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Abstract

Objectives: Mitochondrial gene networks constitute a fundamental subsystem of cellular homeostasis, integrating
bioenergetic, metabolic, and signaling functions. In cancer, the rewiring of these networks represents a critical mecha-
nism of metabolic adaptation, enabling tumor cells to sustain growth and survival under diverse microenvironmental
constraints. To systematically characterize these alterations, we analyzed transcriptomic data from The Cancer Genome
Atlas (TCGA) with a specific focus on mitochondrial genes, aiming to uncover cancer-type-specific patterns of differen-
tial expression and their potential biological implications.

Methods: Transcriptomic data from The Cancer Genome Atlas (TCGA) were analysed to identify differential expression
patterns in mitochondrial genes. Weighted Gene Co-expression Network Analysis (WGCNA) was applied to detect co-
expressed gene modules. The biological relevance of these modules was assessed through functional enrichment anal-
ysis and survival modelling using Cox regression and Kaplan-Meier estimations. Dimensionality reduction techniques
including PCA and UMAP were used to evaluate module-driven clustering patterns across cancer types.

Results: Seven mitochondrial gene modules were identified, six of which demonstrated significant associations with
specific cancer types. Modules ME2, ME4, ME5, ME6, and ME7 were associated with improved overall survival, while ME3
correlated with poorer prognosis. Functional enrichment analyses revealed distinct mitochondrial processes including
oxidative phosphorylation, apoptosis, fatty acid 3-oxidation, and ketone body metabolism. Dimensionality reduction
analyses supported the presence of module-specific expression patterns with cancer-type-dependent clustering.
Conclusion: The observed cancer-type-specific expression and prognostic associations of mitochondrial gene net-
works reflect their central involvement in the metabolic flexibility of tumors. By underscoring the clinical and biological
significance of mitochondrial subsystems, these findings suggest that they may serve not only as prognostic markers
but also as promising targets for therapeutic modulation.
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iological systems are intrinsically complex, dynamic, and

deeply interconnected. To maintain cellular homeostasis,
they rely on multilayered regulatory networks that combine
structural redundancy with exceptional adaptive flexibility [1,
2]. This adaptability may allow cancer cells to emerge as reor-
ganized—yet still coordinated—deviations from the original
regulatory architecture. Even in the disease state, internal logic

and systemic coordination may persist through altered but
non-random arrangements of regulatory configurations [3].

Understanding these transformations is particularly challeng-
ing due to the high-dimensional, non-linear, and interdepen-
dent nature of molecular interactions. Numerous molecular
components operate simultaneously and influence one an-
other in non-linear ways, making it difficult to isolate individual
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effects or predict system-wide behavior. This complexity poses
significant challenges for both computational modeling and
biological interpretation, especially when attempting to cap-
ture the emergent properties of the system as a whole [4-6].

One rational strategy to navigate this complexity is to focus on
key functional groups of genes or proteins (regulatory nodes)
that coordinate specific biochemical pathways or molecular
processes. These groups are critical for cellular survival and
proliferation and may be maintained or repurposed by can-
cer cells to sustain viability, differentiation, and growth [7, 8].
Among these, mitochondria are pivotal due to their roles in
metabolic reprogramming, redox signaling, and apoptotic
regulation [9]. Beyond these functions, while mitochondrial
functions are modulated by nuclear-encoded proteins (1,138
genes), their compact genome (37 genes), defined metabolic
pathways, and membrane-bound localization render them a
relatively self-contained and tractable subsystem for dissect-
ing cancer's regulatory rewiring [10-14].

Given these considerations, we hypothesize that differen-
tial mitochondrial gene expression patterns can reveal can-
cer-type-specific prognostic modules. Their regulatory roles
are not fixed but dynamically adapted to meet the context-spe-
cific demands of diverse tumor types. This plasticity may un-
derlie resistance to single-agent therapies, as tumors exploit
the flexibility of these mitochondrial subsystems—groups of
interacting genes or proteins performing coordinated func-
tions— to sustain survival under therapeutic pressure [15-20].

