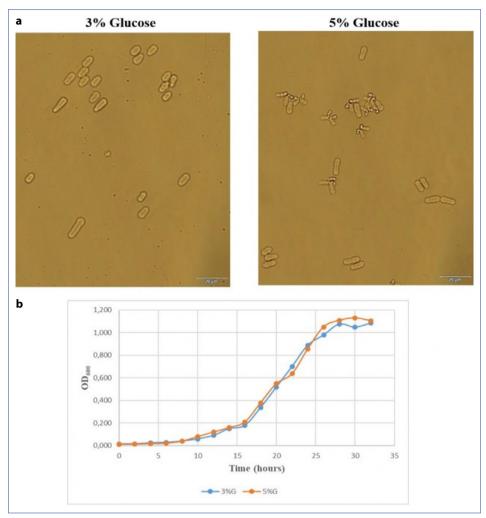
When pMS-mapt cells grown under standard glucose concentration conditions were compared with cells under aerobic

glycolysis-like conditions, a 3.58-fold decrease in the expression of the *hxk2* gene, which encodes the hexokinase 2 enzyme that plays a role in glycolysis in glucose metabolism, was observed under aerobic glycolysis-like conditions. A 4.52-fold decrease was observed in the expression of the *fbp1* gene, which encodes the fructose-1,6-bisphosphatase 1 enzyme that plays a role in gluconeogenesis under aerobic glycolysis-like conditions (Fig. 2).

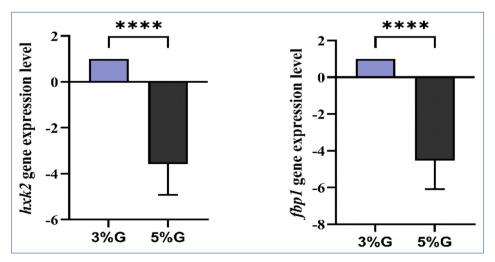
#### Tau protein and its phosphorylation

When the expression of tau protein in cells grown under standard and aerobic glycolysis-like conditions was examined by western blot analysis, an increase in total tau was observed under repression conditions, consistent with gene expression analysis. However, it was determined that the phosphorylation level in the S396 region of the tau protein was lower in cells grown under aerobic glycolysis-like conditions, while the phosphorylation level in the S262 and S404 regions of the tau protein was higher in cells grown under aerobic glycolysis-like conditions (Fig. 3a).

Under aerobic glycolysis-like conditions, *MAPT* gene expression increased 2.68-fold. However, the expression of the *gsk3* gene, which is responsible for the phosphorylation of tau protein and encodes the glycogen synthase kinase 3 enzyme, decreased 2.67-fold. In addition, the expression of the *pp2a* gene, which encodes the protein phosphatase 2a enzyme that removes phosphate groups from the tau protein, decreased 2.78-fold (Fig. 3b).

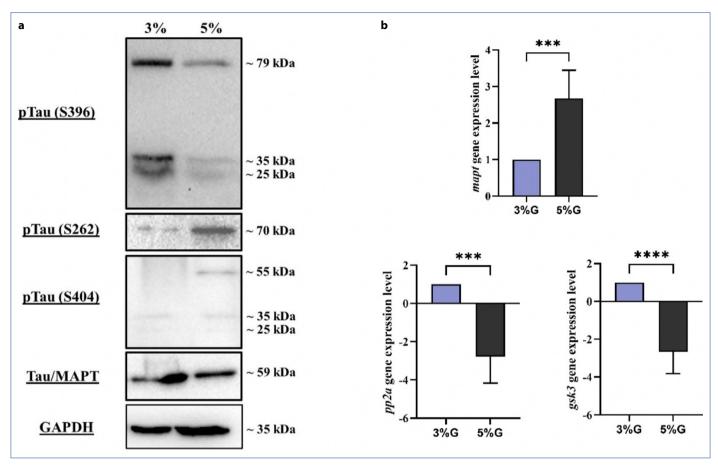

#### Cellular stress response

When the intracellular oxidation level was examined, a significant 1.86-fold increase was observed under aerobic glycolysis-like conditions (Fig. 4a). The expression of *sod1* and *ctt1* genes, which encode superoxide dismutase and catalase enzymes that play a role in the stress response in the cell, decreased 1.68 and 3.39 times, respectively (Fig. 4b).


