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Identification of key genes and pathways for 
cholangiocarcinoma using an integrated bioinformatics 
analysis

Cholangiocarcinoma (CCA) is a rare malignant cancer arising 
from extrahepatic and intrahepatic biliary epithelial cells, 

and it accounts for 10%-20% and 3% of primary and gastroin-
testinal cancer types, respectively, around the world [1]. Its 
prevalence is reported as 0.5-1.2 out of 100 000 as being higher 
gender incidence in men compared with women. There are 

three groups in CCA according to anatomical localization: (1) in-
trahepatic, (2) perihilar, and (3) distal extrahepatic [2]. CCA has a 
low 5-year survival rate upon surgery and chemotherapy treat-
ments [3, 4]. Although great efforts are made during its routine 
diagnosis, only 1 out of 3 CCA patients are diagnosed in the 
early stage, which is low compared with that of other cancers.

Objectives: The scope of this study was to identify potential genes as a promising biomarker in diagnosing cholangio-
carcinoma (CCA) or differentiating the subtypes of CCA. In this study, we used Gene Expression Omnibus (GEO)-NCBI data 
sets as promising open sources to perform integrative analysis.
Methods: The gene expression data sets of intrahepatic CCA (iCCA) and extrahepatic CCA (eCCA) were retrieved from 
GEO, and the statistical analysis of GSE45001 (iCCA), GSE76311 (iCCA), and GSE132305 (eCCA) was performed to iden-
tify significantly expressed genes. The association of listed genes with CCA was checked via text-mining approaches. 
For CCA, the details were provided by discussing its relations with our results. Then, the pathway analysis was per-
formed to identify common pathways both in iCCA and eCCA.
Results: The pathway analysis reveals that although there are common pathways between iCCA and eCCA, the asso-
ciated genes within these pathways are different from one another. According to the results of upregulated gene sets, 
integrin cell surface interaction (R-HSA-216083), MET activates PTK2 signaling (R-HSA-8874081), degradation of the 
extracellular matrix (ECM) (R-HSA-1474228), nonintegrin membrane–ECM interaction (R-HSA-3000171), and assembly 
of collagen fibrils and other multimeric structures (R-HSA-2022090) are found as common pathways among these data 
sets, yet there is no reported common pathway within downregulated gene sets. A detailed study of common pathway 
analysis shows that COL1A1 and COL1A2 genes, whose associations with CCA have not been reported, seem promising 
to differentiate iCCA from eCCA. The pathway analysis also reveals that although there are common pathways between 
iCCA and eCCA, the associated genes within these pathways are different from one another.
Conclusion: Focusing on pathways rather than genes is more promising for revealing the potential biomarkers to-
gether with providing a deeper understanding by highlighting significant pathways.
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In recent decades, there have been great contributions from 
advanced molecular techniques to the field of cancer diagno-
sis and treatment by enabling patient-specific molecular pro-
filing and integrating in vivo and in vitro finding with clinics 
[5, 6]. The diagnosis stage of cancer is a crucial parameter for 
treatment response in which tumor markers are used [7]. In 
addition to early diagnosis, tumor markers are also used for 
screening, staging, or disease monitoring. The accuracy and 
efficiency of tumor markers are crucial parameters to widen 
their usage because they define the risk of overdiagnosing. 
The World Health Organization defines a biomarker as “a 
process, outcome or incidence of disease that can be mea-
sured in any substance, structure or body or its products and 
which can affect or predict the functioning of the body” [8]. 
Similarly, tumor markers are defined as biomarkers whose in-
creased expression level is in close association with cancer.
As cancer is considered a complex disease in which its contrib-
utors are varied from one person to another, the discovery of 
novel biomarkers for each type of cancer is continuously de-
manded. The lessons coming from personal medicine in can-
cer taught us that there is patient-specific variance in treat-
ment, leading to a shift in biomarker discovery studies rather 
than proposing specific gene, miRNA, and protein to propose a 
pathway-specific biomarker. It emphasizes the importance of 
pathway specificity for either selected cancer type or subtype 
by decreasing the errors during the screening stage of differ-
ent populations to test the specificity of selected biomarker(s). 
This approach is in line with what we have learned from the 
personalized medicine approach that states the accumulation 
of mutation(s) in pathways rather than specific gene(s) as be-
ing an actual driving force for cancer. Until now, several CCA-
associated biomarkers, such as cysteine dioxide type 1 (CDO1) 
[9], secreted curvy protein 1 (SFRP1) [10], zinc finger and SCAN 
domain protein 1 (ZSCAN18) [11], and cool/threonine-protein 
kinase 1 (DCLK1) [12], are reported with limited usage due to 
lack of specificity and accuracy. Because these genes do not 
exist in the same or associated pathways, it would decrease 
their specificity and accuracy parameters.
In this work, we aim to discover novel biomarkers by using 
GEO data sets of iCCA (GSE45001 and GSE76311) and eCCA 
(GSE132305) patients via a pathway-specific approach. Here, we 
report five common pathways between iCCA and eCCA. Through 
the integration of pathway analysis with a statistical approach, 
we detect COL1A1 and COL1A2 genes as promising biomarkers 
to differentiate iCCA from eCCA, and their association with CCA 
is reported in our work. This study also demonstrates the power 
of a pathway-based approach to discover the potential biomark-
ers that could be used to differentiate subtypes of CCA.