In this study, we adopt a systems biology approach to in-
vestigate mitochondrial gene networks as a model regula-
tory subsystem—a group of interacting genes or proteins
that jointly perform a functional role. Our aim is to identi-
fy adaptive mitochondrial modules that contribute to can-
cer-type-specific regulatory reorganization, with a particular
focus on their prognostic significance and functional diver-
sity across tumors.

Materials and Methods

Ethical considerations

This study was conducted exclusively using publicly available
data from The Cancer Genome Atlas (TCGA) project (https://
www.cancer.gov/tcga). All data were fully deidentified and
used in accordance with the TCGA publication guidelines and
data access policies. No new human or animal data were col-
lected or generated by the authors. Therefore, this research
is exempt from institutional review board (IRB) approval un-
der current regulations [21]. All procedures performed in this
study complied with the ethical standards of the TCGA con-
sortium and with the 1964 Helsinki Declaration and its later
amendments. The study complies with the U.S. Department
of Health and Human Services policy for the protection of
human research subjects (45 CFR 46). The TCGA provides an
invaluable and ethically curated resource for studying can-
cer biology at the molecular level, enabling reproducible and
large-scale in silico analyses [22, 23].

Study design and overview

To investigate mitochondrial gene regulatory networks across
diverse cancer types, we used a systems biology framework
that combines co-expression network analysis, module-
phenotype association, and mechanistic enrichment. Our
middle-out strategy—anchored at the module level where
eigengenes represent the dominant expression pattern of
co-expressed genes—links gene-level perturbations to high-
er-order phenotypes. This design enables the detection of
biologically meaningful modules first and their subsequent
association with phenotypes, balancing molecular detail with
system-level interpretation.

This integrative analysis was conducted in three key
phases; first, we analysed RNA-seq data from TCGA to iden-
tify tumor-specific co-expression modules (Fig. 1, steps 1
to 3). Second, we correlated these modules with clinical
outcomes including survival and molecular subtypes (Fig.
1, steps 4 to 6). Third, we performed pathway enrichment
analysis using pathway enrichment results obtained via
Enrichr-KG which integrates GO, KEGG and Reactome data-
bases to annotate mechanistic functions (Fig. 1, step 7) [24].
This integrative strategy enabled systematic mapping of
mitochondrial regulatory programs in cancer while main-
taining biological interpretability.

Data acquisition and preprocessing

RNA-seq data and clinical metadata were retrieved from TCGA
using the GDCRNATools R package [25]. Raw HTSeq count data
and corresponding clinical metadata were downloaded for 23
cancer types. Only cancer types with = 2 matched Solid Tissue
Normal samples were retained, excluding other tissue types
and technical duplicates. This filtering yielded 17 cancer types:
BLCA, BRCA, CESC, COAD, ESCA, GBM, HNSC, KICH, KIRC, KIRP,
LIHC, LUAD, PRAD, READ, STAD, THCA, UCEC. Normalization
was performed using the Trimmed Mean of M-values (TMM)
method, followed by voom transformation, as implemented
in the GDCRNATools package. Only genes annotated as mito-
chondrial in the MitoCarta3.0 [26] human gene set (n=1,138)
were included, resulting in expression profiles for 7,874 sam-
ples (7,202 Primary Tumor, 672 Solid Tissue Normal). Sample
counts per cancer type ranged from 91 (KICH) to 1,208 (BRCA).

Delta expression matrix calculation

To quantify tumor-specific transcriptional alterations, a delta
expression matrix was constructed by subtracting the mean
expression of each gene in Solid Tissue Normal samples from
Primary Tumor expression values, separately within each can-
cer type. Sample types were assigned using clinical meta-
data. The final matrix contained 1,138 mitochondrial genes
(rows) and 7,202 tumor samples (columns). All identifiers were
checked for dimensional consistency prior to further analysis.
A limitation of this approach is the small number of normal
samples in a few cancer types, which may reduce the robust-
ness of the differential expression scores.