Under aerobic glycolysis-like conditions, 20S proteasome activity, one of the pathways responsible for the degradation of proteins in the cell, was found to be 10% higher than standard conditions (Fig. 5a). When the expression of the *atg14* gene, which is related to autophagy, another degradation pathway, was examined, no significant change was observed under aerobic glycolysis-like conditions. The expression of the *ire1* gene, a marker of endoplasmic reticulum stress, decreased 2.14-fold under glucose suppression conditions. (Fig. 5b).

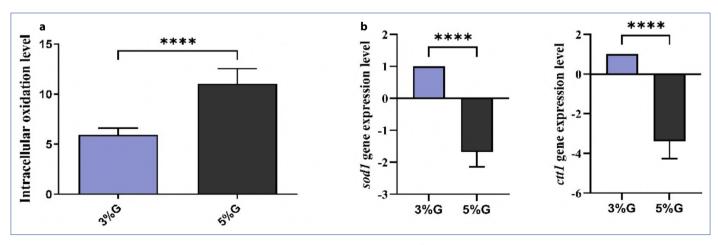
### **Discussion**

In recent years, interest in the relationship between Alzheimer's disease and cancer has increased. There are studies showing that the risk of developing cancer decreases in Alzheimer's patients and, conversely, the risk of developing AD decreases in cancer patients [10, 13, 35, 36]. In their study, Musicco and colleagues reported that the risk of cancer was




**Figure 1.** Growth and imaging of pMS-mapt cells under different conditions. (a) Microscope images of pMS-mapt cells grown under different glucose concentrations (40X magnification and bar represents 20  $\mu$ m). (b) Growth curves of pMS-mapt cells grown under different glucose concentrations.



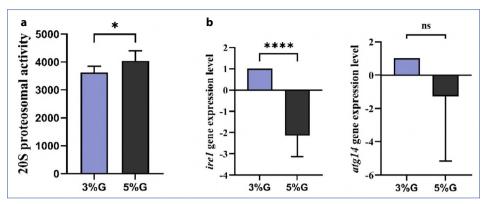

**Figure 2.** Expression levels of *hxk2* and *fbp1* genes related to glucose metabolism in pMS-mapt cells grown at different glucose (G) concentrations (3%G, 5%G).

Data (mean  $\pm$  SD) was derived from three independent experiments and analyzed using unpaired Student's t-test (\*\*\*\*p<0.0001).



**Figure 3.** Indication of tau protein expression and phosphorylation in pMS-mapt cells grown under different conditions. (a) Membrane images as a result of western blot of total tau and phosphorylated tau protein (S262, S396 and S404) in pMS-mapt cells. (b) Expression levels of the *MAPT* gene encoding tau protein and the *gsk3* and *pp2a* genes encoding glycogen synthase kinase 3 and protein phosphatase 2a, which are responsible for the phosphorylation and dephosphorylation of tau protein.

Data (mean±SD) was derived from three independent experiments and analyzed using unpaired Student's t-test (\*\*\*p<0.001; \*\*\*\*p<0.0001). SD: Standard deviation.




**Figure 4.** Intracellular oxidative stress response in pMS-mapt cells grown under different conditions. (a) Intracellular oxidation level in cells (b) Expression levels of stress response genes *sod1* and *ctt1*.

Data (mean±SD) was derived from three independent experiments and analyzed using unpaired Student's t-test (\*\*\*\*p<0.0001).

halved in AD patients and the risk of AD in cancer patients was reduced by 35% [37]. Although the pathophysiological mechanisms of both cancer and AD have been widely stud-

ied, they have not been elucidated. However, an inverse relationship between them is noticed. It has been determined that patients with AD have a 61% lower risk of cancer [10].



