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INTRODUCTION

The properties of the different estimators of moving

average model can be analyzed using one of the following

approaches:

i) Through the criteria function used for the estimation

(such as exact likelihood function or one of its sum of

squares approximations),

ii) Through simulation.

The first approach is suitable for those methods of

estimation in which a numerical optimization procedure is

needed to optimize a function to obtain estimates. By writ-

ing criteria functions for these methods in comparable

form, we may establish inequalities between them (for uni-

variate MA(q) model (16). Further analysis may be carried

out by examining the expected values of these criteria

functions for the true values of parameters of a moving

average model. This first approach will not yield measures

(such as of bias) relating to the sampling distribution of the

estimators although indirect information about such meas-

ures may be obtained. The second approach not only pro-

vides information on sampling distributions of estimators

but also provides opportunities to realize and understand

other problems (such as computational problems, failure

cases etc.). Orcutt and Winokur (15) studied various

aspects of estimation for univariate AR(1) model; Nelson

(14) compared methods of estimation for univariate MA(1)

model. More recently, Ansley and Newbold (1) analyzed by

simulation the properties of estimators frequently used in

the analysis of univariate ARMA (p,q) models. However,

there are few such studies for vector ARMA models giving

the small, moderate and large sample properties of various

estimators. Tjstheim and Paulson (22) studied the bias of

univariate and multivariate AR models. Hillmer and Tiao

(10) compared exact and conditional likelihood methods

by simulating bivariate MA(1) model with one of the latent

roots of characteristic polynomial IλI-θI is unity. Our objec-

tive is to analyze and compare (by simulation ) the proper-

ties of four estimators, to be mentioned in the next section

for this model. This paper is organized as follows. In sec-

tion 3 the design of the simulation study is presented. Sec-

tion 4 describes the presentation of results of this
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SUMMARY: Four methods of estimation of parameters of two components vector moving average model
VMA(1) are compared. These methods are exact maximum likelihood (via Kalman filtering), Yule Walker type,
moments estimation and Godolphin type. All estimations are based on simulated data using two different covari-
ance matrices. All methods are asymptotically equivalent well inside the invertibility region. Method of con-
structing Monte-Carlo confidence intervals for parameters is suggested for the time series of the fitted model.
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experiment. In section 5 results are discussed and in the

section 6 conclusions are made. In section 7 concluding

remarks are made with the intention to point out the limita-

tion of our studies, possible extension and modifications

and any noticeable point.

The estimators and their computations
Consider a stationary and invertible bivariate time

series {Xt} t=0,±1,±2,...., where Xt= (X1t, X2t)T generated by

the model Xt= εt - θ1εt-1 where {εt} with e =(ε1t, ε2t) is a

sequence of random vectors identically and independently

normally distributed with zero mean vector and covariance

matrix Σ.

The estimators of θ and Σ of bivariate MA(1) model

which were considered in this study are:

1. Exact maximum likelihood estimators θ̂ε and Σ̂e

which may be computed via Kalman filtering using algo-

rithm 2 (see Appendix ) (3).

2. Yule-Walker type estimator θ̂Y and  Σ̂Y which have

been computed using algorithm 1 of Appendix.

3. Moment estimators ̂θM and ̂ΣM which may be com-

puted using algorithm 3 of Appendix.

4. The Godolphin estimators θ̂σ and Σ̂σ which can be

computed using algorithm 1 of Burney (4).

We have used algorithm 21 (a quasi Newton mini-

mizer) of Nash (13) to maximize the likelihood function to

give θ̂e and Σ̂e with the Yule-Walker type estimators θ̂Y

and Σ̂Y as initial estimators. It is now generally well known

that even in moderately sized samples (such as n=100)

approximate maximum likelihood estimator may yield esti-

mates substantially different from θ̂e when the roots of the

MA model are close to the unit circle (5,11). Such a situa-

tion can lead to no (constrained) maximum in the invertibil-

ity region. In such situations, we cannot define the

estimate in the invertibility boundary as usually done for

univariate MA models (1). Whenever a non-invertible esti-

mate was obtained for θ it was considered as a failure as

such estimates is impossible to interpret.