284

Int J Med Biochem

TCGA
I L
23 Cancers _fb_
AV v =2 Normal Tissue n
i Samples
v Only MitoCarta3.0 genes
= ¥ (TMM) normalization
» ¥ Voom- transformation
A 4
ng
e AE= ETumor _ l Z ENormal 8 Cancers
Y ng & 4 6 Modules
B N
! A
‘A
N b :] "
1138 x 7202 l—)| |_.
o WGCNA N 17 Cancers
7 Modules
l v |r]20.3 A
v FDR<0.05 :
Y 00 v' Bonferroni < 0.01 -
o °° B A A R EENEEERENRENERRERNERZSESRZSESHSEHS..] .-;
o
\
7

Figure 1. Schematic overview of the module-based cancer analysis pipeline. The workflow consists
of seven main steps: (1) acquisition and preprocessing of gene expression and phenotype data,
(2) calculation of delta expression, (3) construction of a gene co-expression network and module
detection via WGCNA tool, (4) correlation analysis between modules and cancer types, (5)
dimensionality reduction and visualization of module-trait relationships, (6) survival analysis based
on module expression, and (7) functional enrichment analysis to infer biological relevance. Funnel
icons represent filtering steps, with specific exclusion criteria indicated adjacent to each filter.

WGCNA: Weighted Gene Co-expression Network Analysis.

Co-expression network construction and module detection

Weighted Gene Co-expression Network Analysis (WGCNA) was
performed on the delta expression matrix to identify modules
of co-expressed mitochondrial genes [27]. A soft-thresholding
power of B=4 was selected based on scale-free topology and
mean connectivity criteria (R*=0.89), as illustrated in Appen-
dix 1a-b. The resulting adjacency matrix was used to compute
the topological overlap matrix (TOM), followed by hierarchical
clustering and dynamic tree cutting, which identified seven
distinct co-expression modules (Appendix 1c).

To evaluate module stability, the dataset was randomly split
into reference (70%) and test (30%) subsets, and module pres-
ervation was assessed across 20 permutations using both
Z-summary and median rank statistics, with higher Z-sum-
mary and lower median rank values indicating stronger and
more biologically coherent preservation; median rank values
supported the hierarchy suggested by Z-summary, hub genes
were identified based on intra-module connectivity (Appen-
dix 2). The Topological Overlap Matrix (TOM) was used to com-
pute kWithin values, and genes with kWithin >1 SD above the
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module mean were designated as hub genes. These genes
were retained for downstream functional analyses.

Module-cancer type correlation analysis

Cancer type metadata was one-hot encoded to match the
sample order in the module eigengene (ME) matrix. Pearson
correlations between MEs and binary cancer-type variables
were computed to identify module—cancer associations, with
significance assessed via Student’s t-distribution. Multiple
testing correction was performed using both False Discovery
Rate (FDR) and Bonferroni methods. Correlations with |r| = 0.3
and adjusted p-values <0.05 and FDR<0.01 (Bonferroni) were
considered significant (Appendix 2).

Dimensionality reduction and visualization of module-
trait relationships

To explore module-cancer associations, dimensionality re-
duction was applied to delta expression data restricted to
genes within significant modules. Principal Component Anal-
ysis (PCA) was used to project samples into lower-dimensional
space while preserving variance. Clustering patterns by cancer
type were visualized along the first two principal components,
and cluster quality was assessed using silhouette scores.To cap-
ture nonlinear structure, UMAP and t-SNE were also performed,
both supporting PCA-derived groupings and revealing distinct
cancer type separations based on module gene expression.

Functional enrichment analysis

Functional enrichment analysis was conducted for each module
using the Enrichr-KG platform, which integrates curated databas-
es such as WikiPathways, Reactome, KEGG, and Gene Ontology
[24]. Enrichment was based on the statistical overrepresentation
of module genes within known pathways, assessed via adjusted
p-values. Only modules significantly correlated with cancer types
were included to focus on biologically relevant gene networks.
Significant terms were summarized and visualized to aid inter-
pretation of predominant functional themes within each module.