**Figure 5.**20S proteasome activity in pMS-mapt cells grown under different conditions. (a) 20S proteasome activity in cells (b) Expression levels of ire1 genes, which play a role in ER stress response, and atq14 genes, which play a role in autophagy.

Data (mean±SD) was derived from three independent experiments and analyzed using unpaired Student's t-test (\*p<0.05; \*\*\*\*p<0.0001). ns: Non-significant.

Tau protein is recognized for its involvement in neurodegenerative disorders. Research indicates that Tau may contribute to the advancement of several tumors and the resistance to cancer therapies [3]. Numerous studies have documented abnormal levels of tau in cancer cells of the brain, breast, stomach, and prostate [38]. Moreover, the level of tau expression has been associated with resistance to anti-microtubule drugs in cancer [39, 40]. Gargini and colleagues showed that higher levels of MAPT were inversely correlated with glioma aggressiveness [41].

Aerobic glycolysis (Warburg effect) is observed in cancer cells under high glucose conditions. In some types of cancer, glycolytic enzymes are stimulated to achieve high rates of aerobic glycolysis [18]. Glycolysis is promoted, and this metabolic adjustment enables cancer cells to reproduce and invade more rapidly. This strengthens the competition between cancer cells with normal cells [19].

Yeasts also prefer fermentation despite the presence of oxygen, similar to cancer cells, when there is plenty of glucose in the environment. Additionally, the expression of numerous genes that play a role in gluconeogenesis and respiration, the use of alternative carbon sources, and stress response pathways are suppressed in cells [21, 41].

There are both similarities and differences between aerobic glycolysis, where cancer cells turn to glycolysis even in the presence of oxygen (the Warburg effect), and processes where yeast cells prefer fermentation over cellular respiration in the presence of high glucose and oxygen (the Crabtree effect). In both cancer cells and yeast, this fermentative metabolism is associated with rapid growth and proliferation [17]. In both processes, fermentation occurs in an oxygenated environment; however, the end products are lactate (resulting from aerobic glycolysis) or ethanol (resulting from fermentation). Additionally, aerobic glycolysis and fermentation, glycolysis is rapid, and mitochondrial respiration is repressed. Besides their similarities, one of the most important differences is that the Warburg effect is permanent in cancer cells, but in yeast, when glucose is depleted in the environment, aerobic respiration be-

gins [42]. Santos and Hartman (2019) mimicked the Warburg effect by repressing respiration in the presence of glucose in *S. cerevisiae*. They examined the effects of doxorubicin used in chemotherapy in a yeast model and reported that glucose-repressed yeasts could be a suitable model for cancer research [43]. Although yeast, a single-celled organism, cannot fully provide the Warburg effect, it has the potential to elucidate cancer mechanisms due to the similarities between the processes.

In *S. pombe*, glucose is sensed by G protein-coupled receptor (GPCR), and signal transduction occurs via cAMP-dependent protein kinase A (PKA) [22, 44]. Glucose repression signaling represses *fbp1* gene expression via activation of the cAMP-dependent PKA pathway [45]. In our study, under aerobic glycolysis-like conditions, the expression of the *fbp1* gene encoding the fructose-1,6-bisphosphatase-1 enzyme that plays a role in gluconeogenesis was repressed.

Hexokinase-2 enzyme is encoded by the *hxk2* gene and is a rate-limiting enzyme that functions in the first step of the glycolytic cascade [19]. Hxk2 is an important enzyme in glucose repression. Under high glucose conditions, PKA causes hyperphosphorylation of Rgt1, followed by expression of the *hxk2* gene [46, 47]. In our study, transcription of the *hxk2* gene was unexpectedly decreased under aerobic glycolysis-like conditions in pMS-mapt cells. This may be due to the increase in the expression of the *MAPT* gene.

