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Association of serum Maresin-1 levels with insulin-resistance 
indices in obese individuals

Obesity is a global medical concern closely linked to chronic 
inflammation and dysfunctions of carbohydrate metabo-

lism. In obesity, triglyceride accumulation occurs in the adi-
pose tissue, as increased inflammation and insulin resistance 
promote fatty acid production in the liver. An increase in adi-
posity in adipose tissue reduces the responsiveness of insulin-
sensitive cells to the physiological effects of insulin [1, 2]. In 
obese patients, adiposity allows the fat tissue to function as 
an endocrine organ. Adipokines secreted by adipocytes regu-
late metabolic pathway defects that arise from inflammation 

and insulin resistance. While numerous molecules have been 
recognized in this context, research has increasingly concen-
trated on the impact of new regulatory molecules, including 
specialized pro-resolving mediators (SPMs), on the obesity-
induced metabolic dysfunction [3]. SPMs are bioactive com-
pounds categorized into four primary categories: lipoxins, 
maresins, protectins, and resolvins [4]. Maresin 1 (MaR1), de-
rived from docosahexaenoic acid (DHA), demonstrates anti-
inflammatory in different tissue types, particularly in white 
adipose tissue. It is synthesized by macrophages through 
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whereas quantitative insulin sensitivity check index (r=0.318, p=0.002) levels were positively correlated. METS-IR had 
the highest AUC value (0.706), with 73.3% sensitivity and 57.8% specificity to identify high levels of MaR1 (p<0.001).
Conclusion: Ordinal logistic regression revealed a significant independent relationship between MaR1 levels and BMI 
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in insulin sensitivity and obesity-associated metabolic disorders. 
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enzymatic conversion of DHA via the 14S-hydroxy-DHA and 
12-lipoxygenase (12-LOX) pathways [5]. In obesity, elevated 
free fatty acids activate proinflammatory pathways by upregu-
lating cyclooxygenase (COX) and LOX enzymes, resulting in in-
creased production of mediators such as leukotriene B4 (LTB₄), 
which recruit neutrophils and exacerbate insulin resistance. 
This chronic inflammation is further amplified by neutrophil-
released cytokines, which disrupt insulin signaling and sustain 
a proinflammatory state. The resolution of a self-limited acute 
inflammatory response involves a transition away from gener-
ating pro-inflammatory substances, like LTB₄, to the synthesis 
of counterregulatory substances known as SPMs. To coun-
teract this, MaR1 is synthesized during the resolution phase 
of inflammation to stop further neutrophil recruitment and 
promote the clearance of apoptotic neutrophils and debris, 
thereby preventing chronic inflammation [6, 7]. 
Although numerous animal studies have explored the rela-
tionship between MaR1 and lipid and glucose metabolism, re-
search in humans remains limited. Understanding the role of 
MaR1 in metabolic regulation is essential for developing effec-
tive therapeutic strategies to prevent and manage obesity-re-
lated metabolic disorders. This study purposed analyze serum 
MaR1 levels in patient cohorts stratified into three groups 
depending on body weight (normal weight, overweight, and 
obese), and to assess the correlation between MaR1 levels and 
metabolic indicators.

Materials and Methods
This study was conducted with authorization the Firat 
University Ethics Committee for Non-interventional Research 
(Number: 2023/10-23, Date: 27/07/2023). Ninety individuals 
who attended the Internal Medicine outpatient department 
at Yerkoy State Hospital between August 2023 and Novem-
ber 2023 were included after obtaining informed consent 
forms. All stages of the study were carried out conformity the 
Helsinki Declaration.
This study excluded participants based on the following cri-
teria: age under 18 years, type 2 diabetes mellitus (T2DM), 
liver diseases, chronic kidney disease, history of bariatric or 
metabolic surgery, hematological disorders or malignancies, 
systemic inflammatory or infectious diseases, and use of an-
ti-inflammatory or steroid therapy. Physical examinations 
were conducted during outpatient assessment, and height 
and weight measurements were recorded. The participants 
were grouped into three categories according to their body 
mass index (BMI): normal weight (18.5–24.9 kg/m²), over-
weight (25–29.9 kg/m²), and obese (≥30 kg/m²) [8]. Addition-
ally, based on the median MaR1 level (608 pg/mL), the study 
participants were divided into two categories.
Following an 8-hour fasting period, blood specimens have 
been collected from the participants using serum separator 
tubes. The samples were allowed to clot for at least 30 minutes 
before being centrifuged at 2000×g for 10 minutes. The result-
ing sera were separated, transferred to Eppendorf tubes, and 