Survival analysis

The prognostic relevance of mitochondrial gene co-expres-
sion modules was assessed using Kaplan-Meier survival
curves and univariate Cox proportional hazards models
based on module eigengene expression. Module scores were
matched with clinical survival data (time-to-event and event
status) from 7,202 tumor samples with complete metadata.
Samples were dichotomized into "High" and "Low" groups by
the median eigengene value per module. While median-based
grouping is common practice, it may lead to some informa-
tion loss, which should be considered when interpreting re-
sults. Survival differences were evaluated with log-rank tests,
and hazard ratios (HR) with 95% confidence intervals were
estimated via Cox models. P-values were adjusted for multi-
ple testing using the Benjamini-Hochberg false discovery rate
(FDR) method (Appendix 2). This approach provided robust
prognostic assessment across cancer types while avoiding as-
sumptions related to continuous variable modeling.

Table 1. Mitochondrial gene co-expression modules and
preservation statistics

Module Gene count Z-summary Median rank
ME1 443 28.85 2
ME3 107 16.54 4
ME2 162 13.89 7
ME4 99 13.29 5
ME6 58 12.27 2
ME5 72 10.13 5
ME7 46 9.85 4

Preservation was assessed using Z-summary, a composite statistic reflecting module
stability across datasets, and median rank metrics over 20 permutations. Higher
Z-summary and lower median rank values indicate stronger and more biologically
coherent module preservation across cancer types.

Software and tools

All analyses were performed using R version 4.4.1 (2024-06-14) on
Windows 11 x64. Key R packages included GDCRNATools (v1.18.0),
WGCNA (v1.73), survival (v3.8-3), survminer (v0.5.0), dynamicTree-
Cut (v1.63-1), fastcluster (v1.2.6), ggplot2 (v3.5.2), ggpubr (v0.6.0),
tidyverse (v2.0.0), umap (v0.2.10.0), and Rtsne (v0.17).

Results

Module preservation and structural robustness

WGCNA identified seven mitochondrial gene co-expression
modules (ME1-ME7), ranging from 46 to 443 genes in size (Ta-
ble 1). Genes not assigned to any module (MEQ) were grouped
into the gray module and excluded from downstream analy-
ses. Module preservation was evaluated using Z-summary and
median rank statistics across 20 permutations. Four modules—
ME1, ME3, ME2, and ME4—showed strong preservation. ME6
and MES5 also met the threshold for high preservation, while
ME7 demonstrated moderate stability. Median rank values sup-
ported the Z-summary-based hierarchy of module robustness.
Collectively, these results indicate that the identified modules
represent reproducible and biologically coherent co-expression
structures among mitochondrial genes across cancer types.

Module-cancer type associations

To evaluate the biological relevance of mitochondrial gene mod-
ules across cancer types, we assessed the correlations between
module eigengenes and tumor labels. Six of the seven modules
(ME2-ME7) showed statistically significant associations with at
least one cancer type (Fig. 2). In total, twelve significant module-
cancer type pairs were identified, involving eight distinct can-
cer types. Full correlation coefficients and adjusted p-values are
presented in Table 2. The strongest positive associations were
observed for ME6 with KIRC and ME5 with THCA, while ME7 ex-
hibited the most pronounced negative correlation with LIHC.

These findings suggest that mitochondrial gene co-expres-
sion patterns vary systematically across cancer types, po-
tentially reflecting tumor-specific mitochondrial reprogram-
ming. Based on significance filtering, a refined dataset was
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Figure 2. Module-cancer correlations.Bubble plot showing correlations
between gene expression modules (MVE2-ME7) and cancer types after
significance filtering. Bubble size reflects the absolute correlation,
while color indicates direction (red: positive, blue: negative).

generated comprising six modules (ME2 to ME7) and eight
cancer types (BRCA, LIHC, COAD, KIRC, KIRP, HNSC, PRAD, and
THCA). This subset included 544 genes and 4,269 tumor sam-
ples and was used for subsequent clustering, survival, and
functional enrichment analyses. To provide a comprehensive
overview, we included the full module-cancer correlation
matrix, the module-level delta expression heatmap, and ei-
gengene distributions across cancer types, shown in Appen-
dix 3, 4, and 5, respectively.

