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INTRODUCTION

Risk is a major element in decision process. CCP is

one way to include risk into ordinary linear mathematical

models. CCP describes constraints in the form of probabil-

ity levels of attainment. Rao (7) provides a complete treat-

ment on the origins and the theory of CCP. In CCP,

coefficients have typically been assumed to follow a

normal distribution with known means and variances. Con-

sider the following model:

Maximize

(1)

subject to

(2)

(3)

Where cj, aij, and bi are normal random variables. pi's

are pre-specified probabilities. The above model repre-

sents the extreme case of CCP when all three coefficient

types are random variables. Decision variables, Xj's, are

not always binary variables, but many real-life decision

processes often involve such variables. Typically, bi
i's

and/or aij's are considered as random. If cj's are also

normal random variables, the objective function, F(X), will

also be a normal variable. This, however, does not mean

that the distribution of the optimum value itself will be a

normal one too.

AN EXAMPLE

Consider the following product selection problem in

which available resources and the required resources for

each product are both normal and independent variables.

The profit coefficients, however, are deterministic.

Maximize [10X1 + 15X2 + 20X3 + 14X4] subject to

(100;5)X1+(150;6)X2+(215;8)X3+(85;3)X4≤ (500;15)

(25;2)X1 + (15;2)X2 + (10;2)X3 + (35;3)X4 ≤ (74;4)

(40;3)X1 + (0.5;0.1)X2 + (20;2)X3 + (5;1)X4 ≤ (60;5)

X1, X2, X3, X4, ε[0,1]

The numbers in each parenthesis indicate the mean
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SUMMARY: Once chance-constrained programs (CCP) are converted into deterministic equivalents, non-
linear terms result. This note compares three approximation methods and reviews other solution methods to
solve the resulting nonlinear programs. Naslund's approximation is recommended as an easy and effective
method.
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and the standard deviation of the respective coefficient. If

management requires that each constraint should have at

least 99% probability of not being violated, the constraints

take the following deterministic equivalent, but nonlinear

form.

100X1+150X2 + 215X3 + 85X4 + 2.33(25X1
2 + 36X2

2

+ 64X3
2 + 9X4

2 + 225)1/2 ≤ 500

25X1 + 15X2 + 10X3 + 34X4 + 2.33(4X1
2 + 4X2

2 +

4X3
2 + 9X4

2 + 16)1/2 ≤ 74

40X1 + 0.5X2 + 20X3 + 5X4 + 2.33(9X1
2 + 0.01X2

2 +

4X3
2 + X4

2 + 25)1/2 ≤ 60

Complete enumeration shows that X1 = 0 and X2 = X3 = X4

= 1 is the optimal answer. 2.33 is the standard normal vari-

ate for 0.99 probability.

The difficulty of CCP solution starts at this point.

Except only when bi's are random, each constraint and/or

the objective function consist of two segments: linear and

nonlinear terms. The purpose of this note is to compare

three methods that approximate the nonlinear segment

into a linear one. The nonlinear segment has the form of  

where Vm is the variance, if any, of the bi term. The prob-

lem has m-1 decision variables with variances V1 through

Vm-1. Once approximated, variable coefficients of the lin-

earized segment are added to the linear segment coeffi-

cients to end up with a completely linear model. Wasil, et

al. (12) review six major nonlinear optimization software for

PC's, but the authors show that such codes do not always

perform well. That is not to say that the nonlinear programs

encountered in CCP cannot be optimally solved using non-

linear programming methods. Even with new powerful

packages, typical solution may require that the user make

initial guesses and accept solutions optimal to some toler-

ances. If the non-linearity can be eliminated, it is clear that

much larger programs can be easily solved with efficient

LP packages. To solve CCP's, Rakes, et al. (6) and Lee

and Olson (2) have used separable programming after sig-

nificant amount of pre-processing even for the small prob-

lems they present. Tabucanan, et al. (10) have developed

an elaborate sectioning search method for another small

problem. These procedures are too time-consuming and

difficult to repeat in solving problems with large number of

variables and constraints. Another method based on cut-

ting plan algorithm has been recently suggested in (11),

but this method is also hard to implement and suitable only

in continuous decision variables case.

APPROXIMATION METHODS

Byrne, et al. (1) approximates the non-linearity in

objective function by converting each normal variable into

a 3-point discrete distribution. This method is too cumber-

some and not considered further. Three other methods are

discussed.