stored at −20°C until analysis. Glucose, alanine aminotrans-
ferase (ALT), hemoglobin A1c (HbA1c), aspartate aminotrans-
ferase (AST), total cholesterol (TC), high-density lipoprotein 
cholesterol (HDL-C), triglyceride (TG), and low-density lipopro-
tein cholesterol (LDL-C) levels were measured via a Beckman 
Coulter DxC 700 AU (Beckman Coulter Inc., Brea, CA, USA) clin-
ical chemistry analyzer. Insulin levels were analyzed using a 
chemiluminescent immunoassay method on a Snibe Maglumi 
X3 analyzer (Snibe Diagnostics, Shenzhen, China). Homeosta-
sis Model Assessment of Insulin Resistance (HOMA-IR) was 
computed via the equation: [glucose (mg/dL) × insulin (mU/L)] 
/ 405 [9]. Metabolic Score for Insulin Resistance (METS-IR) was 
computed via the equation: Ln [(2 × glucose) + TG] × BMI / Ln 
[HDL-C] [10]. Body fat percentage (BF%) was estimated using 
the Deurenberg equation: BF%= 1.2 × BMI (kg/m2) + 0.23 × 
age (years) − 10.8 × gender (female= 0, male= 1) – 5.4 [11]. The 
triglyceride glucose index (TyG), which is considered an ef-
fective surrogate marker for insulin resistance, was calculated 
using the formula: ln [(fasting glucose × TG)  ⁄  2]. TyG-BMI was 
determined by multiplying TyG index by BMI [12]. Quantita-
tive Insulin Sensitivity Check Index (QUICKI) was calculated as 
follows: 1/(log insulin + log glucose) [13]. The McAuley index 
was calculated as follows: =e[2.63−0.28×ln (Insulin)−0.31×ln(TG)] [14]. The 
Castelli risk index (CRI-I) was determined by dividing TC by 
HDL-C, whereas the CRI-II was derived by dividing LDL-C by 
HDL-C [15]. The atherosclerotic index (AI) was determined an-
alytically using the formula (TC−HDL-C) / HDL-C [16].
A Human MaR1 enzyme-linked immunosorbent assay (ELISA) 
(Catalog No: 201–12–7339; Sunred Biotechnology Company, 
Shanghai, CHINA) was carried out adherence the procedures 
described in the procedures specified by the manufacturer. 
The optical density at 450 nm was quantified spectrophoto-
metrically with a CLARIOstar PLUS device (BMG Labtech, Ger-
many). Test results are reported in pg/mL. The measurement 
range of the MaR1 kit was 7.5 pg/mL to 2000 pg/mL, with a 
sensitivity of 7.247 pg/mL. The MaR1 kit has an intra-assay 
coefficient of variation (CV) of less than 10% and an inter-
assay CV of less than 12%.

Statistical evaluation
To determine whether the dataset conformed to a normality, 
Shapiro–Wilk was applied for statistical evaluation. Categori-
cal variables were examined using Pearson's Chi-square test, 
Continuity Correction, or Fisher's Exact test, depending on the 
minimum expected count value. When the data did not fol-
low a normal distribution, the Mann-Whitney U was utilized, 
whereas the Student's t was conducted for data exhibiting 
normal distribution. To compare three independent groups, 
ANOVA was performed for normality assumptions, and the 
Kruskal–Wallis was performed for non-normality assump-
tions. Post-hoc Tukey or Tamhane’s T2 tests were employed 
for pairwise comparisons among groups following the one-
way ANOVA. The correlations between the parameters were 
assessed using Spearman correlation analysis. ROC analysis 
was employed to distinguish individuals with high Maresin 1 
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levels. P-value below 0.05 was regarded as statistically signif-
icant. However, for pairwise comparisons between the three 
groups, Bonferroni correction was applied, setting the statisti-
cal significance threshold at p<0.017. Statistical analyses were 
performed and graphs were generated using SPSS v. 26 (IBM 
Corp., Armonk, NY, US) and GraphPad Prism v. 8.3.0 (GraphPad 
Software, San Diego, California, US). Post-hoc power analy-
ses were performed using G*Power version 3.1.9.7 (Heinrich-
Heine-Universität Düsseldorf, Düsseldorf, Germany).