Dimensionality reduction and clustering of module activity

To assess whether mitochondrial module activity could strat-
ify tumors by type, we applied PCA, UMAP, and t-SNE to the
expression profiles of 544 genes across 4,269 tumor samples.
PCA accounted for a moderate portion of variance but yielded
limited clustering performance for most cancer types (Fig. 3a).
In contrast, both UMAP and t-SNE revealed clearer separation,
with UMAP achieving the highest overall cluster quality and
strongest within-type cohesion across several cancer types,
notably PRAD, LIHC, and HNSC (Fig. 3b, c).

These findings indicate that non-linear dimensionality reduc-
tion techniques better capture the underlying mitochondrial
expression patterns that differentiate tumor types.

Survival associations of mitochondrial modules

Univariate Cox proportional hazards analysis demonstrated
significant associations between mitochondrial gene co-ex-
pression modules and overall survival across 7,202 tumor sam-
ples. Modules ME5, ME7, ME4, ME6, and ME2 were associated
with improved prognosis, with hazard ratios ranging from
approximately 0.40 to 0.79 (all adjusted p<0.001). Converse-

Table 2. Prognostic mitochondrial gene modules and their
cancer-type-specific associations

Module Cancer Survival effect (HR)
ME5 HNSC (), PRAD (+), THCA (+) 0.40 (protective)

ME7 BRCA (+), LIHC (-) 0.46 (protective)

ME4 HNSC (-), PRAD (+) 0.47 (protective)

ME6 KIRC (+), KIRP (+), LIHC (+) 0.72 (protective)

ME2 LIHC (-) 0.79 (protective)

ME3 COAD (+) 1.25 (risk increasing)
Cancer Modules Survival effect (HR)
BRCA ME7 (+) 0.46 (protective)
COAD ME3 (+) 1.25 (risk increasing)
HNSC ME4 (-), ME5 (-) 0.47 , 0.40 (protective)
KIRC ME®6 (+) 0.72 (protective)

KIRP ME®6 (+) 0.72 (protective)

LIHC ME? (), ME2 (-), ME6 (+) 0.46,0.79, 0.72 (protective)
PRAD ME4 (+), ME5 (+) 0.47 ,0.40 (protective)
THCA MES5 (+) 0.40 (protective)

Mitochondrial modules (ME2-ME7) showing significant associations with specific
cancer types and corresponding hazard ratios (HR) from survival analysis are
summarized. The top section lists each module and its correlated cancer types; the
bottom section takes a cancer-centric view, indicating associated modules and their
prognostic effects. Modules with HR < 1 indicate protective associations, while HR>1
suggests increased risk.

ly, ME3 showed a significant association with poorer survival
(HR>1, adjusted p<0.001). These findings were consistently
supported by Kaplan-Meier survival analyses (Fig. 4) and fur-
ther quantified by module-specific hazard ratios calculated
from scaled eigengene expression.

Functional signatures of mitochondrial modules

Each identified module represents a coordinated gene pro-
gram reflecting distinct aspects of mitochondrial biology.
Functional enrichment analyses revealed that modules are
associated with specific mitochondrial processes as follows.