Materials and Methods
Retrieving data sets and processing with R-language 
We used GEO data sets of GSE45001, GSE76311, and GSE132305 
that presented iCCA and eCCA [13]. Data set selection was per-
formed by applying filtering parameters such as experimen-

tal approach and the number of controls and patients within 
the cohort. Via R-language, the contents of data sets were 
filtered according to the p-value as being smaller than 0.05. 
Then, the genes were divided into up- or downregulated sets 
according to their |log FC| values, presenting quantity change 
within a base 2. The |log FC| limit was applied as –<2 and >+2 
for down- and upregulation divisions except for GSE132305 in 
which |log FC| >0.30 was applied due to the limited number 
of significantly expressed genes. By using openxlsx and dplyr 
packages of R-language, an agglomerative hierarchical set of 
down- and upregulated lists was created by working from top 
to bottom by linking a family tree as an image, and hierarchi-
cal clustering analysis (HCA) dendrograms were created.

Pathway analysis and text-mining approach
After HCA, results were hit to the Reactome pathway database 
[14] to reveal detailed pathway analysis. The listed pathways 
with p-values smaller than 0.05 were subjected to further 
analysis by a gene distiller tool, which provides information 
on genes with CCA within the literature. Genes were hit by the 
gene distiller according to their assigned nodes that repre-
sented genes a maximum of two steps away from each other 
based on the origin of clustering.

Results
First, we provide all descriptions of selected GEOs in terms of 
technical details (Appendix Fig. 1). In the eCCA cohort, there 
were 10 normal and 182 tumor in GSE132305. In the iCCA 
cohort, there were 10 normal and 10 tumor in GSE45001 and 
91 normal and 92 tumor in GSE76311. After filtering data sets 
according to p and log FC values, the created gene sets were 
subject to HCA, which was used to define the coregulation of 
genes under the sets of circumstances already defined [15] 
by ending up with the meaningful groups that are further ex-
plained by biochemical insight. HCA is a powerful technique 
in terms of presenting data based on correlation coefficient 
matrix results. Its nature is complex and confusing in the stage 
of data interpretation, and there is no step to perform the 
reevaluation of results [15].

Specifically, in GSE45001, 369 genes and 640 genes within 
the data set are passing the up- and downregulation thresh-
olds to perform HCA. As there are many up- and downregu-
lated genes coming from GSE45001, only common ones with 
GSE76311 and GSE132305 are presented. According to HCA 
of upregulated ones, the dendrogram results of 17 genes are 
displayed with three housekeeping genes (e.g., PPIA, GAPDH, 
and PGK) and four oncogenes (e.g., PAX8, HMGA1, HMGA2, and 
HRAS) (Fig. 1). For HCA of downregulated genes, the dendro-
gram results of 44 genes are reported with seven oncogenes 
(e.g., MAF, TIAM1, TCL1A, BCL11A, IRF4, FOS, and FGFR2) (Ap-
pendix Fig. 2). Herein, it is important to have a close look at 
genes associated with oncogenes and housekeeping genes to 
make meaningful attributions about their roles in CCA.
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After defining the nodes in the HCA dendrogram results, we 
performed text mining. Based on gene distiller results of up-
regulated gene sets of GSE45001, iLAMC2 and POSTN are found 
in close relationship with CCA. LAMC2 gene is reported only on 
time by stating that the silencing of LAMC2 is associated with 
the decreased activity of the EGFR signaling pathway, and it 
acts as a tumor suppressor in CCA [16]. Specifically for POSTN 
gene three different relationships with CCA are reported such 
that (1) high periostin is used to distinguish CCA from other liv-
er-related diseases by also used as a prognostic factor for poor 
survival, (2) higher expression level of iCCA in serum samples, 
and its elevated level is used to distinguish CCA from other 
hepatic malignancies, and (3) periostin-activated invasion of 
CCA cells via ITGalpha5beta1/PI3K/Akt pathway [17-19].
As a part of the iCCA cohort, the statistical analysis approach 
was applied to the GSE76311 data set to select and prioritize 
genes according to p-values and log FC. Based on the HCA 
results of GSE7311 of up- and downregulated gene sets, we 
observe no oncogene and housekeeping gene in the dendro-
gram results of up- and downregulated data sets of GSE76311 
(Fig. 2 and Appendix Figure 3, respectively). Based on the 
results of upregulated data sets in GSE76311, there exist 
three nodes. Within node 1, CEACAM5, MUC13, EPCAM, and 
NQO1 genes are found in relation to CCA. It is stated that the 
CEACAM5 level in serum samples is reported as an indicator 
of long-term mortality if CCA tumor resection takes place. 
MUC13 is related to EGFR/PI3K/Akt pathway by leading to 
speed up iCCA progression [16]. Specifically for EPCAM gene, 
it is stated that there is a mutual interaction with beta-catenin 
that refers to the progression and invasion of eCCA along the 
spatial localization of the intercellular domain of epithelial cell 
adhesion. In node 2, KRT19, MUC1, POSTN, SPP1, AGR2, MMP7, 
and KLF5 genes are found in relation to CCA. Measuring the 
high level of KRT19 gene expression is reported to be associ-
ated with poor postoperative outcomes and tumor progres-
sion in iCCA [20, 21]. For MUC1 gene, it is a very useful indica-
tor for mass forming in iCCA if surgical resection takes place 
[22, 23]. In AGR2 gene, it is suggested that the aberrant alter-
native splicing takes place and results in the accumulation of 
AGR2vH isoform that contributes to the pathogenesis of CCA 