DESIGN OF THE EXPERIMENT

Simulation is experimental mathematics (18) and sim-

ulation study needs a design for the experiment (12). The

idea underlying the design of the following experiment is to

use various different parameter values covering the

parameter space. The overall results then indicate the per-

formance of each of the estimators mentioned above in dif-

ferent regions of the parameter space.

For bivariate MA(1) models, we have a two dimen-

sional difference equation with characteristic equation

0 = |λl - θ| = λ2 - (ν11+ ν22)l+ ν11ν22 - ν12ν21.

Hence the characteristic values are:

All ν11, ν12 and ν22 for which |λ1|,|λ2| <1 give invertible

MA(1) process. In our simulation study MA(1) processes

with wide range of characteristic roots in different regions

of the unit squares will be used. Figure 1 shows the points

(λ1, λ2) used in the simulation study and the Table 1a gives

the θ1 which characteristics roots λ1 and λ2. We have used

one of the methods mentioned in Ripley (18) (the use of

Cholesky decomposition of Σ to generate bivariate normal

deviates) to produce the bivariate normal deviates εt fol-

lows bivariate N(O,Σ) with the two covariance structures

shown in Table 1b. Thus the properties of the above men-

Figure 1: Latent roots of θ matrix in MA (1). 

λ1= larger latent roots, 

λ2= smaller latent roots.



Journal of Islamic Academy of Sciences 5:3, 158-170, 1992

ESTIMATION METHODS OF THE PARAMETERS BURNEY

tioned four estimators for MA(1) model were studied for a

total of 28 bivariate MA(1) models. We computed esti-

mates for three different series lengths n=50, 100 and 500.

To reduce the effect of starting-up values, 200 pre-sample

observations were generated. The number of replications

performed for each series length are given in Table 1c.

(Note: we used real values of λ1 and λ2 in our simula-

tion study.

However, if the characteristic roots are complex and

thus conjugate complex, then λ1 and λ2 are given by

λ1 = r(cos ν + i sin ν),  λ2 = r(cos ν - i sin ν) and it can

be shown that

ν22 = 2r cos ν - ν11, ν21= (2ν11cos ν - ν2
11- r2) / ν12

provided ν12=0, where r is radius vector. Hence, for given

combination of ν11, ν21 and angle ν, an MA series can be

generated.)

RESULTS

To analyze and compare the small, moderate and

large samples performance of the estimators mentioned in

section 2, the usual simulation statistics (bias, variance,

standard error, mean squared error together with CPU

time) are reported in the form of tables. The tables are

numbered as follows: For the Table A5.x.y.z, x corre-

sponds to serial number of Table 1a for the choice of θ, y

corresponds to the serial number of Table 1b for the choice

160

Table 2: CPU time for estimating the parameters of the MA (1)

models* using the exact maximum likelihood estimators

(θe,Σe) and Godolphin type estimators (θG,ΣG ).

S.No. Series length No. of Replications*

1
2
3

50
100
500

250
125
25

Latent roots ! n=50 n=100 n=500
S.No. λ1 λ2 θ̂e θ̂G θ̂e θ̂G θ̂e θ̂G

1
2
3
4
5
6
7
8

0.093
0.200
0.284

-0.200
0.400
0.400
0.540

-0.327

-0.193
0.200
0.116

-0.400
0.200

-0.500
0.110

-0.673

2.85
2.91
2.89
3.21
3.06
3.20
3.35
4.15

16.89
6.39

13.47
11.83
11.49
17.36

8.60
10.69

5.35
4.95
4.97
5.11
5.09
5.19
5.27
5.93

17.05
5.13

13.21
11.94
11.20
17.60

7.26
10.59

17.40
17.96
22.56
23.36
21.63
21.71
22.20
23.36

16.27
3.90

12.16
9.12
9.96

17.57
6.19
9.12

(b) Covariance matrices Σ
1 1.000 0.500 2 1.000 -0.500

0.500 1.000 -0.500 1.000

(c) 

* Note series length x no. of replications= constant

1.0      0.5(a) When Σ =
0.5      1.0

Table 1: (a) parameters values of the MA (1) models used in the

simulation study.