ME2 (Aminoacyl-tRNA and mitochondrial protein synthesis)

ME?2 is enriched in mitochondrial aminoacyl-tRNA synthetases
and components involved in mitochondrial translation, with
pathway enrichments in Aminoacyl-tRNA biosynthesis, Mito-
chondrial tRNA Aminoacylation,and Translation. It also includes
genes related to the TCA cycle, suggesting a link between
protein synthesis and central carbon metabolism. Function-
ally, ME2 likely regulates mitochondrial translational capacity
critical for bioenergetic demands. Its expression is negatively
correlated with tumor presence and positively associated with
better overall survival in liver hepatocellular carcinoma (LIHC),
indicating that preserved mitochondrial translation supports
favorable prognosis in metabolically active tumors. Disease
association analysis highlights links to mitochondrial disorders
such as lactic acidosis, reflecting mitochondrial dysfunction
that may underlie LIHC metabolic reprogramming.
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ME3 (Oxidative phosphorylation and mitochondrial transla-
tion initiation)

ME3 is enriched in genes related to mitochondrial translation
initiation, oxidative phosphorylation (OXPHOS), and respira-
tory complex assembly, reflecting a coordinated bioenergetic
program essential for ATP production. Key enriched path-
ways include Oxidative Phosphorylation, Respiratory Electron
Transport, and Mitochondrial Translation Initiation. Clinically,
ME3 expression positively correlates with tumor presence
and poorer overall survival in colon adenocarcinoma (COAD),
suggesting that elevated mitochondrial energy metabolism is
associated with tumor aggressiveness. This module likely rep-
resents a mitochondrial bioenergetic signature contributing
to cancer progression in COAD.

ME4 (Fatty acid B-oxidation and branched-chain amino acid
catabolism)

ME4 is enriched for genes involved in mitochondrial fatty
acid B-oxidation and branched-chain amino acid (BCAA)
catabolism, with pathway enrichments highlighting lipid
degradation, acyl-CoA metabolism, and peroxisomal lipid
processing. Key enzymes in valine, leucine, and isoleucine
degradation underscore ME4’s role in maintaining mitochon-
drial energy homeostasis through versatile substrate utiliza-
tion, especially under metabolic stress or nutrient scarcity.

MES5 (Apoptosis, mitochondrial dynamics, and calcium ho-
meostasis)

MES5 is enriched in genes regulating intrinsic apoptosis, mito-
chondrial dynamics, and calcium transport, with key pathways
including Apoptosis, Neurodegeneration, and Mitochondrial
Calcium lon Transport. This module likely coordinates mito-
chondrial quality control and stress responses. Clinically, ME5
expression is reduced in head and neck squamous cell carci-
noma (HNSC), correlating with tumor presence and poorer
prognosis, whereas in prostate adenocarcinoma (PRAD) and
thyroid carcinoma (THCA), higher ME5 levels associated with
better survival despite positive tumor correlation. These find-
ings suggest a protective role of ME5 across cancers, with
context-dependent transcriptional regulation reflecting mito-
chondrial integrity and apoptosis pathways.

ME6 (Lipid biosynthesis, Acyl-CoA metabolism, and amino
acid conjugation)

ME®6 is enriched in genes regulating fatty acid biosynthesis,
acyl-CoA metabolism, glycine conjugation, and pathways
related to detoxification and amino acid catabolism. Key
pathways include Fatty Acid Beta-Oxidation, Peroxisome
function, and Amino Acid Metabolism, indicating a role in
lipid catabolism and mitochondrial-peroxisomal crosstalk.
Clinically, ME6 expression positively correlates with tumor
presence in kidney cancers (KIRC, KIRP) and liver hepatocel-
lular carcinoma (LIHC), and associates with improved overall
survival, suggesting a protective metabolic program that
may limit tumor progression. This contrasts with modules

like ME7, characterized by downregulation of mitochondri-
al translation and negative correlation with tumors such as
LIHC. While ME®6 reflects an active metabolic state support-
ing fatty acid oxidation and detoxification linked to better
prognosis, ME7 indicates mitochondrial dysfunction or re-
pression of mitochondrial protein synthesis associated with
more aggressive tumor behavior. Together, these differenc-
es highlight the complex and diverse mitochondrial adap-
tations across cancer types that shape tumor biology and
patient outcomes.