by facilitating cell survival under the presence of ER stress via 
the activation of the unfolded protein response pathway [24, 
25]. Similar to KRT19 gene, MMP7 gene expression level is used 
as a prognostic factor about unfavorable postoperative out-
comes mostly arising around large bile ducts [26]. Finally, for 
KLF5 gene, it is discovered that lncRNA/pVT1/mir 186 relation-
ship axis is affected by the occurrence and progression of CCA 
[27]. Through the text-mining approach, we may also report 
the opposite results within our results, for example, decreased 
SPP1 expression level is used as a reliable indicator for predict-
ing tumor aggressiveness together with clinical outcome [28], 
but it is found as upregulated according to our results.
In node 3, CD44, GALNT3, ITGA6, ITGB4, ITGB6, MECOM, PROM1, 
LAMC2, CDH17, DKK1, ANXA2, PKM, DSG2, and TFF1 genes are 
reported to be in relation with CCA according to gene dis-
tiller tool. CD44 gene is found in relation to iCCA through 
the ROS-mediated Akt signaling pathway, and its enhanced 
expression level indicates the vascular invasion of iCCA [29]. 
The association of ITGB6 gene with CCA is reported such that 
it is used as an indicator of eCCA specifically by referring to 
differentiate eCCA from benign liver disease [30]. For ITGA6 
gene, its overexpression describes the phenotype of migra-
tion and invasion processes in iCCA. The association of ITGB4 
with CCA is reported as ITGB4 gene has a role in FAK/Src sig-
naling in clonorchiasis-associated CCA metastasis during the 
stage of tumor progression [31]. For MECOM gene, it is stated 
that there is a close relationship between its expression level 
and the aggressive behavior of iCCA [32]. According to litera-
ture findings, PROM1 gene is a prognostic indicator of iCCA 
by displaying higher incidences together with HIF1A gene. 
Specifically for the association of CDH17 gene, its protein is in-
volved in the morphological organization of the liver and gut 
via participation in the structure of LI-cadherin [33]. For DKK1 
gene, its association with a variety of human malignancies has 
already been demonstrated by highlighting that its increased 
expression level results in proliferation, invasion, and growth 
in cancer cell lines through the beta-catenin/MMP-7 signaling 
pathway, and thus it has been attracted as a potential ther-
apeutic target for CCA [34]. The next gene related to CCA is 
ANXA2, and its close relation with CCA is explained in terms 