Results
Glucose, insulin, HOMA-IR, METS-IR, TyG, TyG-BMI, HbA1c, TG, 
TG/HDL-C, CRI-I, CRI-II, and AI were higher in obese individu-
als than in normal-weight individuals; QUICKI, Mcauley index, 
and HDL-C were lower in obese individuals than in normal-
weights. Insulin, HOMA-IR, METS-IR, TyG-BMI, and HbA1c lev-
els were higher in overweight patients than in normal-weight 
patients. QUICKI, and McAuley index levels were lower in 
overweights than in normal-weights. Glucose, insulin, HOMA-

IR, METS-IR, TyG, TyG-BMI, TG, CR-II, and AI were higher in 
obese individuals than in overweight individuals. QUICKI and 
Mcauley indices were lower in obese subjects than in over-
weight subjects. MaR1 levels were lower in both the obese 
[480 (380–990)] and overweight [462 (290–1177)] groups than 
in the normal-weight group [987 (550–2204)]. The analysis 
revealed that MaR1 levels did not differ between individuals 
classified as obese and those classified as overweight (Table 
1 and Fig. 1a). A post-hoc power analysis was conducted for 
Maresin 1 among the BMI groups. The mean and standard de-
viation values were used to determine the effect size, which 
was determined to be Cohen’s f=0.34, with an alpha of 0.05, a 
total sample size of 90, and three groups, yielding a power of 
0.82. Given that the power exceeded the ideal value of 0.80, it 
could be concluded that the power was sufficient.

There were no differences in age, sex, glucose, TyG, Mcauley 
index, ALT, AST, cholesterol, TG, LDL-C, HDL-C, TG/HDL-C, 
CRI-I, CR-II, and AI parameters between the groups with 
MaR1≥608 levels and MaR1<608 levels. BMI, BF%, insulin, 

Table 1. Comparison of demographic and laboratory parameters across the three groups