ME7 (Ketone body metabolism, urea cycle, and sulfur amino
acid turnover)

ME?7 is enriched in genes involved in ketone body metab-
olism, urea cycle, and sulfur amino acid metabolism. Path-
way annotations highlight ketone metabolism, nitrogen
metabolism, and sulfur relay systems, suggesting roles in
metabolic reprogramming during fasting or nutrient fluc-
tuations, integrating nitrogen detoxification, energy sub-
strate switching, and redox buffering. Functionally, ME7
is composed mainly of mitochondrial ribosomal proteins
and oxidative phosphorylation components, reflecting a
core mitochondrial translational and bioenergetic program
essential for maintaining a balanced proteome, apoptosis
regulation, and ATP production. Clinically, ME7 expression
correlates positively with overall survival (HR=0.46), indicat-
ing preserved mitochondrial function may suppress tumor
progression. ME7 shows cancer-type specific expression
patterns: Upregulated in breast cancer (BRCA) and down-
regulated in liver hepatocellular carcinoma (LIHC). These
findings may reflect tissue-specific metabolic reprogram-
ming. In BRCA tumors, the retention of mitochondrial trans-
lation and apoptotic signaling is associated with better
prognosis, whereas LIHC exhibits metabolic dedifferentia-
tion and hypoxic adaptation. The loss of ME7 module ex-
pression in LIHC further supports a shift toward aggressive
tumor phenotypes. Downregulation of ME7 in LIHC mirrors
disruption of mitochondrial metabolic pathways including
amino acid and nitrogen metabolism, supporting aggres-
sive tumor phenotypes. Conversely, ME7 upregulation in
BRCA aligns with preserved mitochondrial function and
metabolic flexibility, promoting controlled tumor growth
and apoptosis. Overall, ME7 represents a mitochondria-cen-
tered tumor suppressive module whose context-depen-
dent expression is prognostically informative, underscoring
the interplay between mitochondrial translation, apoptosis,
and metabolic adaptation in cancer biology.

Discussion

Our integrative analysis of mitochondrial-related gene ex-
pression modules across multiple cancer types reveals dis-
tinct module-cancer specificity patterns with significant
prognostic implications as summarized in Table 2. Modules
ME2, ME4, ME5, ME6, and ME7 generally demonstrate pro-
tective effects on overall survival, whereas ME3 shows a
risk-increasing effect, highlighting the heterogeneous roles
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of mitochondrial functions in cancer progression. Notably,
ME2 exhibits a strong protective association uniquely in liv-
er hepatocellular carcinoma (LIHC), consistent with its role
in mitochondrial aminoacyl-tRNA synthetase function and
bioenergetic regulation. ME3, conversely, correlates posi-
tively with tumor presence and worse prognosis specifical-
ly in colon adenocarcinoma (COAD), reflecting heightened
oxidative phosphorylation activity potentially driving tu-
mor aggressiveness. Modules ME4 and ME5 show complex,
cancer-specific correlation directions, protective in some
cancers (e.g., HNSC) but positively correlated in others (e.g.,
PRAD, THCA), indicating context-dependent mitochondrial
pathway engagement. Modules ME6 and ME7 also display
strong protective effects with positive correlations in kidney
cancers (KIRC, KIRP) and breast cancer (BRCA), respectively,
supporting the notion that mitochondrial functional states
may influence survival in a tumor-type-specific manner.

Overall, our results emphasize the potential of mitochondri-
al functional modules as robust prognostic biomarkers and
promising therapeutic targets across diverse cancer types.
For instance, ME2's strong protective association specifically
in liver hepatocellular carcinoma (LIHC) highlights how pre-
serving mitochondrial translational capacity may suppress
tumor progression in metabolically demanding tumors. Con-
versely, the risk-increasing profile of ME3 in (COAD) suggests
that elevated mitochondrial oxidative phosphorylation
activity contributes to tumor aggressiveness in this cancer
type. These cancer-specific patterns suggest that mitochon-
drial dysfunction and metabolic rewiring may vary across tu-
mors, reflecting distinct bioenergetic adaptations. This mod-
ular perspective may inform metabolic precision oncology,
where therapeutic strategies can be tailored based on the
dominant mitochondrial module dysregulated in a patient’s
tumor. Such an approach may enhance treatment efficacy
by addressing cancer-specific metabolic dependencies, as
exemplified by ME2-associated modules in LIHC potentially
benefiting from therapies that restore mitochondrial trans-
lation and bioenergetics, while ME3-associated pathways
in COAD might be targeted by inhibitors of oxidative phos-
phorylation. Therefore, integrating mitochondrial module
profiling into clinical decision-making offers a promising
avenue for developing more effective, personalized cancer
treatments grounded in tumor metabolic phenotyping.