Figure 1. Hierarchical clustering of genes with upregulated genes in the GSE45001 (iCCA).
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of resistance to cancer therapy. The close relation between 
ANXA2 protein metabolism and therapy resistance has been 
reported in CCA by indicating the potential role of ANXA2 
as a neoplasm marker, referring to an enormous increase 
in the growth of tumor tissue [35]. Another important rela-
tion of CCA from the metabolic point of view is reported for 
PKM2 gene, whose increased expression in CCA cell is con-
sidered a leptin response. Here, the increased level of leptin 
is strongly associated with EMT and pro-angiogenesis [36]. 
For GALNT3, CDH17, and TFF1 genes, there are opposite 
findings in the literature to our results, such that they are all 
downregulated in CCA but present as upregulated in our 
results. It is reported that for GALNT3 gene, miR-885-5p in-
hibits the cell proliferation together with metastasis ability 
by targeting GALNT3 and IGF2BP, and hence the expression 
level of GALNT3 gene has decreased in CCA [37]. Also, for 
CDH17 gene, its lowered expression level is associated with 
the increased expression level of MTF-1 and PIGF proteins 
having a role in controlling angiogenesis [33]. The literature 
finding about the TFF1 gene suggests that its reduced ex-
pression level might promote cell proliferation by implying 
the invasive nature of iCCA [37].
Finally, we performed the statistical analysis and HCA with 
GSE132305, presenting the iCCA cohort, and 28 and 44 
genes were reported as being up- and downregulated, re-
spectively. In Fig. 3a, the HCA result of upregulated genes 
is displayed, and there are no associated oncogene and 
housekeeping genes in dendrogram results, but JUN, FOS, 
and FGFR1 oncogenes are present within the HCA results 
of downregulated gene sets (Appendix Fig. 4). According 
to the HCA result of GSE132305 (iCCA), it is interesting to 
report the presence of LAMC2 and POSTN genes which are 
also reported in GSE45001 (eCCA) and GSE76311 (eCCA) 
data sets. This finding implies that LAMC2 and POSTN genes 
are common upregulated genes both in eCCA and in iCCA, 
and their expression levels could not be used to identify 
subtypes of CCA.
We perform text mining via the gene distiller tool by apply-
ing the same rule in terms of defining “node” for the den-
drogram results of GSE132305. Here, only two genes are 
found in association with CCA (e.g., SALL4 and MALPK14). 
Specifically, for MAPK14 gene, there is an association be-
tween c-MET and MAPK14 in terms of CCA prognosis [38]. 
For SALL4 gene, the interesting finding is about the onco-
genic role in iCCA but actually being presented within our 
eCCA data set [39, 40].
Our text-mining results are further analyzed in terms of 
their existing associations with eCCA or iCCA. Table 1 lists 
the consistently presented upregulated genes in GSE45001 
and GSE76311 data sets. According to our results, 18 out 
of 24 genes are not revealed as being associated with CCA 
via the gene distiller tool. Table 2 lists p-values and log FC 
values of genes within upregulated part of GSE132305. Out 
of 16 genes, there are no text-mining results to indicate any 
already defined or existing relationship with iCCA. These Fi
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findings suggest it opens a new door to perform further re-
search about their possible relations with CCA.
Next, we combine all related information about genes listed in 
Tables 1 and 2 to describe the common pathways having a role 
in cancer mechanisms. The detailed analysis demonstrates 
only cancer-related and not pathways in which genes listed in 
Tables 1 and 2 are present (Appendix Tables 1, 2). By referring 
to the results listed in Appendix Table 2, we create a diagram 
to describe the relationships between cancer-related path-
ways in terms of involved genes. These common pathways are 
listed as: (1) integrin cell surface interaction (R-HSA-216083), 
(2) MET activates PTK2 signaling (R-HSA-8874081), (3) degra-
dation of ECM (R-HSA-1474228), (4) nonintegrin membrane-
ECM interaction (R-HSA-3000171), and (5) assembly of colla-
gen fibrils and other multimeric structures (R-HSA-2022090). 
In Appendix Table 3, the p-value analysis of all these pathways 
is reported for each GEO data set by implying a higher signif-
icance level (p < 0.05 for each data set). There are 14, 7, 10, 
and 10 common genes between integrin cell surface inter-
action-degradation of ECM, integrin cell surface interaction-
MET activates PTK2 signaling pathways, integrin cell surface 
interaction-nonintegrin membrane-ECM interaction, and in-
tegrin cell surface interaction-assembly of collagen fibrils and 
other multimeric structures, respectively. Specifically, for non-
integrin membrane-ECM interaction, there are 9, 10, and 11 
genes between nonintegrin membrane-ECM interaction-MET 
activates PTK2 signaling, nonintegrin membrane-ECM inter-
action-degradation of ECM, and nonintegrin membrane-ECM 
interaction-assembly of collagen fibrils and other multimeric 
structure, respectively. Between the MET activates PTK2 sig-
naling-assembly of collagen fibrils and other multimeric struc-
tures, and MET activates PTK2 signaling-assembly of collagen 

fibrils-degradation of the ECM, there are 6 and 7 common 
genes, respectively. In Figure 3b, the thickness of connected 
lines between pathways is drawn according to the number of 
shared genes.
With regard to the integrin cell surface interaction pathway 
(R-HAS-216083), the components of ECM provide mechanical 
strength and hence affect the behavior and differentiation 
states of cells in contact. Integrins in ECM are served as a re-
ceptor to mediate cell adhesion and also prefer to mediate 
cell-cell interaction by forming 24 different receptors through 
different structural combinations of alpha and beta subunits. 
Within this pathway, COL1A1 and COL1A2 genes become ap-
parent in terms of log FC values higher than 2, together with 
significant p-values in iCCA data sets. Upon the shift from iCCA 
to eCCA, different genes have a role in both (R-HSA-216083) 
and others shown in Figure 3b, and it implies the specificity of 
COL1A1 and COL1A2 genes.
The next pathway is MET activates PTK2 signaling (R-
HSA-8874081) pathway, and here PTK2 kinase (focal adhesion 
kinase) is activated by MET receptor through PTK2-integrin 
interaction. According to the literature, the signaling FAK-Src 
complex plays a crucial role in terms of regulating cell migra-
tion through sets of protein complex formations [41]. Actin fil-
aments are involved in this cell migration process through the 
attachment mechanism toward focal adhesions. Specifically 
for this pathway (R-HSA-8874081), LAMC2 gene is a common 
one among GSE45001, GSE76311, and GSE132305 as being in 
line with gene distiller results, indicating LAMC2 gene as com-
mon for both iCCA and eCCA subtypes. Also, it is important to 
notice that LAMC2 gene is common for all reported pathways 
in Figure 3b in iCCA and eCCA, except the integrin cell surface 
interaction pathway (R-HAS-216083).

Figure 3. HCA of genes with upregulated genes in the GSE132305 (eCCA) data set is shown. 
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Figure 4. The number of genes existing in different pathways within upregulated gene sets of (a) GSE45001 (iCCA), (b) GSE76311 (iCCA), and 
(c) GSE132305 (eCCA).

