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The role of cholesteryl ester transfer protein TaqIB 
polymorphism in young atherosclerotic heart disease

According to World Health Organization data, approxi-
mately one-fourth of 56.9 million deaths worldwide in 

2016 were caused by ischemic heart disease and stroke [1].

It is well established that oxidatively modified low-density 
lipoprotein (LDL) is an important risk factor for the initiation of 
atherosclerosis and that high-density lipoprotein (HDL) might 

play a protective role against coronary artery disease (CAD) 
[2]. Cholesteryl ester transfer protein (CETP) is mostly bound to 
HDL in plasma; only 1% is free [3]. Previously, CETP has been 
shown to play a part in regulating plasma HDL levels. The role 
of CETP during the atherosclerotic process is still debated, since 
it can produce both antiatherogenic and proatherogenic con-
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sequences. It is thought to be proatherogenic as a result of 
transferring cholesteryl esters from HDL to atherogenic lipopro-
teins, very low-density lipoprotein (VLDL), and LDL, and to be 
antiatherogenic due to its role in reverse cholesterol transport 
[4, 5]. Animal studies have also shown a dual role of CETP with 
respect to CAD. The introduction of the human CETP gene into 
apolipoprotein E knock-out mice and LDL receptor knock-out 
mice resulted in a decrease in HDL levels, leading to increased 
susceptibility to atherosclerosis, supporting the notion that 
CETP is proatherogenic [3, 6, 7]. Expression of CETP demon-
strated an antiatherosclerotic effect by lowering the VLDL level 
in transgenic mice expressing human lecithin cholesterol acyl-
transferase, as well as in a hypertriglyceridemic mouse model, 
and in mice overexpressing human apolipoprotein CIII [3, 8–10]. 
Several human studies have also yielded conflicting reports as 
to whether CETP is proatherogenic, antiatherogenic, or has no 
relation to atherosclerosis and CAD [3, 6, 11, 12].

Various mutations and polymorphisms have been identified 
in the CETP gene; however, the Taq1B polymorphism is one of 
the most studied. This is a polymorphism at 277 nucleotides at 
intron 1 in the CETP gene. There are two alleles, B1 and B2 [15].
There have been studies investigating the plasma concentra-
tion as well as the activity of CETP and it has consistently been 
found to be associated with HDL levels [13, 14]. The B2B2 allele 
has been shown to be closely related to increased HDL levels 
and decreased CETP levels in normolipidemic subjects [15, 16].

This was a case control study designed to investigate any re-
lationship between well-known risk factors, such as oxidized-
LDL and paraoxonase (PON) activity, in a young Turkish pop-
ulation with CAD that comprised different genotypes of CETP 
Taq1B.

Materials and Methods

A total of 97 patients (<50 years) with angina pectoris, my-
ocardial infarction (MI), and/or a positive exercise test were in-
cluded in the study, as well as 43 healthy control group partic-
ipants (<50 years). Blood samples were taken after 8-10 hours 
of fasting. Plasma and serum were separated immediately 
after centrifugation and then stored at -80°C until analysis. 
Whole blood samples were used for DNA isolation.

Serum lipid analyses were performed using standard labora-
tory methods. PON activity was measured using a previously 
defined method [17].

LDL isolation and determination of in vitro oxidation of 
LDL
Plasma samples were incubated with a precipitating reagent 
(Merck KGaA, Darmstadt, Germany) for 30 minutes at room 
temperature [18]. Following centrifugation at 1600g for 10 
minutes, LDL samples were solubilized with 0.15 N NaOH. LDL 
oxidation was determined using thiobarbituric acid reactive 
substances (TBARS). TBARS was analyzed with TBARS solution 

and the protein was measured in accordance with Lowry's 
method [19]. Conjugated diene levels in LDL samples contain-
ing 200 μgr protein were analyzed with a spectrophotometer 
by monitoring the absorbance change at a wavelength of 234 
nm at 5 minute intervals for 3 hours and calculations were 
performed using the extinction coefficient of 29.500 L/mol-
cm. In vitro oxidation of LDL was stimulated with 5μM CuSO4. 
The conjugation dien peak was measured at the 110th minute 
after the induction of in vitro oxidation of LDL. TBARS levels 
were also determined at the same time interval.