Parameter Normal weight (n= 30) Overweight (n= 30) Obese (n=30) p*

Age (years) 39 (31–46) 39 (34–43) 34 (27–43) 0.570
Gender (n, %)
 Male 8 (26.7) 6 (20.0) 7 (23.3) 0.830
 Female 22 (73.3) 24 (80.0) 23 (76.7) 
Body mass index (kg/m2) 23.3 (21.1–24.3) 27.7 (26.4–28.6)a1 31.3 (30.6–34.0)a1, b1 <0.001
Body fat (%) 29.1 (24.4–31.9) 35.4 (32.3–38.1)a2 39.3 (37.2–43.5)a1, b2 <0.001
Maresin 1 (pg/mL) 987 (550–2204) 462 (290–1177)a2 480 (380–990)a2 0.003
Glucose (mg/dL) 83.2±8.01 88.1±6.88 94.3±8.87a1, b2 <0.001
Insulin (mIU/L) 8.65 (5.70–11.7) 12.9 (10.3–17.4)a2 19.8 (13.5–32.0)a1, b2 <0.001
HOMA-IR 1.70 (1.23–2.24) 2.80 (2.40–3.82)a1 4.58 (3.06–7.74)a1, b2 <0.001
METS-IR 32.4 (29.9–34.2) 41.3 (37.7–44.5)a1 49.4 (45.9–52.9)a1, b1 <0.001
Triglyceride-glucose index 8.35±0.47 8.57±0.52 8.96±0.51a1, b2 <0.001
TyG-BMI 192 (176–208) 237 (223–248)a1 284 (275–306)a1, b1 <0.001
QUICKI 0.36±0.02 0.33 ±0.02a1 0.31±0.02a1, b1 <0.001
Mcauley index  7.46 ±1.12 6.29±1.23a2 5.02±1.16a1, b1 <0.001
Hemoglobin A1c (%) 5.23 (5.14–5.50) 5.71 (5.40–5.90)a2 5.90 (5.60–6.20)a1 <0.001
Alanine transaminase (U/L) 19.2±6.45 19.5±7.59 18.9±7.33 0.953
Aspartate transaminase (U/L) 20.0 (17.0–23.0) 19.0 (17.2–25.0) 20.5 (17.2–24.0) 0.875
Cholesterol (mg/dL) 187±30.1 179±41.5 203±48.6 0.070
Triglyceride (mg/dL) 101 (79–141) 111 (89–189) 179 (126–224)a1, b2 0.001
LDL-C (mg/dL) 112 (89–132) 102 (88–127) 132 (98–156) 0.083
HDL-C (mg/dL) 53.0 (47.0–61.0) 45.0 (40.0–60.0) 46.0 (39.0–54.0)a2 0.031
TG/HDL-C 2.13 (1.41–2.57) 2.43 (1.53–4.30) 3.51 (2.39–5.39)a1 <0.001
Castelli risk index I 3.55±0.77 3.83±1.14 4.56±1.40a2 0.003
Castelli risk index II 2.18 (1.55–2.69) 2.16 (1.76–2.76) 2.82 (2.07–3.64)a2, b2 0.006
Atherosclerotic index 2.55±0.77 2.83±1.14 3.56±1.40a2, b2 0.004

*: p<0.05: Statistically significant. For pairwise comparisons between the three groups, Bonferroni correction was applied, setting the statistical significance threshold at p<0.017.  
a: Comparison with normal weight group; a1: <0.001; a2: <0.017; b: Comparison with overweight group. b1: <0.001; b2: <0.017. HOMA-IR: Homeostatic model assessment of insulin 
resistance; METS-IR: Metabolic score for insulin resistance; TyG-BMI: Triglyceride-glucose index and body mass index; QUICKI: Quantitative insulin sensitivity check index; LDL-C: 
Low-density lipoprotein cholesterol; HDL-C: High-density lipoprotein cholesterol; TG/HDL-C: Triglycerides to high-density lipoprotein cholesterol ratio.
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HOMA-IR, METS-IR, TyG-BMI, and HbA1c were higher in the 
MaR1<608 group than in the MaR1≥608 group, whereas 
only QUICKI was lower in the MaR1<608 group than in the 
MaR1≥608 group (Table 2 and Fig. 1b). A post-hoc power 
analysis was conducted for METS-IR between the two groups. 
The mean and standard deviation values were used to de-
termine the effect size, which was determined to be Cohen’s 
d=0.80, with an alpha of 0.05, the sample size for each group 
of 45, and two groups, yielding a power of 0.97. Given that 
the power output exceeded the ideal value of 0.80, it can be 
concluded that the power was sufficient.

MaR1 levels were negatively related to BMI (r=-0.495, 
p<0.001), BF% (r=-0.366, p<0.001), glucose (r=-0.294, 
p=0.005), insulin (r=-0.285, p=0.006), HOMA-IR (r=-0.318, 
p=0.002), METS-IR (r=-0.444, p<0.001), TyG-BMI (r=-0.427, 
p<0.001), and HbA1c (r=-0.247, p=0.019), whereas QUCKI 
(r=0.318, p=0.002) levels were positively correlated. The 
metabolic index with the highest correlation coefficient with 
MaR1 level was METS-IR (Table 3 and Fig. 2).