When total tau and the phosphorylation status of tau in the S262, S396, and S404 regions were examined by immunoblot analysis, aerobic glycolysis-like caused an increase in the expression of tau protein, while a decrease in phosphorylation was observed at S396 residue. Tau phosphorylation at S396 and S404 residue is one of the earliest events in AD [48, 49]. We observed that under aerobic glycolysis-like conditions, the increase in *MAPT* gene expression in cells is consistent with the increase in tau protein. However, under aerobic glycolysis-like conditions, higher phosphorylation occurred at residues S262 and S404 of tau protein. Tau phosphorylation at sites such as Ser262 in the proline-rich region and Ser396/404 at the edges of the microtubule binding

site induces conformational change of tau protein and weakens the binding of tau protein to microtubules [50]. Full-length tau has 85 potential phosphorylation sites [51]. Since only three phosphorylation sites (S262, S396, and S404) were analyzed in the present study, our interpretation remains limited. Future studies should include additional AD-relevant phosphorylation sites to better assess tau modification patterns.

Glycogen synthase kinase-3 (GSK3) is a protein kinase composed of GSK3α and GSK3β subunits that phosphorylates a large number of substrates. Increased GSK3 expression has been seen in the brains of AD patients and models. GSK3 directly promotes tau phosphorylation, modulates amyloid precursor protein (APP) breakage, results in AB production, and either directly or indirectly incites neuroinflammation and oxidative injury [52]. In our study, under aerobic glycolysis-like conditions, the expression of the qsk3 gene, which encodes GSK3, which phosphorylates tau protein, was reduced in cells, and the decrease in the phosphorylation level of tau protein was associated with this decrease in the expression of the gsk3 gene. PP2A, a serine/threonine protein phosphatase, is a tumor suppressor [53] and regulates the cell cycle by interacting with more than 300 cell cycle-related substrates [54]. Expression of protein phosphatase 2A (PP2A) is reduced in both cancer and neurodegenerative diseases. A decrease in PP2A-Aa subunit expression to approximately 50% of the normal level induces tumor formation, while a decrease in PP2A-Aa expression by more than 63% results in apoptosis [14]. Similar to cancer conditions, we observed that decreased expression of the pp2a gene in pMS-mapt cells under aerobic glycolysis-like conditions.

It was seen that the cells were both smaller and had different cellular shapes compared to cells in normal conditions. However, these differently shaped cells are not dead cells, because the cells were observed to reproduce for 32 hours.

Under glucose repression conditions, the stress response in the cell is repressed [22, 55, 56]. We also observed a decrease in the gene expression of stress response genes sod1 and ctt1, as expected. Suppression of stress response genes in pMSmapt cells resulted in an increase in the level of intracellular oxidation. ER stress and unfolded protein response (UPR) are molecular events in the development of AD. Failure of these mechanisms results in the formation of pathological structures such as neurofibrillary tangles formed by hyperphosphorylated tau. ER stress is an imbalance between protein synthesis and ER protein folding capacity. This results in the accumulation of misfolded proteins in the ER. As a result of ER stress, unfolded proteins are proteasomally degraded [57–59]. In the present study, we observed that the expression of the ire1 gene, which is involved in the ER stress response, was reduced under aerobic glycolysis-like conditions. A decrease in autophagy is an expected result due to decreased ER stress in pMS-mapt cells, and this may explain the decrease in atg14 gene expression. No significant change in 20S proteasome activity was observed under aerobic glycolysis-like conditions in pMS-mapt cells. Decreases in ER stress response and autophagy are the expected results under repression conditions.