CETP Taq polymorphism
After isolation of genomic DNA from leukocytes using the phe-
nol-ethanol extraction method, CETP gene amplification by poly-
merase chain reaction (PCR) was performed. Each amplification 
used 100 ng genomic DNA in a volume of 25 μL containing 5 pmol 
of the primers forward 5’-CACTAGCCCAGAGAGAGGAGTGCC- 3’ 
and reverse 5’-CTGAGCCCAGCCGCACACTAAC-3’, and 0.5 mM 
dNTPs, 1.75 mM MgCl, 10 mM Tris, and 0.5U Taq polymerase. 
Following denaturation at 94 oC for 5 minutes, PCR reaction was 
exposed to 30 cycles (94 oC for 1 minute, 60oC for 30 seconds, 
72 oC for 45 seconds) and then was finalized with an extension 
at 72 oC for 5 minutes. The PCR products were restricted with 
TaqI endonuclease (5U) at 65 oC for 3 hours. The resulting frag-
ments (174bp and 361bp) were visualized with a UV transillu-
minator following 2% agarose gel electrophoresis. Fragments 
174 and 361bp were identified as B1, and unrestricted 535 bp 
fragments as B2.

Statistical analysis
Statistical analysis was performed using SPSS for Windows, 
Version 11.0 (SPSS Inc., Chicago, IL, USA). The results were ex-
amined using analysis of variance for intergroup comparisons 
followed by one-way analysis of variance, and the Mann-Whit-
ney U test was used for non-parametric variables. Genotypes 
and Allelic frequencies were determined by chi-square test. 
P<0.05 was considered statistically significant.

This study was approved by the Research Ethics Committee of 
the Medical Faculty of Ege University (No: 05-5.1/2; 2005-05). 
The study complied with the principles set out in the Helsinki 
Declaration.

Results

The baseline characteristics and data related to the oxidant-
antioxidant status of both groups are summarized in Table 1. 
The CAD group had more conventional risk factors (smoke, 
family history, obesity, hypertension). Age (p<0.01) and body 
mass index (BMI) values (p<0.01) were higher in the patient 
group than the control group. Additionally, the patients had 
higher triglyceride (p<0.01) and apolipoprotein B (Apo-B) 
(p<0.01) levels, and lower HDL (p<0.01) and apolipoprotein A 
(Apo-A) levels (p<0.01) than the control group.
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The antioxidant-oxidant status parameters of the study group 
are summarized in Table 1. Indicators of LDL oxidation (LDL-
diene and TBARS levels, p<0.01 and p<0.05, respectively) and 
LDL susceptibility to oxidation (copper-stimulated LDL-TBARS 
levels, p<0.01) were higher in the CAD patients compared 
with the control group. PON activity, an antioxidant parame-
ter, was lower in the patient group.

Genotype frequencies
The B1B2 genotype frequency was higher in the patient group 
(p=0.005, chisquare test). The genotype distribution of CETP 
Taq1B gene polymorphism is shown in Table 2. The B1 and B2 
allele frequencies were 0.60 and 0.40, respectively, in the con-
trols and 0.53 and 0.47 in the patients.
When the baseline characteristics and the data related to oxi-
dant-antioxidant status among the genotypes (B1B1, B1B2, and 
B2B2) were compared in the control group, it was found that 
only the BMI was higher in subjects with the B2B2 genotype 
(data not shown). Comparison of the data of baseline charac-
teristics and oxidant-antioxidant status revealed no statistically 
significant difference in any parameters between genotypes 
(B1B1, B1B2, B2B2) in the patient group (data not shown). The 
biochemical parameters of the patients and the controls with 
the B1B1 genotype are shown in Table 3. The patient group had 
higher triglyceride levels (p<0.01) and age (p<0.01), and lower 
HDL (p<0.01) and Apo-A (p<0.01) levels than the control group.
Biochemical analyses of the patients and controls who had the 
B1B2 genotype are shown in Table 3. The patients had higher 

triglyceride levels (p<0.01), age (p<0.01), and Apo-B levels 
(p<0.01), and lower HDL (p<0.01) and Apo-A levels (p<0.01) 
than the control group. In addition, the patients had higher 
levels of basal LDL-diene and stimulated LDL-TBARS, which 
are indicators of LDL oxidation, and lower activity antioxidant 
parameter PON activity than the control group.
Biochemical analyses of the patients and controls who had the 
B2B2 genotype are shown in Table 3. The patients had higher 
triglyceride levels (p<0.01), and lower Apo-A levels (p<0.01) 
than the control group. In addition, the patients had lower lev-
els of basal LDL-TBARS and PON activity than the control group.