Naslund's approximation (3)
The nonlinear square root portion of each constraint

of the deterministic equivalent is converted into an approx-

imate linear form and then added to the rest of the con-

straint. If the objective function has any nonlinear (square

root) terms due to stochastic cj coefficients, this approxi-

mation, shown below, can also be used to linearize the

objective function.

(4)

At the end of the approximation process, a constant is

obtained and it is carried over to the right hand side after

changing its sign. This method requires no additional vari-

ables or constraints. The right hand side of (4) can be

easily programmed as a subroutine of any MPS formatted

input generator code. Then, any general purpose mathe-

matical optimizer (LINDO) can be used for solution.

Chance-constrained programming system
(CHAPS) [8, 9]

This method is based on the separation, linearization

and iterative adjustment of the nonlinear constraints of

deterministic equivalents. Reference (8) states that this

method is suitable when the number of variables is

between two and two hundred. Unlike Naslund's method,

CHAPS cannot be used if cj's are also random variables.

Although not clearly stated, this method is applicable with

continuous, not 0-1, type linear programs. References (8,
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9) contain numerous examples, but none of them is a 0-1

type problem. To briefly illustrate how CHAPS works, con-

sider a nonlinear constraint for any of the original con-

straints of the example above. Each can be expressed as

follows:

for all iεI, (5)

Indices I and J represent the constraint and the variable

sets. Term ei is the normal variate. The set of feasible solu-

tions is enlarged by introducing a new slack variable for

each constraint. The separated form of (5) above is written

as:

iεI, (6)

yi j ≥ (y2
i j -1 + Var(ai j )X2

j)1/2 i εI, jεJ, (7)

yi o = [Var(bi)]1/2 and Xj ≥ 0 i εI, jεJ, (8)

where n is the largest index number in set J and yi j's are

new additional non-negative decision variables. All con-

straints of type (7) above are replaced by linear approxi-

mate constraints of:

-yi j + ri jkyi,j -1 + si jk Xj ≥ 0 iεI, jεJ, k=1...p, (9)

The index p is the degree of linearization or fineness

and ri jk and si jk are constants whose formulas are given in

references (8) and (9). The authors state that p=6 to 8 is

sufficient to reach optimality in most problems. The

approximate size of the resulting linear programming prob-

lem is r + n variables and 6r + m constraints. r, n, and m are

the number of random variables, number of decision vari-

ables, and the number of rows of the original CCP.

Olson and Swenseth's approximation (4)
Olson and Swenseth (4) present a method which

places a bound on the chance constraint at least as tight

as the nonlinear form, thus overachieving the chance con-

straint at the expense of the other constraints or the objec-

tive function. This method is based on convexity of the

general variance-covariance matrix and is applicable only

for continuous CCP models. Since 0-1 type problems are

very important in managerial decision-making, this approx-

imation method is not always applicable. The authors

show that, 

(10)

Simply, this method suggests the replacement of the non-

linear term by linear right hand side shown in [10].

COMPARISON OF THE THREE METHODS

The deterministic equivalent (nonlinear) of the exam-

ple problem was solved using the first two methods. The

CHAPS required 18 variables, 54 constraints and found an

integer optimum of $35 (0-1-1-0) after 53 LINDO iterations.

The continuous optimum value was $48.45. Naslund's

method of approximating the problem into a linear 0-1 pro-

gram required only 4 variables and 3 constraints as in the

original problem. After 6 LINDO iterations, integer optimum

of $49 (0-1-1-1 or the correct answer) and continuous opti-

mum of $49.01 were found. The linearized constraints

using Naslund's method are shown below.

101.56X1+152.27X2 + 219.13X3 + 85.56X4 ≤ 464.37

25.79X1 + 15.79X2 + 10.79X3 + 36.84X4 ≤ 64.03

41.79X1 + 0.50X2 + 20.77X3 + 5.19X4 ≤ 48.19

In this example, Naslund's approximation (IP which

results after using this approximation and its solution)

appears better than CHAPS with respect to computation

time, problem size and the optimum value found. The

lower objective function value (inferior) of CHAPS may be

explained with use of a linearization factor of only four in

the example and the fact that this is a 0-1 type problem.

Solution using the last method is not attempted because

reference [4] only considers the case when aij's are

random variables.