Several studies on diabetes and tau protein suggest a role of tau protein, particularly in regulating glucose homeostasis. In some studies, Alzheimer's disease has been referred to as type III diabetes. However, the relationship between impaired glucose signaling and tau has not yet been elucidated [60]. One of the limitations of this study is that the effect of insulin, one of the most important components of glucose metabolism, could not be demonstrated in model cells. Another limitation is that the DNA protection function of tau protein has not been examined in our model. Emerging evidence for tau's functions in P53 regulation and DNA repair suggests that it is associated with cancer. Studies have shown that the MAPT gene is a potential factor in many types of cancer. However, the role of tau in cancer is still unclear. Whether tau is positively or negatively associated with cancer type may be because it plays a role in different cellular processes [7].

In the present study, aerobic fermentation metabolism in cancer was mimicked by creating glucose repression conditions in the tau protein-producing S. pombe model organism. Under aerobic glycolysis-like conditions, we observed an increase in tau protein expression and a decrease in its phosphorylation. In contrast, it is the increase in tau phosphorylation that causes pathology in tauopathies. Thus, under cancer-mimicking conditions, a situation in tau phosphorylation that was opposite to that in neurodegeneration was observed. The fact that a different response than expected occurred also in glucose metabolism in these tauproducing cells suggests that tau protein may be a common component that plays a greater role in the mechanisms underlying the diseases than thought. In our study, we examined only one phosphorylation site, and although this is not sufficient for a definitive conclusion, it provides data on the change of phosphorylation status. In future studies, target phosphorylation sites in Alzheimer's disease should be examined in more detail in cancer. Based on previous studies and our findings, tau protein may play a more important and multifunctional role in cellular mechanisms than thought. Therefore, the cellular mechanisms in which tau protein is involved and the molecular components it interacts with should be investigated in more detail.

## Conclusion

More detailed studies are needed to understand the molecular and cellular mechanisms related to the different or common features between cancer and neurodegeneration. Both diseases are common and have high mortality rates. Most studies investigating the relationship between cancer and neurodegenerative diseases demonstrate the potential for one disease to protect against the other. At this point, it is of great importance to determine the mechanism that brings together two opposing processes, such as uncontrolled cell proliferation and degeneration, and the intermediary molecules involved in this mechanism. Understanding the underlying mechanisms linking AD and cancer will enable the development of prevention strategies and treatment for both diseases.

**Informed Consent:** Informed consent was obtained from all participants.

**Conflict of Interest Statement:** The authors declare that there are no competing interests associated with the manuscript.

**Funding:** The authors declared that this study received no financial support.

Use of AI for Writing Assistance: No AI technologies utilized.

**Authorship Contributions:** Concept – M.Y., S.K.U.; Design – M.Y., S.K.U.; Supervision – S.K.U.; Funding – M.Y., S.K.U.; Materials – M.Y., S.K.U.; Data collection and/or processing – M.Y.; Data analysis and/or interpretation – M.Y.; Literature search – M.Y., S.K.U.; Writing – M.Y.; Critical review – M.Y.

Peer-review: Externally peer-reviewed.

