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Effect of temperature changes on the expression of cancer 
stem cell protein CD-44 and TAU protein in AMGM-5 cancer 
cell line: An immunocytochemistry study

The tumor microenvironment (TME) refers to the conditions 
under which tumor cells grow, communicate, and die [1, 2]. 

In 2011, Ungefroren and his team defined TME as the context 
that controls tumorigenesis, including processes such as epithe-
lial-mesenchymal transition (EMT), migration, invasion, metasta-
sis, apoptosis, and chemotherapeutic drug resistance [3].
Various types of microenvironments are commonly used and 
identified in in vitro cell cultures, including thermal and serum 

conditions. Studies have shown that hyper-thermal treatment 
can enhance tumor shrinkage and decrease oxygen consump-
tion [4]. Hyperthermia is one of the few promising strategies 
among alternative therapies for cancer treatment [5].
For years, gliomas have been recognized as highly hetero-
geneous tumors at the molecular level, with varying sur-
vival times, even among patients with the same grade [6]. 
According to the American Association of Neurological Sur-
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geons (2023), glioblastoma (grade IV glioma) is the high-
est-grade glioma, clinically representing the most common 
and aggressive primary brain tumor with poor patient sur-
vival rates. Experimental data suggest that the low survival 
rate may partially be due to the presence of glioma stem 
cells (GSCs) [7].
The quiescence of GSCs in their niches, effective DNA dam-
age repair, drug transporter activity, and Notch signaling are 
factors contributing to therapy resistance [8]. To improve 
glioblastoma treatment outcomes, GSCs must be eradi-
cated. Hyperthermia, particularly in combination with irra-
diation, is emerging as a promising therapeutic approach, 
as it appears that multiple DNA repair pathways in GSCs are 
sensitive to hyperthermia [9].
The cancer stem cell marker CD-44 is a transmembrane gly-
coprotein that functions as a hyaluronic acid receptor. CD-44 
has been implicated in EMT and tumor invasion [10]. A recent 
review highlighted CD-44 as a predictor of chemotherapy 
resistance in mesenchymal-like glioma [11] and as a factor 
in GBM prognosis. CD-44 inhibition has been suggested as a 
therapeutic strategy for several malignant tumors [12].
Tau protein, also known as microtubule-associated protein 
(MAPT), was identified in 1986 as a protein that binds to 
and stabilizes microtubules [13]. Under normal physiolog-
ical conditions, phosphorylation regulates Tau's binding 
to microtubules and other functions [14]. However, hyper-
phosphorylation of Tau protein leads to its aggregation and 
the formation of neurofibrillary tangles [15], which are key 
features in the development of Alzheimer’s disease (AD). 
Tau pathology is correlated with neurodegeneration and 
AD progression [16, 17], making Tau phosphorylation a vi-
able target for treating AD and other tauopathies, though no 
treatments currently exist [18].
Studies on the effect of hyper/hypo-thermal conditions on 
cancer stem cell markers in vitro have suggested that hyper-
thermia at 46°C for 10 minutes can induce high levels of can-
cer cell death in pancreatic ductal adenocarcinoma compared 
to non-malignant cells [19].
The combined effect of chemotherapy and hyper-thermal 
treatment on cancer cell proliferation was explored in a 2014 
study by Lee. Metformin alone, or in combination with hyper-
thermia, showed cytotoxicity against cancer stem cells (CD-
44/CD24) in MCF-7 human breast cancer cells and MIA PaCa-2 
human pancreatic cancer cells. The authors applied heating 
at 42°C for 1 hour, finding it partially toxic to cancer cells and 
CSCs and that it enhanced metformin's efficacy in reducing 
both cancer cells and CSCs [20]. Severe hyperthermia (45°C for 
1 hour) was also found to reduce viability and induce apop-
tosis in MG-63 osteosarcoma cells, with increased activities of 
caspases 3/7, 4, and 12 after 72 hours at 37°C [21].
This study aims to determine the presence of TAU (MAPT) and 
CD-44 markers in glioblastoma cancer cell lines before and af-
ter exposure to hyper-thermal conditions at 40 °C for 24 hours 
using the immunocytochemistry (ICC) technique.

Materials and Methods
Cell culture maintenance and heat treatment
The glioblastoma AMGM cancer cell line was obtained from the 
Cell Bank Unit at the Iraqi Center for Cancer and Medical Genetic 
Research (ICCMGR) and cultured in RPMI-1640 (Sigma-Aldrich, 
Germany) supplemented with 10% calf bovine serum, 100 
units/mL penicillin, and 100 µg/mL streptomycin. Cancer cell 
line falcons were passaged using Trypsin-EDTA (US Biological, 
USA) and incubated at 37°C.