N
um

be
rs

 o
f g

en
es

N
um

be
rs

 o
f g

en
es

N
um

be
rs

 o
f g

en
es

Pathways

Pathways

GSE45001

GSE76311

GSE132305

Pathways

45001 up regulated

76311 up regulated

132305 up regulated

b

a

c



Kutlu, Key genes and pathways for CCA / doi: 10.14744/ijmb.2022.18199 143

For degradation of ECM (R-HSA-1474228), metalloproteinases 
(MMPs) have a role in the degradation of ECM through the 
involvement of divalent cations (Zn2+ and Ca2+). Upon the 
degradation of ECM, the release of ECM-bound growth factors 
is initiated together with non-ECM proteins, which are a sub-
strate of MMPs [42]. Within this pathway, MMP7 and SPP1 be-
come significantly appearing in terms of log FC values higher 
than 2, together with significant p-values in both iCCA data 
sets (Table 1), but not in eCCA data set. According to gene 
distiller results, the association of these genes with CCA has 
already been reported in the literature, for example, a reliable 
indicator for predicting tumor aggressiveness together with 
clinical outcome upon decreased SPP1 expression level [29] 
and a prognostic factor of unfavorable postoperative out-
comes mostly arising around large bile ducts in the increased 
expression level of MMP7 [26]. The expression level of SPP1 
gene within GSE45001 and GSE76311 is not in line with the 
statement in the literature about CCA.

The next pathway is a nonintegrin membrane-ECM interac-
tion (R-HSA-3000171) in which interaction of nonintegrin 
proteins with ECM proteins are described. It is stated that 
the actin cytoskeleton is affected by the association between 

Table 1. Common gene list in GSE45001 and GSE76311 data sets (log FC values (>+2))

  GSE45001   GSE76311

Gene name p  log FC p  log FC

ANLN 2.68×10-6  4.214 5.94×10-63  3.01421901
ANXA2 5.17×10-5  2.166 8.01×10-67  2.37014979
CDCP1 6.13×10-5  2.695 1.16×10-50  2.04375701
CENPF 5.12×10-7  3.27 5.00×10-49  2.00807165
COL1A1 1.89×10-5  4.492 7.01×10-47  2.22160893
COL1A2 0.00202876  2.719 1.91×10-50  2.57628486
CXCL5 0.01484586  2.322 5.27×10-23  2.57165495
DKK1 2.65×10-7  4.18 1.32×10-19  2.14279662
DSG2 0.00804538  2.105 1.26×10-43  2.0404121
ESRP1 0.00651023  2.047 1.56×10-68  3.155865
KIF23 3.55×10-7  3.558 1.55×10-55  2.04212208
MKI67 4.84×10-6  2.238 9.90×10-61  2.79189592
MMP7 0.00049631  2.689 1.39×10-29  2.9845378
MYOF 4.86×10-5  2.285 5.83×10-66  2.93634342
OLFM4 0.01538662  2.923 4.87×10-20  2.91078092
SEMA3C 0.00010665  2.483 2.62×10-57  2.89360704
SGPP2 0.00199532  2.202 4.00×10-46  2.07527098
SLC2A1 0.00286122  2.325 1.69×10-45  2.45657992
SLC7A11 0.00010399  3.105 4.58×10-43  2.7923989
SPINK1 0.00190932  4.063 3.84×10-29  2.64624293
SPP1 3.96×10-5  3.334 8.33×10-35  3.11390769
TMC5 0.0059147  3.27 3.18×10-61  3.64411986
TOP2A 5.81×10-5  2.953 1.10×10-56  2.89871301
VCAN 0.00164071  2.494 7.05×10-55  3.13510331

FC: Fold change.

Table 2. Upregulated gene list in GSE132305 (log FC values 
(>0.3))

Gene name p log FC

ACP1 3.3134×10-12 0.57846272
APAF1 6.68908×10-12 0.38186968
CTSE 6.51207×10-11 1.50705014
FN1 1.51516×10-12 1.48100468
H1F0 1.9611×10-10 0.54384289
HIST1H4K 2.33621×10-10 1.01470067
IL32 6.09057×10-12 0.87622839
JUP 6.60091×10-12 0.62274286
LSR 4.63384×10-14 0.67891355
MICAL2 7.58784×10-10 0.51833906
MYH14 2.96245×10-10 0.59993309
PLA2G7 1.26994×10-12 0.77699447
ROD1 2.3663×10-11 0.79816917
TNS3 1.65427×10-11 0.62464377
UHRF1BP1 2.64511×10-10 0.52704323
UNC5B 1.00176×10-10 0.57275795