## References

- 1. Mitchison T, Kirschner M. Dynamic instability of microtubule growth. Nature 1984;312(5991):237–42. [CrossRef]
- 2. Drubin DG, Kirschner MW. Tau protein function in living cells. J Cell Biol 1986;103(6):2739–46. [CrossRef]
- 3. Hedna R, Kovacic H, Pagano A, Peyrot V, Robin M, Devred F, et al. Tau protein as therapeutic target for cancer? Focus on glioblastoma. Cancers 2022;14(21):5386. [CrossRef]
- 4. Cirillo L, Gotta M, Meraldi P. The elephant in the room: The role of microtubules in cancer. Cell Div Mach Dis 2017;1002:93–124. [CrossRef]
- Galas MC, Bonnefoy E, Buee L, Lefebvre B. Emerging connections between tau and nucleic acids. Tau Biol 2020;1184:135–43. [CrossRef]
- 6. Rico T, Denechaud M, Caillierez R, Comptdaer T, Adriaenssens E, Buée L, et al. Cancer cells upregulate tau to gain resistance to DNA damaging agents. Cancers 2022;15(1):116. [CrossRef]
- 7. Callari M, Sola M, Magrin C, Rinaldi A, Bolis M, Paganetti P, et al. Cancer-specific association between Tau (MAPT) and cellular pathways, clinical outcome, and drug response. Sci Data 2023;10(1):637. [CrossRef]
- Gauthier S, Webster C, Servaes S, Morais JA, Rosa-Neto P. World Alzheimer Report 2022: Life after diagnosis: Navigating treatment, care and support. London: Alzheimer's Disease International; 2022.
- Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71(3):209–49. [CrossRef]
- Zabłocka A, Kazana W, Sochocka M, Stańczykiewicz B, Janusz M, Leszek J, et al. Inverse correlation between Alzheimer's disease and cancer: Short overview. Mol Neurobiol 2021;58(12):6335–49. [CrossRef]
- Maccioni RB, Navarrete LP, González A, González-Canacer A, Guzmán-Martínez L, Cortés N. Inflammation: A major target for compounds to control Alzheimer's disease. J Alzheimer Dis 2020;76(4):1199–213. [CrossRef]
- 12. Brown JS, Amend SR, Austin RH, Gatenby RA, Hammarlund EU, Pienta KJ. Updating the definition of cancer. Mol Cancer Res 2023;21(11):1142–47. [CrossRef]

- 13. Lanni C, Masi M, Racchi M, Govoni S. Cancer and Alzheimer's disease inverse relationship: An age-associated diverging derailment of shared pathways. Mol Psychiatry 2021;26(1):280–95. [CrossRef]
- 14. Seo J, Park M. Molecular crosstalk between cancer and neurodegenerative diseases. Cell Mol Life Sci 2020;77(14):2659–80. [CrossRef]
- 15. Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011;144(5):646–74. [CrossRef]
- 16. Warburg O. On the origin of cancer cells. Science 1956;123(3191):309–14. [CrossRef]
- 17. Diaz-Ruiz R, Rigoulet M, Devin A. The Warburg and Crabtree effects: On the origin of cancer cell energy metabolism and of yeast glucose repression. Biochim Biophys Acta Bioenerg 2011;1807(6):568–76. [CrossRef]
- 18. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 2009;324(5930):1029–33. [CrossRef]
- Supabphol S, Seubwai W, Wongkham S, Saengboonmee C. High glucose: An emerging association between diabetes mellitus and cancer progression. J Mol Med 2021;99(9):1175– 93. [CrossRef]
- 20. Takeda K, Starzynski C, Mori A, Yanagida M. The critical glucose concentration for respiration-independent proliferation of fission yeast, schizosaccharomyces pombe. Mitochondrion 2015;22:91–5. [CrossRef]
- 21. Kayikci Ö, Nielsen J. Glucose repression in saccharomyces cerevisiae. FEMS Yeast Res 2015;15(6):fov068. [CrossRef]
- 22. Hoffman CS. Glucose sensing via the protein kinase A pathway in schizosaccharomyces pombe. Biochem Soc Trans 2005;33(1):257–60. [CrossRef]
- 23. Hoffman CS, Wood V, Fantes PA. An ancient yeast for young geneticists: A primer on the schizosaccharomyces pombe model system. Genetics 2015;201(2):403–23. [CrossRef]
- 24. Harris MA, Rutherford KM, Hayles J, Lock A, Bähler J, Oliver SG, et al. Fission stories: Using PomBase to understand schizosaccharomyces pombe biology. Genetics 2022;220(4):iyab222. [CrossRef]
- 25. Acs-Szabo L, Papp LA, Miklos I. Understanding the molecular mechanisms of human diseases: The benefits of fission yeasts. Microb Cell 2024;11:288. [CrossRef]
- 26. Avila J. Tau kinases and phosphatases. J Cell Mol Med 2008;12(1):258. [CrossRef]
- 27. Ma Y, Kato T, Furuyashiki T. Genetic interactions among AMPK catalytic subunit Ssp2 and glycogen synthase kinases Gsk3 and Gsk31 in Schizosaccharomyces pombe. Kobe J Med Sci 2016;62(3):E70.
- 28. Yılmazer M, Uzuner SK. Effects of glucose on the cellular respiration in fission yeast expressing human GSK3B gene. Trakya Univ J Nat Sci 2024;25(1):1–10. [CrossRef]
- 29. Yilmazer M, Uzuner S. Heterologous expression of tau protein in fission yeast as a disease model. Fresen Environ Bull 2020;29(10):9218–25.
- 30. Yılmazer M, Şengelen A, Aksüt Y, Palabıyık B, Önay-Uçar E, Karaer Uzuner S. Glucose starvation induces tau phosphorylation leading to cellular stress response in fission yeast. Arch Microbiol 2025;207(7):1–16. [CrossRef]