!

S.No. ν11 ν12 ν21 ν22 λ1 λ2

1
2
3
4
5
6
7
8
9

10
11
12
13
14

0.500
0.200
0.200

-0.500
0.500
0.600
0.100

-0.500
1.000
0.200

-0.800
0.800

-0.600
-1.000

-0.470
0.000
0.010

-0.060
-0.060
-0.275
0.015
0.060

-1.000
0.250
0.100
0.100

-0.021
0.400

0.600
0.000
0.700
0.500
0.500
0.800

-0.300
0.500
0.500

-0.600
-0.400
-0.400
0.700

-0.500

-0.600
0.200
0.200
-0.10
0.10

-0.700
0.550

-0.500
-1.000
1.000
0.600

-0.600
-0.850
0.200

0.093
0.200
0.284

-0.200
0.400
0.400
0.540

-0.327
0.700
0.700
0.571
0.771

-0.695
0.000

-0.193
0.200
0.116

-0.400
0.200

-0.500
0.110

-0.673
-0.700
0.500

-0.771
-0.571
-0.755
-0.800

! λ1 and λ2 are latent roots of matrix θ.

1
2
3
4
5
6
7
8

0.093
0.200
0.284

-0.200
0.400
0.400
0.540

-0.327

-0.193
0.200
0.116

-0.400
0.200

-0.500
0.110

-0.673

3.20
2.74
2.96
3.03
3.33
3.69
3.66
4.35

19.24
6.38

13.06
11.41
11.54
19.60

9.40
11.99

5.15
4.83
4.97
5.05
5.11
5.27
5.32
5.75

19.81
4.93

13.50
10.93
12.14
19.81

7.87
11.84

22.99
17.11
21.72
21.79
21.91
22.67
22.80
23.59

18.48
3.63

13.08
6.69

11.42
19.03

7.50
11.83

1.0     -0.5(B) When Σ =
-0.5      1.0

of Σ and z corresponds to the serial number of Table 1c for

the choice of n (series length). Hence, in total we have

obtained 84 results tables in the Appendix. For illustration

we have presented Tables A5.1.1.3., A5.2.1.1, A5.2.1.2

and A5.2.1.3.

+ See Table 1;
! Latent roots of θ matrix;
Note: CPU time in seconds on VAX 785;
Note: The remaining MA (1) models of Table 1 are not given, as for
these processes θ̂e is preferable (see section 4).
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Table A5.2.1.1: Simulation study of MA (1) (Bivariate)

No. of observation in each simulation=50,

No. of lags used for DRPG=30,

No. of simulations=250, seed used=99999763,

Delta=0.010000.

No. of failures for exact likelihood

0

No. of failures for moment method

2

No. of failures for Godolphin type

0

Total CPU Time  2366.07 seconds

Tru Parameters 0.200 0.000 0.000 0.200 1.000 0.500 1.000

Kalman Filtering

Mean Estimates

Variances

Bias

Standard Error

Mean Sqr. Err.

Average Cpu Time

0.202

0.041

0.002

0.013

0.041

-0.006

0.033

-0.006

0.012

0.033

-0.017

0.035

-0.017

0.012

0.036

2.91 seconds

0.219

0.035

0.019

0.012

0.036

0.945

0.033

-0.055

0.011

0.036

0.482

0.022

-0.018

0.009

0.023

0.984

0.036

-0.016

0.012

0.036

Yule-Walker

Mean Estimates

Variances

Bias

Standard Error

Mean Sqr. Err.

Average AR Orde

Average Cpu Time

0.178

0.031

-0.022

0.011

0.031

2

-0.006

0.030

-0.006

0.011

0.030

-0.009

0.032

-0.009

0.011

0.032

0.06 seconds

0.189

0.027

-0.011

0.010

0.027

0.914

0.032

-0.086

0.011

0.039

0.466

0.022

-0.034

0.009

0.023

0.948

0.036

-0.052

0.012

0.039

Moment Method

Mean Estimates

Variances

Bias

Standard Error

Mean Sqr. Err.