FC: Fold change.
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transmembrane proteoglycans and integrin/growth factor 
receptors. Again, COL1A1 and COL1A2 genes are reported as 
promising in terms of differentiation of iCCA and eCCA as be-
ing only presented in iCCA. In addition to COL1A1 and COL1A2 
genes, ITGA2 gene is also specific for iCCA as being presented 
in upregulated gene sets of GSE45001 and GSE76311, but its 
expression level together with log FC values is not so strong to 
be involved in Table 1.
The last common pathway is the assembly of collagen fibrils 
and other multimeric structures (R-HSA-2022090), whose ar-
chitecture is dependent on the subtypes of collagens and cel-
lular conditions. The components of structural collagens de-
termine the mechanical and physical properties of tissues by 
providing long-range mechanical connectivity and site for cell 
attachments [43-46]. According to the literature, the presence 
of mutations within collagen genes leads to changes in the 
structure of the triple helix that would lead to abnormal fibril 
assembly formations [47]. The strong association of collagen 
fibril assemblies with ECM clarifies its association with can-
cer. Previously, the integrative miRNA-lncRNA study reveals 
the potential for the assembly of collagen fibrils and other 
multimeric structure pathway (R-HSA-2022090) as a survival 
biomarker in cervical cancer [48]. Again, COL1A1, COL1A2, and 
MMP7 genes are common only in this pathway within iCCA 
data sets.
Besides them, we also report pathway-gene association for 
each GEO data set (Fig. 4). It is clearly seen that the number 
of associated genes for common pathways is also varied in 
iCCA data sets. Here, the higher number of genes present in 
the signaling pathways by receptor tyrosine kinase and sig-
naling by Rho GTPases in eCCA data set, GSE132305. These 
two pathways do not present in iCCA data sets, and hence 
it would be promising to assess the potential of genes asso-
ciated with these pathways in terms of differentiating eCCA 
from iCCA. As we focus on the signaling by receptor tyrosine 
kinase, there are FN1, JUP, and TNS3 genes whose log FC and 
p-values are listed in Table 2. Similarly, HIST1H4K, IL32, JUP, and 
MYH14 genes are revealed in the signaling pathway by Rho 
GTPases, and log FC and p-values of them are shown in Table 
2. There is a common issue for FN1, JUP, TNS3, HIST1H4K, IL32, 
JUP, and MYH14 genes that their association with CCA is not 
yet revealed via text-mining approach.
Until now, the pathway-based analysis results are reported 
for upregulated data sets. By using the same approach, we 
reveal the common pathways of downregulated gene sets of 
GSE45001, GSE76311, and GSE132305. Being different from 
the results of upregulated gene sets, there are no common 
pathways shared by GSE45001, GSE76311, and GSE132305. 
Only two common pathways appeared between GSE45001 
and GSE76311 as (1) drug ADME (R-HSA-9748784) and (2) 
the regulation of IGF transport and uptake by IGFBPs (R-
HAS-381426).
Finally, we check the expression level of already reported 
biomarkers (CDO1, SFRP1, ZSCAN18, and DCLK1) for CCA in the 

literature within iCCA and eCCA GEO data sets. [9-12]. SFRP1 
and DCK1 genes are present only in GSE132305 (eCCA) data 
set within downregulated gene sets, but their log FC values 
are so close to zero. CDO1 gene is present only in iCCA, with 
~3-6 log FC values. These findings also demonstrate the need 
for highly accurate and sensitive biomarkers for CCA, as pro-
posed earlier in the study. The discovery of biomarkers for CCA 
is an important step in terms of translating research into clin-
ics. Achieving the clinical significance of discovered biomark-
ers is an ultimate goal as it enables easier categorization of 
CCA-diagnosed patients for whom personalized treatments 
could be applied. In the case of verifying these findings with 
an experimental approach, we can reveal more about the po-
tential of these highlighted genes. 

Discussion
Within the scope of this study, we use the advantages of using 
GEO data sets for probing the potential genes as biomarkers 
of CCA. Depending on HCA dendogram results of up- and 
down-regulated data sets of both iCCA and eCCA, we check 
any existed associations of significantly expressed genes with 
CCA via text-mining approach.  Here, we reveal that 18 out 
of 24 genes existed in common up-regulated gene lists of 
GSE45001 and GSE76311 datasets are not yet associated with 
eCCA. Similar result is also reported for up-regulated gene set 
of GSE132305 such that there is no reported association for 16 
reported genes with iCCA. All these findings have suggested 
that there open new doors in the field of iCCA and eCCA to 
search for possible relationships of these listed genes, see 
Table 1 and Table 2. 
To boost our knowledge more than statistical analysis of gene 
expression data, we perform pathway-based analysis with our 
featured genes. Here, we explore that these common genes 
(Tables 1, 2) are centered in cancer-related pathways that are 
mostly involved in regulation of microenvironment, consid-
ered as one of the most critical aspects in cancer metastatis.  
When we focus on these pathways in individual manner to 
provide a deeper understanding about CCA, we reveal that 
COL1A1 and COL1A2 genes are significantly expressed and 
having a role in integrin cell surface interactions pathway (R-
HAS-216083) in iCCA but their expression pattern is lost upon 
shift from iCCA to eCCA. Also, we observe different gene in 
integrin cell surface interactions pathway (R-HAS-216083) in 
eCCA. All these results have suggested the potential role of 
COL1A1 and COL1A2 genes to differentiate iCCA and eCCA. 
The similar promising results in terms of differentiating iCCA 
and eCCA from pathway-integrated manner are reported for 
MMP7 and SPP1 genes in the degradation pathway of ECM 
(R-HAS-1474228). Still, these two genes are promising to dif-
ferentiate iCCA from eCCA but there is a problem about in-
consistent expression value of SPP1 gene  within the data sets 
of GSE45001 and GSE76311, and the statements in literature. 
Therefore, only MMP7 gene is left specifically for the degrada-
tion of ECM (R-HAS-1474228) pathway but its association with 
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CCA is already reported in the literature as a prognostic factor 
of unfavorable post operative outcomes [26]. 