Furthermore, when stratifying tumors by their estimated
metabolic phenotypes, we observed a striking pattern:
Nearly all tumors classified as HGLO (High Glycolysis, Low
OXPHOS (Oxidative Phosphorylation)— meaning they
rely mainly on glycolysis and have suppressed mitochon-
drial respiration—belonged to the subset of cancers that
showed no significant correlation with mitochondrial gene
modules. In contrast, all tumors classified as HGHO (High
Glycolysis, High OXPHOS)—which maintain both glycolytic
and mitochondrial activity— were exclusively found among
cancers with strong and consistent correlations with mito-
chondrial modules.

This distribution aligns with prior pan-cancer metabolic clas-
sifications [28], and suggests that mitochondrial module en-
gagement may be shaped by the tumor’s dominant metabolic
strategy. Specifically, tumors with suppressed oxidative phos-
phorylation (HGLO) may show lower activity of mitochondrial
gene modules, which can reduce ATP production and alter
redox balance, explaining the lack of correlation. Conversely,
tumors with active mitochondrial metabolism (HGHO) rely
more on mitochondrial energy production and biosynthetic
pathways, resulting in enhanced energy production and ro-
bust module engagement. These findings support the view
that mitochondrial module expression may be both can-
cer-type specific and metabolically contextual and highlight
the importance of integrating metabolic phenotyping into
mitochondrial biomarker interpretation.

Our findings align with the evolving paradigm of mitochon-
dria as dynamic cancer regulators. While early studies focused
on the Warburg effect, we now recognize their pleiotropic
roles in metabolic reprogramming, ROS signaling, and apop-
tosis [7, 13, 29, 30]. Notably, our results supports that mito-
chondrial adaptations are highly context-dependent across
tumor types [13, 31]. These modules—particularly in transla-
tion and bioenergetics—may explain observed therapeutic
resistance [7, 32], suggesting that targeting mitochondrial
plasticity requires personalized approaches. Consequently,
stratifying tumors by mitochondrial module expression pro-
files may thus provide a framework for metabolic subtyping
and inform therapeutic strategies targeting mitochondrial
vulnerabilities. Although key mitochondrial modules with
prognostic and subtype-specific relevance were identified,
functional validation is needed to clarify their causal roles.
Integrating additional data such as mutations, epigenetics,
and metabolomics could deepen mechanistic insights. Fu-
ture studies should assess the potential of these modules as
predictive biomarkers for patient stratification and therapies
targeting metabolic vulnerabilities.

Interestingly, the cancer-type-specific behavior of mitochon-
drial modules may reflect a form of adaptive pleiotropy, a
concept previously described in microbial systems [33-35].
In such contexts, early adaptive mutations often occur in
global regulators, leading to broad transcriptomic shifts that
influence multiple traits simultaneously [36]. Analogous regu-
latory dynamics may underlie the divergent prognostic roles
of modules like ME2 and ME7 across tumor types. The lack of
module association in HGLO tumors may further support this
interpretation, consistent with stress-induced mitochondrial
suppression. These observations suggest that mitochondrial
modules may operate within regulatory architectures that fa-
vor coordinated multi-trait adaptation, reinforcing their role as
context-sensitive hubs in cancer evolution [37-39]. In summa-
ry, our findings support the concept of adaptive mitochondri-
al modules that ‘go with the flow’ of cancer-specific metabolic
rewiring, highlighting their potential as context-sensitive bio-
markers and therapeutic targets.
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