Cattle feed problem with continuous variables
Minimum cost cattle feed problem under a probabilis-

tic protein constraint (other constraints are deterministic)

was originally formulated in [5]. It was desired that this con-

straint hold with at least 95% probability. To test the per-

formance of CHAPS, Seppälä [9] compared CHAPS

solution against the feasible direction algorithm of Zou-

tendijk's used in [5]. To test effectiveness of their approxi-
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mation, Olson and Swenseth [4] also solved the same

problem, but required that each Xj ≥ 0.01 rather than 0 as

in Seppälä's comparison. Here, the problem is re-solved

using Xj ≥ 0. This problem is also solved using Naslund's

method of linearizing the single chance-constraint

involved. Table 1 compares all four methods.

The constant, 12.72, has to be ignored if [11] is a part of an

objective function and carried over to the right hand side if

[11] is part of a constraint. If all X's are 0, then [12] equals

to 12.72. This represents the largest error value between

the original expression [11] and its approximation [12]. If all

X's are 1's, then [11] equals to 26.2431 while [12] results in

26.2400 with error rate of 0.012%. In project selection type

decisions, the number of variables are often large and the

approximation performs better as the number of variables

increases. A code is used in comparing the actual values

of [11] with that of [12] for all 1.024 combinations of the ten

0-1 variables: The average amount of error is 8.9% over all

combinations, but the error rate falls rapidly as the number

of 1's is a given combination is increased. For example:

- The average error is 7.93% if there are at least two

1's.

- The average error is 3.30% if there are at least five

1's.

- The average error is 2.00% if there are at least

seven 1's.

If all X's are 0, Olson and Swenseth's approximation

gives the correct value of 0, but results in a value of 80.333

if all X's are 1's. Clearly, this method does not apply in 0-1

case. As stated previously, CHAPS method is also not

applicable in 0-1 case.

CONCLUSION

This note has shown that the concept of CCP is solv-

able. The main thrust has been to emphasize that

Naslund's approximation method is the easiest way to lin-

earize the non-linear terms often encountered in solving

CCP's. Other solution methods either require special skills

that some practicing analysts may be lacking (direct non-

linear solution or separable programming) or not applica-

ble for all problem types. At least, Naslund's method would

be an excellent way to get a quick initial solution for a large

CCP problem. This solution can then be used as a bound

in solving the problem as a nonlinear program.

A sophisticated analyst may approach the problem

using sequential quadratic programming method (SQP) or

even the sequential linear programming algorithm. Both of

these methods automatically linearize the problem by

computing (usually by finite differences) the gradients of

the constraints. Starting approximations would be

required. In addition, if integrality constraints are required,

Table 1: Comparison of five solution methods for the cattle feed

problem.

Although Naslund's approximation yields the highest

minimum cost, it must be remembered that this approxima-

tion does not require any additional variables or con-

straints as is the case with CHAPS. For this classic

problem, the third method gives a minimum cost which is

0.63% less than that of Naslund's. Finally, the problem was

solved using generalized reduced gradient method

(GRGM). Table 1 shows that nonlinear programming solu-

tion using GRGM finds the minimum found by CHAPS.

Linearization of square root of sum of 0/1 vari-
ables

The purpose of this example is to demonstrate the

accuracy of Naslund's approximation in linearizing a typi-

cal nonlinear expression often encountered in 0/1 CCP

problems. Consider the expression,

(103.7X2
1 + 112.5X2

2 + 68.5X2
3 + 76X2

4 + 40X2
5 +

102X2
6 + 61X2

7 + 75X2
8 + 14X2

9 + 36X2
10)1/2 (11)

where X1...X10 ε[0.1]. Application of Naslund's approxima-

tion to the above nonlinear expression results in the follow-

ing linear form:

2.05X1+ 2.24X2 + 1.34X3 + 1.49X4 + 0.77X5 + 2.02X6

+ 1.19X7 + 1.47X8 + 0.26X9 + 0.69X10 + 12.72             (12)

Method Decision Variables Objective

used X1 X2 X3 X4 Z

Zoutendijk’s 0.635900 0 0.312700 0.051500 29.8924

CHAPS

Olson’s

Naslund’s

GRGM

0.635875

0.621274

0.609260

0.635876

0

0

0

0

0.312660

0.314560

0.315380

0.312666

0.051459

0.064570

0.075360

0.051458

29.8888

30.1195

30.3093

29.8888
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branch and bound extension could be added to the SQP

procedure. Again, this approach would be difficult for most

practicing analysts.
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