Conclusion
In this study, we perform an integrated bioinformatics analysis 
with GEO data sets of gene expression data sets of iCCA and 
eCCA to question promising key genes in common pathways 
as biomarkers. Based on the detailed pathway analysis, we re-
port five common pathways having a role both in iCCA and 
eCCA: (1) integrin cell surface interaction, (2) MET activates 
PTK2 signaling, (3) degradation of ECM, (4) nonintegrin mem-
brane-ECM interaction, and (5) assembly of collagen fibrils 
and other multimeric structures. The deeper analysis of these 
pathways has suggested that COL1A1 and COL1A2 genes 
could be potentially used to identify iCCA from eCCA. These 
findings are first reported in the literature. Also, MMP7 gene 
is also serving to differentiate subtypes of CCA, but its associ-
ation with CCA is already known in the literature. Herein, it is 
also interesting to note that the common pathways are mostly 
related to extracellular environments in which cell-cell inter-
action, cell differentiation, and/or tumor formation are taking 
place. The integration of gene expression data sets with path-
way analysis has suggested that focusing on pathways rather 
than solely on gene expression data set seems to be a bet-
ter approach to understanding CCA and revealing promising 
biomarkers.
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Appendix Figure 1. The description of GEO data sets together with content of data.

The features and volcano ploits of GSE 45001

The features and volcano ploits of GSE 132305

The features and volcano ploits of GSE 76311
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Appendix Figure 2. Hierarchical clustering of genes with down regulated genes in the GSE45001 dataset is shown.

Cluster dendrogram

M_dist
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Appendix Figure 3. Hierarchical clustering of genes with down regulated genes in the GSE76311 dataset is shown.

Log FC values in the range of -2 and -2.5

Log FC values in the range of -2.5 and -3

148



Kutlu, Key genes and pathways for CCA / doi: 10.14744/ijmb.2022.18199

Appendix Figure 3. Cont.

Log FC values in the range of -3 and -4

Log FC values in the range of -4 and -6

Cluster dendrogram

Appendix Figure 4. Hierarchical clustering of genes with down regulated genes in the GSE132305 dataset is show.
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Appendix Table 1. Common down-regulated genes of the GSE45001 and GSE76311 datasets

  GSE45001   GSE76311

Gene  p  Log FC  p  Log FC

HRG  7.6623E-11   -9.668  5.5889E-47   -5.1080837 
SERPINC1  1.459E-09   -9.369  1.2017E-61   -5.4476411 
PLG  3.4399E-09   -9.236  2.6465E-64   -4.5346724 
AFM  5.9052E-10   -9.108  5.544E-59   -5.1559413 
ADH4  3.4024E-11   -8.974  8.0026E-54   -5.0106461 
CYP8B1  2.3377E-10   -8.919  7.0942E-69   -4.2193102 
ALDOB  1.0923E-10   -8.894  5.7811E-44   -4.0343521 
TTR  7.877E-10   -8.889  8.6317E-55   -4.5203846 
AHSG  4.5825E-11   -8.858  3.096E-58   -4.7336618 
ARG1  1.1974E-08   -8.644  3.3364E-71   -4.930576 
GLYAT  5.8751E-11   -8.46  3.7495E-85   -4.8839899 
F9  1.9653E-08   -8.455  2.6967E-63   -5.8040323 
KNG1  4.8695E-09   -8.422  2.4938E-53   -5.0493228 
TF  4.1837E-10   -8.418  1.0296E-55   -4.0455558 
APOH  3.9504E-09   -8.202  1.9488E-38   -5.3304542 
ANGPTL3  6.0983E-10   -8.028  8.1936E-57   -4.9932621 
CFHR2  3.8366E-07   -7.987  6.2441E-54   -5.1355634 
BHMT  3.7535E-10   -7.938  3.9897E-72   -4.9847101 
C9  2.0211E-09   -7.899  2.3114E-50   -5.0645743 
ADH1B  2.6942E-12   -7.843  5.93E-50   -4.3694837 
HAO2  2.9583E-09   -7.758  7.6634E-85   -4.2491123 
MAT1A  6.176E-09   -7.676  5.4662E-76   -4.5089856 
PCK1  3.6146E-07   -7.593  2.6796E-54   -4.2108788 
MTTP  2.8738E-09   -7.589  1.3162E-62   -4.106195 
HPX  1.2866E-08   -7.382  9.1861E-60   -4.4628729 
CPS1  5.3617E-14   -7.38  1.866E-48   -4.5444432 
ADH1A  2.1992E-10   -7.374  2.3735E-59   -4.2107888 
GYS2  1.7139E-11   -7.369  9.3991E-82   -5.0632246 
CYP4A11  1.4798E-11   -7.277  5.299E-77   -4.4162932 
ITIH1  4.3375E-09   -7.262  1.7631E-68   -4.1360498 
SLC2A2  3.4843E-09   -7.235  1.6202E-53   -4.9917048 
CYP2E1  5.9271E-09   -7.214  3.3987E-46   -4.1038177 
UGT2B7  4.8971E-09   -7.205  4.772E-61   -4.4393347 
HP  5.0115E-07   -7.204  1.0708E-33   -4.3599561 
C8A  1.4907E-09   -7.179  1.1323E-62   -4.6489765 
ACSM2B  3.3227E-09   -7.156  1.2766E-72   -4.6384203 
APOF  7.8494E-09   -7.153  2.1287E-85   -4.0550449 
CFHR4  4.565E-08   -7.09  2.9759E-66   -4.5402112 
OTC  1.4904E-10   -7.05  1.0402E-59   -4.5903848 
SULT2A1  1.5127E-08   -7.02  4.3649E-60   -4.9124947 
GLYATL1  4.8182E-11   -7.017  8.8135E-86   -4.0808666 
SLC38A4  4.9271E-10   -6.995  2.2737E-66   -5.089986 
F13B  2.2249E-09   -6.934  7.4574E-87   -4.3847884 
C8B  1.8178E-08   -6.91  1.5174E-63   -4.4870834 
SLCO1B1  2.8703E-07   -6.91  6.2654E-55   -4.9028007 
CYP2B6  5.117E-10   -6.812  4.0434E-51   -4.0529559 
AMBP  4.5308E-08   -6.542  2.4931E-64   -4.1257373 
MBL2  1.3118E-07   -6.398  4.8518E-59   -4.6687614 
HSD17B13  1.1037E-09   -6.251  5.116E-61   -5.2384385 
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Appendix Table 1. Cont.