Discussion
One of the most common causes of death worldwide is ather-
osclerosis. The incidence of atherosclerosis at a younger age 
and deaths due to MI have increased with increasing indus-
trialization.

Table 1. Baseline characteristics and data related to the oxidant-antioxidant status of the study groups

Parameters	 Control (n=43)	 Patients (n=97)	 p

Male/female (n)	 14/29	 78/19	 <0.001
Age (years) 	 33.4±6.48	 38.3±5.23	 <0.001
Smoker (n)	 8	 55
Hypertension (n)	 0	 26
Family history (n)	 0	 46
Diabetes (n)	 0	 5
Obesity (n)	 0	 29
BMI (kg/m2)	 22.3±2.9	 26.9±3.8	 <0.001
Waist/hip ratio 	 0.81±0.13	 1.10±1.23	 0.222
Apo-A (mg/dL) 	 151±23.9	 119±21.6	 <0.001
Apo-B (mg/dL)	 78.7±19.7	 103±31.8	 <0.001
TG (mg/dL)	 97.8±45	 231±204	 <0.001
TC (mg/dL)	 186±32	 203± 4	 0.10
HDL (mg/dL)	 51.1±8.38	 41.3±9.3	 <0.001
LDL (mg/dL)	 115±29.2	 119±48.1	 0.711
Basal LDL-diene (μmol/mg pr)	 159±49.5	 192±74.5 	 0.030
Stimulated LDL-diene (μmol/mg pr)	 203±47.8	 213±66.7	 0.703
Basal LDL-TBARS (nmol/mg pr)	 0.34±0.11	 0.39±0.19	 0.278
Stimulated LDL-TBARS (nmol/mg pr)	 3.54±1.43	 4.72±2.57	 0.025
PON (U/mL)	 45.2±17.6	 30.7±19.3	 <0.001

Data are presented as mean±SD; Apo-A: Apolipoprotein A; Apo-B: Apolipoprotein B; BMI: Body mass index; HDL: High-density lipoprotein; LDL: Low-density lipoprotein; PON: 
Paraoxonase; TBARS: Thiobarbituric acid reactive substances; TC: Total cholesterol; TG: Triglyceride.

Table 2. Genotype frequencies of CETP Taq1B gene 
polymorphism in the study groups

 	 Control n (%)	 Patient n (%)

B1B1 genotype	 17 (39.5)	 28 (28.9)
B1B2 genotype	 18 (41.9)	 47 (48.5)
B2B2 genotype	 8 (18.6)	 22 (22.7)
B1 allele	 52 (60.4)	 103 (53.1)
B2 allele	 34 (39.5)	 91 (46.9)
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Oxidized LDL and low HDL levels play a central role in the devel-
opment of atherosclerosis. The suggested antioxidant proper-
ties of HDL are related to PON as well as Apo-A and platelet ac-
tivating factor acetylhydrolase. As expected, our study results 
showed that the conventional risk factors were higher in the 
CAD group. The lipoprotein profile of the patients was com-
patible with CAD. Only intermediate-density lipoprotein and 
LDL particles can enter the subintimal space of the vasculature 
where the atherosclerotic process begins through modified 
LDL, and LDL molecules are then absorbed by macrophages 
[20]. Therefore, LDL and modified LDL molecules, especially 
oxidized LDL, have an important role during the atheroscle-
rotic process. In our study, we examined the ox-LDL levels and 
the sensitivity of LDL to oxidation in young patients with CAD. 
The LDL-diene and TBARS levels and the LDL-oxidation sensi-
tivity (copper-induced LDL-TBARS levels) of the patients were 
higher than those of the control group. Consistent with our 
data, it has been reported that LDL was more susceptible to 
oxidation in patients with diabetes mellitus and CAD [21, 22]. 
In our study, PON activity was lower and the basal LDL-diene 
level was higher in patients, once again demonstrating the 
role of PON in preventing LDL oxidation [23].