To determine the expression of TAU and CD-44 in AMGM cells, 
cells were seeded at 4×10⁵ cells per 60-mm dish in 3 mL of 
medium 24 hours before experiments at 37°C and 40°C. Each ex-
periment was performed in triplicate and repeated twice (Fig. 1).

Immunostaining of TAU and CD-44 proteins
The primary antibodies used were mouse monoclonal an-
ti-TAU (A-10, Abcam, 1:20 from 1 mg/mL) and anti-CD-44 
(sc-9960, 1:20 from 1 mg/mL; Santacruz). Immunostaining 
was performed overnight with primary antibodies. Cells 
were incubated for 1 hour at room temperature in the dark 
with secondary conjugated antibodies (dilution 1:200 from 
1.5 mg/mL; Pathinsitu). Slides were then covered with DPX 
mounting medium containing DAPI to counterstain the nu-
clei for CD-44 and the cytosol for TAU. A coverslip was ap-
plied, and the slides were analyzed under an Olympus light 
microscope at 400x magnification. Microscopy images were 
captured using a MICROS CAM 500 “PREMIUM” camera with 
Microvisible software.

Scoring
The number of stained cells was examined under microscopy 
and scored as follows: 0=no expression or stained cells; 1=5% 
of cells; 2=≥5% of cells; 3=≥25% of cells; 4=≥50% of cells; and 
5=≥75% of cells.

Statistical analysis
Statistical comparisons between groups were conducted 
using the one-tailed Mann-Whitney U-test. A probabil-
ity value of p<0.05 was considered statistically significant. 
Analyses were performed with SPSS-24 statistical software 
and Microsoft Excel.

Results

Maintenance and culturing of AMGM glioblastoma cell 
line
The AMGM glioblastoma cell line was initially established at 
the Iraqi Center for Cancer and Medical Genetics, Mustan-
siriyah University [22]. The specific staining criteria for the defi-
nition of primary glioblastoma cell lines and to check whether 
the glioblastoma-derived primary cell lines have similarities 
to glioblastoma tissue, we performed immunocytochemistry 
staining for markers commonly used in glioma diagnosis. We 
first observed the morphology and colony formation of cells 
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under both incubation conditions before staining (Fig. 2). 
Under standard incubation conditions, cells formed a single 
flattened layer, appeared elongated, and had a fusiform shape 
(Fig. 2a). In contrast, at 40°C, fewer cells retained the fusiform 
shape, and cell numbers were reduced (Fig. 2b).

CD-44 and MAPT staining: ICC 
The results of Immunocytochemistry of both markers the 
CD-44 and MAPT in AMGM cancer cells cultured in two dif-
ferent incubation temperatures 37°C and 40°C were shown 
in Figures 3 and 4 respectively. In Figure 3a, TAU protein 

Figure 1. Summary determines the effect of incubation AMGM cancer cells under temperature (40°C) on TAU and CD-44 protein expression 
compared to normal incubation culture conditions (37°C).

Figure 2. Growing AMGM cancer cell line culture at two different incubation temperatures: (a) 37°C and (b) 4°C under an inverted microscope. 
This shows how the glioblastoma cells were monolayer and had a fusiform at optimal incubation temperature, compared to cells cultured in 
high atmosphere temperature (40°C) the cells lose their unity and start to circle in shape an indication of apoptosis.
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was poorly expressed in the nucleus of glioblastoma can-
cer cells growing at 37°C compared to B- expressed highly 
when growing at 40°C.
Next, in Figure 4c, CD-44 protein was expressed in the cell 
membrane of glioblastoma cancer cells growing at 37°C com-
pared to D- expressed highly when growing at 40°C.

Tables 1 and 2 show the scoring of both TAU and CD-44 
proteins in the growing glioblastoma AMGM cancer cell 
line in two different culture conditions 37°C and 40°C 
respectively. In Table 1, TAU protein expression was af-
fected by increasing the temperature where the scoring 
was highly +3 in 71.4 % at 40°C significantly compared to 

Figure 3. Immunocytochemistry staining of tau in glioblastoma cancer cell line. (a) Represents cells incubation culture at 37°C while (b) 
Represents culture cells at 40°C. the arrows show TAU protein expression in the nucleus of the glioblastoma cell line.

ba

Figure 4. Immunocytochemistry staining of CD-44 in glioblastoma cancer cell line. (a) Represents cells incubation culture at 37°C while (b) 
Represents culture cells at 40°C. the arrows show CD-44 protein in the nucleus of the glioblastoma cell line.
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growing the cells at 37°C the score +3 was determined in 
42.9% of the cells with p<0.001.
In Table 2, CD-44 protein expression was affected by increas-
ing the temperature where the scoring highly +3 in 100 % of 
the glioblastoma AMGM cell line at 37°C significantly com-
pared to growing the cells at 40°C the score of +3 was deter-
mined in 42.9% of the cells with p<0.02.