- 31. Forsburg SL, Rhin N. Basic methods for fission yeast. Yeast 2006;23(3):173–83. [CrossRef]
- 32. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001;29(9):e45. [CrossRef]
- 33. Reinheckel T, Grune T, Davies KJ. The measurement of protein degradation in response to oxidative. In Walker JM, Keyse SM, eds. Methods in Molecular Biology Vol 99. Stress Stress Response: Methods and Protocols. Totowa: Humana Press; 2000
- 34. Inoue Y, Matsuda T, Sugiyama KI, Izawa S, Kimura A. Genetic analysis of glutathione peroxidase in oxidative stress response of saccharomyces cerevisiae. J Biol Chem 1999;274(38):27002–9. [CrossRef]
- 35. Li JM, Liu C, Hu X, Cai Y, Ma C, Luo XG, et al. Inverse correlation between Alzheimer's disease and cancer: Implication for a strong impact of regenerative propensity on neurodegeneration? BMC Neurol 2014;14:1–7. [CrossRef]
- Alexandre-Silva V, Cominetti MR. Unraveling the dual role of ADAM10: Bridging the gap between cancer and Alzheimer's disease. Mech Ageing Dev 2024;219:111928. [CrossRef]
- 37. Musicco M, Adorni F, Di Santo S, Prinelli F, Pettenati C, Caltagirone C, et al. Inverse occurrence of cancer and Alzheimer disease: A population-based incidence study. Neurology 2013;81(4):322–28. [CrossRef]
- 38. Souter S, Lee G. Microtubule-associated protein tau in human prostate cancer cells: Isoforms, phosphorylation, and interactions. J Cell Biochem 2009;108(3):555–64. [CrossRef]
- 39. Rouzier R, Rajan R, Wagner P, Hess KR, Gold DL, Stec J, et al. Microtubule-associated protein tau: A marker of paclitaxel sensitivity in breast cancer. Proc Natl Acad Sci U S A 2005;102(23):8315–20. [CrossRef]
- 40. Pusztai L, Jeong JH, Gong Y, Ross JS, Kim C, Paik S, et al. Evaluation of microtubule-associated protein-Tau expression as a prognostic and predictive marker in the NSABP-B 28 randomized clinical trial. J Clin Oncol 2009;27(26):4287–92. [CrossRef]
- 41. Gargini R, Segura-Collar B, Herránz B, García-Escudero V, Romero-Bravo A, Núñez FJ, et al. The IDH-TAU-EGFR triad defines the neovascular landscape of diffuse gliomas. Sci Transl Med 2020;12(527):eaax1501. [CrossRef]
- 42. Diaz-Ruiz R, Uribe-Carvajal S, Devin A, Rigoulet M. Tumor cell energy metabolism and its common features with yeast metabolism. Biochim Biophys Acta 2009;1796:252–65. [CrossRef]
- 43. Santos SM, Hartman JL. A yeast phenomic model for the influence of Warburg metabolism on genetic buffering of doxorubicin. Cancer Metab 2019;7:1–42. [CrossRef]
- 44. Rolland F, Winderickx J, Thevelein JM. Glucose-sensing and-signalling mechanisms in yeast. FEMS Yeast Res 2002;2(2):183–201. [CrossRef]
- 45. Hoffman CS, Winston F. Glucose repression of transcription of the Schizosaccharomyces pombe fbp1 gene occurs by a cAMP signaling pathway. Genes Dev 1991;5(4):561–71. [CrossRef]