More genetic studies are being conducted to identify possible 
genes and polymorphisms in CAD formation. Genome-wide 
association (GWA) studies have so far found 150 gene loci as-
sociated with plasma lipids [24]. Among these genetic variants, 
ZNF259, CETP, LPA, LPL and PSRC1 have been reported associated 
with dyslipidemia and CAD [25]. Recently CETP has been shown 
to play a role in regulating plasma HDL levels. The presence of B2 

allele has been suggested to be associated with lower plasma 
CETP concentration, higher HDL-C level. B2 allele frequencies of 
the individuals in the study were 0.40 in controls and 0.47 in pa-
tients. These results are consistent with previous studies in the 
Turkish population [26-28]. Tanrikulu-Kucuk S et al. [26] reported 
that B2 allele frequency was 0.46. Yilmaz et al. [27] found that B2 
allele frequency was 0.40.  Ozsait et al. [28] reported that B2 allele 
frequency was 0.43 in men and 0.43 in women. Differences in fre-
quency of the B2 allele was reported in other ethnic groups. B2 
allele frequency was found 0.396, 0.40, 0.37, 0.49 in Italy, Chinese, 
Malaysians and Indians living in Singapore, respectively [29, 30]. 
Although the distribution of alleles displays similarities between 
societies, the question of whether certain polymorphisms have 
more risk for CAD has not yet been clarified.
While the distribution of 3 CETP genotypes in the control 
group did not demonstrate a statistically significant differ-
ence, the B1B2 genotype frequency was 10.536 times higher 
in our patient group.
In the control group, BMI was found to be higher only in sub-
jects with the B2B2 genotype. There was no significant differ-
ence in waist-to-hip ratio, BMI, or other biochemical and ox-
idant-antioxidant parameters among the 3 genotypes in the 
patient group.
Patients with the B1B1 allele had higher triglyceride levels with 
lower HDL and Apo-A levels compared with the control group. 
There was no significant difference in LDL oxidation products 
or PON enzyme activity between the patient and the control 
groups. It may be that high triglyceride levels, especially low 
HDL and Apo-A levels, are more important than total choles-

Table 3. Biochemical analysis of 3 genotypes of CETP Taq1B polymorphism in the study groups

		  B1B1			   B1B2			   B2B2

Parameters	 Control	 Patients	 p	 Control	 Patient	 P	 Control	 Patient	 p
	 (n=17)	 (n=28)		  (n=18)	 (n=47)		  (n=8)	 (n=22)

Age (years) 	 33.2±6.00	 39.0±5.55	 0.002	 31.9±6.46	 37.5±5.46	 <0.001	 36.9±6.93	 39.3±6.34	 0.533
TC (mg/dL)	 193±34.3	 201±55.8	 0.940	 179±29.6	 203±54.7	 0.107	 185±32.1	 206±53.3	 0.177
TG (mg/dL)	 104±43.9	 251±283	 <0.001	 83.3±27.0	 187±102	 <0.001	 121±70.7	 297±225	 0.043
HDL (mg/dL)	 51.4±8.86	 40.8±9.32	 <0.001	 51.6±8.98	 40.2±8.29	 <0.001	 49.1±6.12	 44.2±11.1	 0.406
LDL (mg/dL)	 121±30.5	 114± 40.5	 0.623	 111±25.5	 122±54.1	 0.522	 121±36.7	 121±45.4	 0.836
Apo-A (mg/dL) 	 151±29.0	 118±22.9	 <0.001	 153±23.2	 121±22.3	 <0.001	 148±13.0	 120±19.1	 0.002
Apo-B (mg/dL)	 81.7±21.8	 95.5±32.4	 0.291	 76.1±18.8	 112±33.4	 <0.001	 78.7±19.0	 94.8±22.8	 0.131
Basal LDL-diene	 171±39.4	 189±60.8	 0.462	 143±55.8	 197±85.5	 <0.001	 172±47.4	 187±67.9	 0.961
(μmol/mg pr)
Stimulated LDL-diene	 213±36.5	 217±67.9	 0.874	 191±56.4	 213±68.3	 0.911	 211±46.4	 206±64.3	 0.354
(μmol/mg pr)
Basal LDL-TBARS	 0.33±0.12	 0.45±0.24	 0.829	 0.31±0.10	 0.37±0.16	 0.136	 0.41±0.77	 0.35±0.19	 0.026
(nmol/mg pr)
Stimulated LDL-TBARS	 3.93±1.02	 4.54±1.59	 0.991	 3.38±1.82	 4.69±2.73	 0.018	 3.12±1.14	 5.01±3.23	 0.051
(nmol/mg pr)
PON (U/mL)	 41.6±18.0	 32.3±21.7	 0.106	 48.4±19.8	 32.2±19.3	 0.003	 45.2±17.6	 25.5±15.5	 0.002