In the ROC analysis of the metabolic indicators for the identi-
fication of high levels of MaR1, METS-IR had the highest AUC 
value of 0.706 (95% CI=0.600–0.797), presenting 73.3% sen-
sitivity and 57.8% specificity, p<0.001. TyG-BMI had an AUC 
value of 0.701 (95% CI=0.596–0.793), with 68.9% sensitivity 
and 71.1% specificity, p<0.001. HbA1c had an AUC value of 
0.637 (95% CI=0.528–0.735), with 68.9% sensitivity and 57.8% 
specificity, p=0.021. HOMA-IR showed an AUC value of 0.635 
(95% CI=0.527–0.734), with 60.0% sensitivity and 64.4% speci-
ficity, p=0.022. QUICKI performed the AUC value was 0.634 
(95% CI=0.525–0.733), presenting 46.7% of sensitivity and 
75.6% of specificity, p=0.022 (Table 4 and Fig. 3).

The findings of ordinal logistic regression exhibited an inde-
pendent inverse association between MaR1 levels and BMI 
categories. In Model 1 (unadjusted), MaR1 was significantly 
associated with BMI categories, showing an odds ratio (OR) 
value of 0.9992 (95% CI:0.9987–0.9998, p=0.005). Adjusted for 
age, sex, and AI, this association remained significant, with an 
OR value of 0.9992 (95% CI:0.9986–0.9997, p=0.004), in Model 
2. In Model 3, which included adjustments for age, sex, TyG 
and ALT, the association persisted, with an OR value of 0.9991 
(95% CI:0.9985–0.9997, p=0.003) (Table 5).

Discussion
Lower serum MaR1 levels were found in obese and over-
weight subjects compared to normal-weight individuals, 
along with their correlation with BMI and BF%, indicating 
an association between MaR1 and obesity. This study found 
negative correlations between MaR1 levels and several meta-
bolic parameters, including HOMA-IR, METS-IR, TyG-BMI, 
and HbA1c. Conversely, MaR1 levels were positively linked 
to QUICKI, suggesting an association between higher MaR1 
levels and improved insulin sensitivity. Among the metabolic 
indicators examined, METS-IR demonstrated the strongest 
correlation with MaR1 levels (r=-0.444). ROC analysis revealed 
that METS-IR and TyG-BMI were the most effective parame-
ters for identifying high MaR1 levels, with AUC of 0.706 and 
0.701, respectively. METS-IR and TyG-BMI are useful surrogate 
markers for insulin resistance with significant associations 
with various cardiovascular conditions [17, 18]. These find-
ings indicate that MaR1 is strongly associated with various 
insulin-resistance indices, including METS-IR and TyG-BMI, 
which are linked to high cardiovascular risk. 

a b

Figure 1. (a) Comparison of Maresin-1 levels among the three groups. (b) Comparison of METS-IR between the two groups based on the 
median Maresin-1 levels.
ns: Non-significant; Group 1: Maresin-1 <608 pg/mL; Group 2: Maresin-1≥ 608 pg/mL. METS-IR: Metabolic score for insulin resistance. 
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Insulin resistance serves as a pivotal factor in the emergence 
of numerous metabolic disorders such as obesity, cardiovas-
cular diseases, non-alcoholic fatty liver disease (NAFLD) [19]. 
Studies investigating the relationship between MaR1, obe-
sity, and insulin resistance in the human population are no-
tably limited in the current literature. T2DM patients, partic-
ularly those with diabetic foot ulcers, exhibited lower plasma 
MaR1 concentrations compared to individuals with normal 
glucose tolerance. Reduced MaR1 levels were closely linked 
to obesity, reduced insulin secretion, and elevated insulin 
resistance (HOMA-IR). MaR1 levels were positively related 
to beta-cell function (HOMA-β), acute insulin response, and 
HDL-C [20]. In a study, no significant differences in MaR1 lev-
els were observed between individuals with mild and mor-
bid obesity. However, differences in diabetes remission and 
the capacity for inflammation resolution following surgery 
were identified as significant factors influencing MaR1 levels. 
Specifically, diabetic patients who failed to achieve remission 
experienced a substantial impairment in MaR1 production. 
Sufficient MaR1 production was linked to the control of in-
flammation and improved insulin sensitivity. Therefore, ther-
apies aimed at enhancing MaR1 biosynthesis might repre-

sent potential strategies against insulin resistance [6]. MaR1 
activates brown adipose tissue while causing browning of 
white adipose tissue, suggesting that this molecule might 