- 46. Palomino A, Herrero P, Moreno F. Tpk3 and Snf1 protein kinases regulate Rgt1 association with saccharomyces cerevisiae HXK2 promoter. Nucleic Acids Res 2006;34(5):1427–38. [CrossRef]
- 47. Nair A, Sarma SJ. The impact of carbon and nitrogen catabolite repression in microorganisms. Microbiol Res 2021;251:126831. [CrossRef]
- 48. Mondragón-Rodríguez S, Perry G, Luna-Muñoz J, Acevedo-Aquino MC, Williams S. Phosphorylation of tau protein at sites Ser 396-404 is one of the earliest events in Alzheimer's disease and Down syndrome. Neuropathol Appl Neurobiol 2014;40(2):121–35. [CrossRef]
- 49. Regalado-Reyes M, Furcila D, Hernández F, Ávila J, DeFelipe J, León-Espinosa G. Phospho-tau changes in the human CA1 during Alzheimer's disease progression. J Alzheimer Dis 2019;69(1):277–88. [CrossRef]
- 50. Liu Y, Yan D, Wang Y, Zhang X, Wang N, Jiao Y, et al. Subchronic exposure to acrylamide caused behaviour disorders and related pathological and molecular changes in rat cerebellum. Toxicol Lett 2021;340:23–32. [CrossRef]
- 51. Xia Y, Prokop S, Giasson BI. "Don't Phos Over Tau": Recent developments in clinical biomarkers and therapies targeting tau phosphorylation in Alzheimer's disease and other tauopathies. Mol Neurodegener 2021;16(1):37. [CrossRef]
- 52. Zhao J, Wei M, Guo M, Wang M, Niu H, Xu T, et al. GSK3: A potential target and pending issues for treatment of Alzheimer's disease. CNS Neurosci Ther 2024;30(7):e14818. [CrossRef]
- 53. Westermarck J, Hahn WC. Multiple pathways regulated by the tumor suppressor PP2A in transformation. Trends Mol Med 2008;14(4):152–60. [CrossRef]
- 54. Wlodarchak N, Xing Y. PP2A as a master regulator of the cell cycle. Crit Rev Biochem Mol Biol 2016;51(3):162–84. [CrossRef]
- 55. Carlson M. Glucose repression in yeast. Curr Opin Microbiol 1999;2(2):202–7. [CrossRef]
- 56. Palabiyik B, Ghods FJ, Uzuner SK. Role of glucose repression in the oxidative stress response of schizosaccharomyces pombe: analysis of transcript levels of fbp1, hxk2, sod1 and ctt1 genes in sty1, atf1 and pap1 knock-out mutants. Turk J Biol 2016;40(4):815–25. [CrossRef]
- 57. Dufey E, Sepúlveda D, Rojas-Rivera D, Hetz C. Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 1. An overview. Am J Physiol Cell Physiol 2014;307(7):C582–94. [CrossRef]
- 58. Hetz C, Saxena S. ER stress and the unfolded protein response in neurodegeneration. Nat Rev Neurol 2017;13(8):477–91.
- 59. González A, Calfío C, Churruca M, Maccioni RB. Glucose metabolism and AD: evidence for a potential diabetes type 3. Alzheimers Res Ther 2022;14(1):56. [CrossRef]
- 60. Shieh JCC, Huang PT, Lin YF. Alzheimer's disease and diabetes: Insulin signaling as the bridge linking two pathologies. Mol Neurobiol 2020;57(4):1966–77. [CrossRef]