Average Cpu Time

0.151

0.018

-0.049

0.009

0.020

-0.008

0.023

-0.008

0.010

0.023

0.008

0.021

0.008

0.009

0.021

0.01 seconds

0.165

0.015

-0.035

0.008

0.017

1.052

0.065

0.052

0.016

0.067

0.511

0.031

0.011

0.011

0.031

1.096

0.067

0.096

0.017

0.077

Godolphin Type

Mean Estimates

Variances

Bias

Standard Error

Mean Sqr. Err.

Average Cpu Time

0.170

0.044

-0.030

0.013

0.045

0.013

0.036

0.013

0.012

0.036

0.012

0.045

0.012

0.013

0.045

6.39 seconds

0.180

0.043

-0.020

0.013

0.044

0.979

0.033

-0.021

0.012

0.034

0.476

0.022

-0.024

0.009

0.022

1.017

0.037

0.017

0.012

0.038

SIMULATED RESULTS FOR MA (1)
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Table A5.2.1.2: Simulation study of MA (1) (Bivariate).

No. of observation in each simulation=100,

No. of lags used for DRPG=30,

No. of simulations=125, seed used=99999763,

Delta=0.010000.

No. of failures for exact likelihood

0

No. of failures for moment method

0

No. of failures for Godolphin type

0

Total CPU Time   1294.02 seconds

Tru Parameters 0.200 0.000 0.000 0.200 1.000 0.500 1.000

Kalman Filtering

Mean Estimates

Variances

Bias

Standard Error

Mean Sqr. Err.

Average Cpu Time

0.198

0.017

-0.002

0.012

0.017

-0.022

0.016

-0.022

0.011

0.017

-0.006

0.013

-0.006

0.010

0.013

4.95 seconds

0.193

0.013

-0.007

0.010

0.013

0.951

0.018

-0.049

0.012

0.021

0.497

0.011

-0.003

0.009

0.011

1.007

0.024

0.007

0.014

0.024

Yule-Walker

Mean Estimates

Variances

Bias

Standard Error

Mean Sqr. Err.

Average AR Orde

Average Cpu Time

0.188

0.016

-0.012

0.011

0.016

2

-0.017

0.016

-0.017

0.011

0.016

-0.010

0.014

-0.010

0.011

0.014

0.12 seconds

0.186

0.013

-0.014

0.010

0.014

0.937

0.018

-0.063

0.012

0.022

0.490

0.011

-0.010

0.009

0.011

0.990

0.023

-0.010

0.014

0.024

Moment Method

Mean Estimates

Variances

Bias

Standard Error

Mean Sqr. Err.

Average Cpu Time

0.158

0.008

-0.042

0.008

0.010

-0.020

0.014

-0.020

0.011

0.014

0.001

0.008

0.001

0.008

0.008

0.01 seconds

0.174

0.008

-0.026

0.008

0.009

1.039

0.026

0.039

0.014

0.027

0.529

0.012

0.029

0.010

0.013

1.102

0.034

0.102

0.016

0.044

Godolphin Type

Mean Estimates

Variances

Bias

Standard Error

Mean Sqr. Err.

Average Cpu Time

0.191

0.021

-0.009

0.013

0.021

-0.017

0.020

-0.017

0.013

0.020

-0.006

0.018

-0.006

0.012

0.018

5.13 seconds

0.191

0.018

-0.009

0.012

0.018

0.965

0.019

-0.035

0.012

0.020

0.496

0.011

-0.004

0.009

0.011

1.021

0.024

0.021

0.014

0.024

SIMULATED RESULTS FOR MA (1)
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Table A5.1.1.3: Simulation study of MA (1) (Bivariate).

No. of observation in each simulation=500,

No. of lags used for DRPG=30,

No. of simulations=25, Seed used=99999763,

Delta=0.010000.

No. of failures for exact likelihood

0

No. of failures for moment method

0

No. of failures for Godolphin type

0

Total CPU Time   872.72 seconds

Tru Parameters 0.500 -0.470 0.600 -0.600 1.000 0.500 1.000

Kalman Filtering

Mean Estimates

Variances

Bias

Standard Error

Mean Sqr. Err.