Table 2. Comparison of demographic and laboratory parameters between the two groups based on median Maresin 1 levels

Parameter Maresin 1<608 pg/mL (n= 45) Maresin 1≥608 pg/mL (n= 45) p*

Age (years) 37.2±9.88 38.8±9.94 0.459
Gender (n, %)
 Male 10 (22.2) 11 (24.4) 0.803
 Female 35 (77.8) 34 (75.6) 
Body mass index (kg/m2) 29.4 (27.2–32.5) 25.6 (23.1–29.1) <0.001
Body fat (%) 36.3±7.34 31.6±6.86 0.002
Glucose (mg/dL) 90.3±9.68 86.8±8.20 0.068
Insulin (mIU/L) 13.5 (10.1–22.3) 11.7 (8.16–14.8) 0.036
HOMA-IR 2.96 (2.30–5.58) 2.58 (1.62–3.19) 0.028
METS-IR 44.2 (36.9–50.4) 36.2 (32.4–44.3) 0.001
Triglyceride-glucose index 8.62±0.61 8.64±0.50 0.896
TyG-BMI 250 (217–291) 218 (190–263) 0.001
QUICKI 0.32±0.03 0.34±0.03 0.019
Mcauley index  6.09±1.60 6.42±1.45 0.314
Hemoglobin A1c (%) 5.69±0.48 5.50±0.39 0.035
Alanine transaminase (U/L) 19.0 (15.8–24.3) 18.0 (13.0–23.0) 0.175
Aspartate transaminase (U/L) 20.0 (18.0–24.3) 19.0 (16.8–24.3) 0.411
Cholesterol (mg/dL) 187 (157–214) 186 (163–222) 0.614
Triglyceride (mg/dL) 113 (91.3–185) 135 (93.8–187) 0.548
LDL-C (mg/dL) 109 (92.5–138) 109 (89.0–145) 0.981
HDL-C (mg/dL) 49.0 (40.8–58.0) 49.0 (41.8–56.5) 0.657
TG/HDL-C 2.60 (1.55–4.64) 2.37 (1.83–3.56) 0.971
Castelli risk index I 3.88 (3.06–4.72) 3.76 (3.10–4.27) 0.625
Castelli risk index II 2.44 (1.88–3.17) 2.22 (1.81–2.82) 0.503
Atherosclerotic index 2.88 (2.06–3.72) 2.76 (2.10–3.27) 0.625

*: p<0.05: Statistically significant. HOMA-IR: Homeostatic model assessment of insulin resistance; METS-IR: Metabolic score for insulin resistance; TyG-BMI: Triglyceride-glucose 
index and body mass index; QUICKI: Quantitative insulin sensitivity check index; LDL-C: Low-density lipoprotein cholesterol; HDL-C: High-density lipoprotein cholesterol; TG/
HDL-C: Triglycerides to high-density lipoprotein cholesterol ratio.

Table 3. Significant correlations between Maresin 1 and the 
other variables in all groups

Parameter  Maresin 1 (pg/mL)

 r  p

Body mass index (kg/m2) -0.495  <0.001
Body fat (%) -0.366  <0.001
Glucose (mg/dL) -0.294  0.005
Insulin (mIU/L) -0.285  0.006
HOMA-IR -0.318  0.002
METS-IR -0.444  <0.001
TyG-BMI -0.427  <0.001
QUICKI 0.318  0.002
Hemoglobin A1c (%) -0.247  0.019

r: Spearman correlation. HOMA-IR: Homeostatic model assessment of insulin resistance; 
METS-IR: Metabolic score for insulin resistance; TyG-BMI: Triglyceride-glucose index and 
body mass index; QUICKI: Quantitative insulin sensitivity check index.
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contribute to the control of adipokine synthesis and release 
in obese individuals [21, 22]. Circulating MaR1 concentra-
tions were found to be markedly reduced in individuals with 
NAFLD. MaR1 levels were inversely correlated with BMI, glu-
cose, ALT, GGT, and TG levels. Conversely, MaR1 levels were 
positively and independently associated with AST/ALT ratio, 
albumin level, albumin-globulin ratio, and HDL-C level. The 

proportion of patients diagnosed with NAFLD showed a pro-
gressive decline across ascending MaR1 quartiles. This rela-
tionship points to MaR1's potential role in metabolic health 
and inflammation, as decreased MaR1 might contribute to 
metabolic dysfunctions associated with higher BMI [23]. Our 
research revealed no association between MaR1 concentra-
tions and the analyzed lipid measurements and parameters.