  GSE45001   GSE76311

Gene  p  Log FC  p  Log FC

APOB  2.4006E-08   -6.226  5.579E-41   -5.0115541 
ORM2  7.8196E-07   -6.223  1.0201E-41   -4.3880196 
F11  2.1245E-11   -6.22  2.4972E-71   -4.1464841 
UGT2B4  5.7908E-06   -6.182  9.9975E-65   -4.6160731 
FGA  1.7844E-07   -6.169  1.5736E-33   -4.3474674 
HAO1  3.4641E-10   -6.145  5.3242E-77   -4.7052282 
CYP1A2  4.467E-08   -6.136  5.2981E-68   -4.5854675 
PAH  4.1955E-08   -6.087  1.1026E-56   -5.0631184 
FGB  9.0643E-07   -6.05  4.6584E-36   -4.3367715 
TTPA  4.3522E-07   -5.903  5.6126E-70   -4.218141 
CPB2  3.0467E-07   -5.871  7.9891E-57   -5.5543148 
CES1  9.5431E-09   -5.736  4.3479E-52   -4.203482 
FGL1  1.3494E-06   -5.627  7.8923E-47   -4.1501585 
UGT2B10  8.1992E-09   -5.621  5.4013E-72   -5.2584556 
CYP3A4  2.7498E-06   -5.428  2.6393E-59   -4.9124324 
GC  1.2112E-07   -5.407  1.6037E-37   -4.2552453 
HAL  3.6727E-09   -5.391  3.1887E-86   -4.4751873 
C6  3.5328E-07   -5.34  1.4407E-55   -4.4750914 
PON1  9.6516E-09   -5.254  3.5701E-66   -4.5950232 
FGG  9.2757E-07   -5.167  6.4268E-40   -4.4757618 
SLC22A1  3.2493E-10   -5.158  6.8921E-87   -4.1819145 
AOX1  1.4032E-08   -5.09  2.7371E-57   -4.661079 
CYP4A22  1.4492E-06   -5.07  3.0977E-80   -4.32637 
CYP2C9  3.4769E-08   -5.057  3.1229E-55   -4.1346584 
C4BPA  2.269E-07   -4.69  6.3692E-49   -4.5039851 
ABCB11  4.4222E-08   -4.485  3.1469E-75   -4.4601077 
BAAT  5.3277E-06   -4.361  4.1405E-55   -4.1892254 
GNMT  1.1874E-06   -4.323  5.1627E-84   -4.1345373 
ITIH2  6.2329E-06   -4.216  9.2275E-50   -4.5805455 

Appendix Table 2. The pathway analysis of GSE45001, GSE76311 and GSE132305 data sets

GEO code All up-regulated Up-regulated All downregulated Down-regulated 
  cancer related  cancer related

GSE45001  25  16  25  14 
GSE76311  24  13  27  16 
GSE132305  25  16  25  12 

Appendix Table 3. P-value information of common cancer-related pathways coming from up-regulated genes of GEO data sets  

  p

Pathways  GSE45001  GSE76311  GSE132305 

Integrin cell surface interactions  1.41e-09  2.88e-06  0.014 
Met activates PTK2 signaling  6.29e-07  3.22e-04  0.002 
Degradation of the extracellular matrix  1.92e-10  2.03e-05  0.004 
Non-integrin  membrane-ECM interactions  3.89e-07  3.82e-05  3.01e-04 
Assembly of collagen fibrils and other multimeric structures  3.36e-11  6.39e-05  0.009 
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