Average Cpu Time

0.499

0.002

-0.001

0.010

0.002

-0.481

0.003

-0.011

0.011

0.003

0.610

0.002

0.010

0.008

0.002

17.40 seconds

-0.607

0.003

-0.007

0.011

0.003

0.967

0.005

-0.033

0.015

0.006

0.485

0.003

-0.015

0.011

0.003

0.996

0.004

-0.004

0.013

0.004

Yule-Walker

Mean Estimates

Variances

Bias

Standard Error

Mean Sqr. Err.

Average Cpu Time

0.496

0.002

-0.004

0.009

0.002

2

-0.471

0.003

-0.001

0.011

0.003

0.610

0.002

0.010

0.008

0.002

0.65 seconds

-0.611

0.003

-0.011

0.011

0.003

0.965

0.005

-0.035

0.015

0.007

0.486

0.003

-0.014

0.011

0.003

0.993

0.004

-0.007

0.012

0.004

Moment Method

Mean Estimates

Variances

Bias

Standard Error

Mean Sqr. Err.

Average Cpu Time

0.112

0.001

-0.388

0.006

0.152

-0.088

0.002

0.382

0.010

0.148

0.141

0.002

-0.459

0.008

0.212

0.01 seconds

-0.179

0.001

0.421

0.008

0.178

1.168

0.008

0.168

0.018

0.036

0.824

0.005

0.324

0.015

0.110

1.386

0.009

0.386

0.019

0.158

Godolphin Type

Mean Estimates

Variances

Bias

Standard Error

Mean Sqr. Err.

Average Cpu Time

0.502

0.004

0.002

0.013

0.004

-0.492

0.004

-0.022

0.012

0.004

0.604

0.002

0.004

0.009

0.002

16.27seconds

-0.591

0.004

0.009

0.013

0.004

0.971

0.005

-0.029

0.015

0.006

0.483

0.003

-0.017

0.011

0.003

0.999

0.004

-0.001

0.013

0.004

SIMULATED RESULTS FOR MA (1)
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Table A5.2.1.3: Simulation study of MA (1) (Bivariate). No. of observation in each simulation=500, No. of lags used for DRPG=30, No. of

simulations=25, seed used=99999763, Delta=0.010000.

No. of failures for exact likelihood=0

No. of failures for moment method=0

No. of failures for Godolphin type=0

Total CPU Time   576.70 seconds

Tru Parameters 0.200 0.000 0.000 0.200 1.000 0.500 1.000

Kalman Filtering

Mean Estimates

Variances

Bias

Standard Error

Mean Sqr. Err.

Average Cpu Time

0.200

0.002

0.000

0.010

0.002

-0.007

0.003

-0.007

0.011

0.003

0.012

0.002

0.012

0.008

0.002

17.96 seconds

0.184

0.002

-0.016

0.010

0.003

0.968

0.005

-0.032

0.015

0.006

0.487

0.003

-0.013

0.011

0.003

0.998

0.004

-0.002

0.013

0.004

Yule-Walker

Mean Estimates

Variances

Bias

Standard Error

Mean Sqr. Err.

Average AR Orde

Average Cpu Time

0.194

0.002

-0.006

0.009

0.002

2

-0.002

0.003

-0.002

0.011

0.003

0.011

0.002

0.011

0.008

0.002

0.63 seconds

0.186

0.003

-0.014

0.010

0.003

0.964

0.005

-0.036

0.015

0.007

0.486

0.003

-0.014

0.011

0.003

0.993

0.004

-0.007

0.013

0.004

Momemnt Method

Mean Estimates

Variances

Bias

Standard Error

Mean Sqr. Err.

Average Cpu Time

0.178

0.001

-0.022

0.005

0.001

0.002

0.002

0.002

0.008

0.002

0.012

0.002

0.012

0.008

0.002

0.01 seconds

0.181

0.002

-0.019

0.009

0.002

1.040

0.008

0.040

0.018

0.009

0.523

0.004

0.023

0.012

0.004

1.078

0.006

0.078

0.016

0.012

Godolphin Type

Mean Estimates

Variances

Bias

Standard Error

Mean Sqr. Err.