a d

eb

c

Figure 2. Correlations of Maresin-1 with BMI (a), QUICKI (b), METS-IR 
(c), TyG-BMI (d), and HOMA-IR (e) across all groups.
BMI: Body mass index; QUICKI: Quantitative insulin sensitivity check index; METS-
IR: Metabolic score for insulin resistance; TyG-BMI: Triglyceride-glucose index and 
body mass index; HOMA-IR: Homeostatic model assessment of insulin resistance.



Int J Med Biochem122

MaR1 enhanced insulin sensitivity and reduces inflammation 
in the white adipose tissue of obese mice by modulating in-
flammatory markers and activating insulin signaling path-
ways, such as Akt and AMPK. MaR1 treatment has the poten-
tial to serve as an effective therapeutic approach aimed at 
improving insulin sensitivity in obese mouse models, thereby 
addressing the key metabolic dysfunctions associated with 
obesity and potentially mitigating the risk of related compli-
cations [22, 24]. MaR1 has been demonstrated to modulate 
the expression of adipokines in obese models. In cultured 
human adipocytes, MaR1 increased the basal expression of 
adiponectin, leptin, dipeptidylpeptidase 4, cardiotrophin 1, 
and irisin while effectively counteracting the effects of TNF-α. 
This regulatory mechanism could counteract inflammation 
and improve insulin sensitivity. The study suggested that MaR1 
tissue-specific actions could be harnessed to improve meta-
bolic profiles by reducing inflammation and restoring healthy 
adipokine levels in obesity [25]. Additionally, MaR1 suppresses 
lipid accumulation and endoplasmic reticulum stress in hepa-
tocytes, resulting in reduced hepatic steatosis and improved 
lipid metabolism in high-fat diet-fed mice [26]. Mitochondrial 
damage in liver cells is frequently observed in fatty liver dis-
ease associated with metabolic dysfunction. MaR1 enhanced 
liver mitochondrial and metabolic performance, protecting 
liver cells from mitochondrial impairment that was induced by 
factors promoting obesity and fibrosis [27]. Preclinical studies 
have suggested that SPMs could be effective in preventing 
and managing cardiovascular disease by enhancing endoge-
nous SPM production through polyunsaturated fatty acids 
or by administering synthetic SPM analogues [4]. Generally, 

MaR1 and its related metabolites have cardiovascular protec-
tive functions and/or inhibit the progression of cardiovascular 

Table 4. ROC analysis of metabolic indicators for identifying high Maresin 1 levels

Parameter AUC (95 CI%) Cut-off Sensitivity Specificity LR (+) LR (–) p

METS-IR 0.706 (0.600–0.797) ≤43.0 73.3% 57.8% 1.74 0.46 <0.001

TyG-BMI 0.701 (0.596–0.793) ≤236 68.9% 71.1% 2.38 0.44 <0.001

Hemoglobin A1c (%) 0.637 (0.528–0.735) ≤5.70 68.9% 57.8% 1.63 0.54 0.021

HOMA-IR 0.635 (0.527–0.734) ≤2.69 60.0% 64.4% 1.69 0.62 0.022

QUICKI 0.634 (0.525–0.733) >0.33 46.7% 75.6% 1.91 0.71 0.022

ROC: Receiver operating characteristic; AUC: Area under the curve; CI: Confidence interval; LR: Likelihood ratio; METS-IR: Metabolic score for insulin resistance; TyG-BMI: 

Triglyceride-glucose index and body mass index; HOMA-IR: Homeostatic model assessment of insulin resistance; QUICKI: Quantitative insulin sensitivity check index.