Discussion
Glioma is known for its high heterogeneity, influenced by ge-
netic, epigenetic, and tumor microenvironmental factors. This 
heterogeneity is linked to the adaptive response, treatment 
resistance, and overall behavior of brain tumors [23]. Under-
standing the mechanisms underlying this heterogeneity is 
critical for advancing glioma diagnosis, treatment, and poten-
tially prevention.
This study aimed to explore whether changes in the microen-
vironment affect the development of glioblastoma in the 
AMGM cell line by examining the expression of TAU protein 
and the cancer stem cell marker CD-44. The microenviron-
mental change tested here was an increase in incubation 
temperature, with AMGM cells cultured at 37°C and 40°C. 
Immunohistochemistry staining revealed that elevated tem-
perature increased TAU protein expression while decreasing 
CD-44 levels. A limitation of our study was the lack of a normal 
cell line for comparison, as initially planned.
According to a study by Lim et al. [24], glioblastoma cell 
aggressiveness increases with tumor growth and migra-
tion. These cells secrete various molecules, including sol-
uble CD-44 and adhesion molecules, into the extracellular 
matrix, which can induce neuronal degeneration by acti-
vating TAU protein.
TAU protein is encoded by the MAPT gene on chromosome 17 
and is primarily expressed in neuronal axons. It normally fa-
cilitates the polymerization and stabilization of microtubules 
[25]. TAU is extensively post-translationally modified, and in 
Alzheimer's disease (AD), it detaches from microtubules and 
aggregates to form plaques [26].
Recent research has shown that TAU depletion significantly 
inhibits in vitro spheroid growth of the glioblastoma cell line 
U87-MG and reduces 2D cell proliferation [27]. A correlation 
between TAU expression and heat shock proteins has also 
been documented, with HSP70, a chaperone protein, medi-
ating the ubiquitinylation of aberrant TAU species for selec-
tive elimination [28].

Another recent study utilizing RNA sequencing data sug-
gested that CD-44 could serve as a biomarker for M2 tu-
mor-associated macrophages (TAMs), promoting immune 
suppression and glioma progression in the tumor micro-
environment [29]. Johansson et al. [30] demonstrated that 
CD-44 is activated under hypoxic conditions by interacting 
with HIF-2α to enhance hypoxia in glioma stem cells. They 
proposed that blocking CD-44-ligand interactions through 
antibodies, inhibiting external cleavage of CD-44, or using 
gamma-secretase inhibitors to inhibit internal cleavage 
could mitigate these effects.
A separate transcriptomic study noted that a reduction in CD-
44 levels in U251MG glioblastoma cells suppressed cell growth 
and induced cellular senescence. The authors proposed that 
CD-44 could serve as a marker for hypoxia, glycolysis, and an-
ti-tumor immune responses [31].
In summary, our study demonstrates that an elevated micro-
environmental temperature of 40°C affects the expression of 
the cancer stem cell marker CD-44 and increases TAU protein 
expression in glioblastoma AMGM cancer cell cultures.

Conclusion
In conclusion, this preliminary study found that hyperther-
mia at 40°C increased TAU protein and decreased CD-44 ex-
pression in the AMGM glioblastoma cancer cell line. These 
findings suggest that controlling the cellular environment’s 
temperature could be a potential therapeutic approach for 
glioblastoma. Further studies examining chronic or repeat-
ed mild hyperthermia exposure in glioma mouse models 
are required to assess its effects on cancer progression and 
related diseases.
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Table 1. Tau marker expression in selected AMGM cell line while 
cultures in both 37°C and 40°C respectively

AMGM cells Tau 1+ Tau 2+ Tau 3+ p 
cultured conditions  (%) (%) (%) 

37°C - 57 42.9 0.001
40°C 28.6 - 71.4 

Table 2. CD-44 marker expression in selected AMGM cell line 
while cultures in both 37°C and 40°C respectively

Cells cultured CD-44 1+ CD-44 2+ CD-44 3+ p 
conditions  (%) (%) (%) 

37°C - - 100 0.02
40°C 28.6 28.6 42.9
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