Data are presented as mean±SD or median (25th-75th percentile). Apo-A: Apolipoprotein A; Apo-B: Apolipoprotein B; BMI: Body mass index; HDL: High-density lipoprotein; LDL: 
Low-density lipoprotein; PON: Paraoxonase; TBARS: Thiobarbituric acid reactive substances; TC: Total cholesterol; TG: Triglyceride.
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terol and LDL levels with respect to atherosclerosis develop-
ment in those with the B1B1 genotype. 
Patients with B1B2 had higher triglyceride, Apo-B, stimulated 
LDL-TBARS, and basal LDL-diene levels compared with the 
control group, whereas the levels of HDL, Apo-A and PON 
activity were lower. It can be concluded that patients in this 
group are more vulnerable to oxidation and other risk factors.
Patients with the B2B2 polymorphism had high triglyceride lev-
els, low Apo-A and basal LDL-TBARS levels, and low PON activity. 
PON protects HDL and LDL from oxidation [32] by inhibiting lipid 
peroxide formation up to 90% in stimulated LDL [23]. Although 
HDL levels were higher in those with the B2B2 genotype, there 
was no significant difference in comparison with the control 
group (Fig. 1). It has been reported that patients with B2B2 poly-
morphism had low CETP activity, a high HDL, and a decreased 
risk of CAD [31]. Freeman et al. [13] observed that high HDL and 
low CETP activity in normolipidemic subjects with the B2 allele 
may be caused by environmental factors, such as smoking and 
alcohol use. It has also been reported that the first MI occurred 
later in people with the B2B2 allele [33]. In a meta-analysis, the 
B2 allele was reported to be a protective factor for ischemic 
stroke [34]. In a Framingham study group of 1411 males and 
1505 females, B1B1 subjects had higher CETP and lower HDL 
levels than B1B2 or B2B2 individuals, and men with the B2 allele 
were reported to have a lower risk of developing CAD [14]. This 
result was thought to be the result of a reduced atherogenic 
lipid profile in the B2 allele. In an experimental study, the au-
thors reported that cardiovascular mortality decreased by 30% 
in B1B2 carriers and by 68% in B2B2 carriers [35]. Yilmaz et al. [27] 
found that MI patients with the B1B1 genotype had lower HDL 
levels than patients with the B2B2 genotype. They reported that 
Taq1B polymorphism may be responsible for low HDL levels in 
both patients and healthy individuals in the Turkish population. 
In our study, we found that HDL levels in patients with B2B2 
genotype were higher than the other two genotypes but it was 
not statistically significant. This may be due to the low number 
of the patient groups.
The results of our study revealed that LDL oxidation and oxida-
tive stress indicators were higher in young CAD patients. How-
ever, there was no significant difference between the baseline 
characteristics and oxidant-antioxidant status parameters in 
CAD patients with different genotypes of CETP Taq1B poly-
morphism.

Conclusion
We concluded that the genetic polymorphism of CETP had no 
significant effect on CETP function and that CETP polymor-
phism cannot be proposed as an independent risk factor for 
cardiovascular events.
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