Table 5. Ordinal logistic regression analysis results

Regression model   Maresin-1 (pg/mL)

 Estimate SE Wald OR (95%CI) p

Model 1 -0.001 0.000 7.974 0.9992 (0.9987–0.9998) 0.005
Model 2 -0.001 0.000 8.341 0.9992 (0.9986–0.9997) 0.004
Model 3 -0.001 0.000 8.672 0.9991 (0.9985–0.9997) 0.003

Model 1: Unadjusted; Model 2: Age, sex, AI; Model 3: Age, sex, TyG, ALT. SE: Standard error; OR: Odds Ratio; CI: Confidence interval; TyG: triglyceride glucose index; ALT: alanine 

aminotransferase.

Figure 3. ROC analysis of metabolic indicators for identifying high 
Maresin 1 levels.
ROC: Receiver operating characteristic; METS-IR: Metabolic score for insulin 
resistance; TyG-BMI: Triglyceride-glucose index and body mass index; HbA1c:  
Hemoglobin A1c; HOMA-IR: Homeostatic model assessment of insulin resistance; 
QUICKI: Quantitative insulin sensitivity check index.
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diseases [28]. Since most of the studies on MaR1 and obesity 
are experimental, conclusive results can be achieved through 
data gathered from more comprehensive human studies.
Although the relationship between MaR1 and lipid and glu-
cose indicators has been demonstrated on a molecular basis 
in mouse models, research exploring this connection in hu-
mans remains limited. The current literature does not directly 
investigate the association between MaR1 and METS-IR, TyG-
BMI, or QUICKI indices. METS-IR index, which combines fasting 
triglyceride, glucose, BMI and HDL-C, is now recognized as a 
more accurate tool for evaluating insulin sensitivity. METS-IR 
is associated with various cardiovascular events, and its abil-
ity to predict inflammatory activity and endothelial dysfunc-
tion has been emphasized [29, 30]. In non-diabetic Korean 
individuals, a high METS-IR score demonstrated a significant 
prognostic value for future occurrences of ischemic heart dis-
ease [31]. The TyG-BMI index combines the TyG index, which 
reflects glucose and triglyceride levels, with BMI, which is a 
measure of adiposity. This combination seems to offer a more 
extensive evaluation of metabolic status than the TyG index or 
BMI alone [32]. According to a cohort investigation, TyG-BMI 
emerged as the most effective indicator for predicting meta-
bolic syndrome in male subjects [33]. TyG-BMI and METS-IR 
were shown to be strongly associated with NAFLD and were 
identified as the most valuable IR-related indicators with high 
discriminatory ability for NAFLD screening [34].
This study has some limitations, including its single-center 
cross-sectional design. Inflammatory parameters, including 
cytokines, which could have provided insights into the rela-
tionship between MaR1 and inflammation in obesity, have 
not been evaluated. Although liquid chromatography–mass 
spectrometry (LC-MS) is widely used for the analysis of SPMs 
such as Maresin 1 due to its high specificity, precision, and 
accuracy in lipid quantification, ELISA was chosen for this 
study because of its sensitivity, methodological simplicity, 
and feasibility, as LC-MS was not available in our laboratory 
[35]. Prospective follow-up to predict obesity-related vascu-
lar events or morbidity could not be performed.

Conclusion
Our study demonstrated significant associations between 
MaR1 levels and insulin resistance indices, such as METS-IR 
and TyG-BMI, which are also indicative of cardiovascular risk 
in obese patients. Furthermore, ordinal regression analysis 
revealed an independent negative relationship between the 
MaR1 levels and obesity. This investigation addresses a cru-
cial void in current research by offering novel perspectives 
on the connection between MaR1 and these key insulin 
resistance indices. Research into the role of lipid mediators 
like MaR1 in resolving inflammation and improving insulin 
sensitivity could provide new therapeutic avenues. To fully 
elucidate the metabolic mechanisms associated with obesity 
and to explore the therapeutic efficacy of MaR1 in humans, 
more extensive clinical investigations are essential. 
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