Average Cpu Time

0.200

0.003

0.000

0.011

0.003

-0.009

0.005

-0.009

0.014

0.005

0.011

0.002

0.011

0.009

0.002

3.90 seconds

0.184

0.002

-0.016

0.009

0.002

0.971

0.005

-0.029

0.015

0.006

0.489

0.003

-0.011

0.011

0.003

1.002
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Figure 8: MSE of θ̂e,  θ̂Y and θG for given values of θ and  Σ, ....represents

1.0   -0.5 1.0    0.5
MSE When Σ = and represents MSE when Σ

-0.5   1.0 0.5    1.0

Figure 9: MSE of θ̂e,  θ̂Y and θG for given values of θ and  Σ, ....represents

1.0   -0.5 1.0    0.5
MSE When Σ = and represents MSE when Σ

-0.5   1.0 0.5    1.0

SIMULATED RESULTS FOR MA (1)
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DISCUSSION

The results have been analyzed in terms of CPU

time, simulated bias, variance and mean square error of

estimate. We have also examined the performance of the

estimators near the boundary of invertibility region. The fol-

lowing conclusions emerge:

i. Considering the performance in terms of computa-

tion time required for the estimators, the CPU time

required for θ̂e increases with the sample size and the

CPU time for θ̂σ is large for small samples and reduces as

the sample size increases, especially well inside the invert-

ibility region. However, CPU time increases for ̂θσ as spec-

tral radius of θ is near to unity (Table 2). CPU time largely

depends on number of iterations required to reach the opti-

mal solution. We have considered a failure if the optimiza-

tion (in case of obtaining θ̂e or θ̂σ) is not completed in 100

seconds or 500 iterations. We came across such failures

very rarely. Further, CPU time for computing θ̂e and θ̂σ

does not change with the rise of Σ. We noted that the CPU

time for Yule-Walker type estimator θ̂Y is substantially less

than for the ML estimator θ̂e via Kalman filtering and the

Godolphin type estimator θ̂σ. As θ̂Y does not need any

optimization routine, the CPU time depends only on the

number of observations irrespective of the latent roots of θ.

The moment estimator ̂θM needs less time as compared to

θ̂Y. Here a failure is marked if convergence is not achieved

within 50 iterations.

ii. The performance (in terms of bias and variance) of

θ̂e, θ̂Y and θ̂σ differs from one another, especially for n=50

and n=100. However, as expected, distributional proper-

ties are equivalent for the long series such as n=500,

especially well inside the invertibility region. The estimator

θ̂e (ML estimator) has less bias for n=50 as compared to

θ̂Y and θ̂σ throughout the invertibility region. In most of the

cases for n=50 and n=100, the bias is negative irrespective

of any method used. For example Figures 2, 3, 4, 5 show

bias ± 2 S.D. (S.D. = standard deviation) for θ̂e, θ̂Y and θ̂σ

when n=50, 100 and 500. The reason for more bias in θ̂σ

as compared to θ̂e is due to the fact that the series length

is not large and the auto correlation series is truncated for

stability of the estimator. The bias for θ̂Y and θ̂σ is much

higher near the non-invertibility region as Figure 5 shows

(when λ1 = 0.700 and λ2= 0.500, Table 1a). In most of the

cases well inside the invertibility region (e.g. the inner

square of Figure 1), θ̂σ has less bias than θ̂Y. Figures 2,

3, 4 show bias ±2 S.D. for Σ̂e, Σ̂Y and  Σ̂σ. It is noticeable

that  Σ̂Y has more bias compared to the two estimators.

Similar remarks hold for most of the models defined well

inside the invertibility region.

iii. When comparing mean squared error (MSE) for

θ̂e, θ̂Y, θ̂σ, the MSE for the exact likelihood estimates is

smaller than those for the other estimators θ̂Y and θ̂σ. The

MSE for Godolphin type estimators is considerably higher,

especially for n=50, as compared to the other two estima-

tors, for example see Figures 6, 7, 8, 9. However, as the

series length increases, mean square error decreases for

the eight values of θ of Table 1a. This situation mainly

results from an increased simulated variance for Godol-

phin type estimates (such a situation usually arises for

conditional likelihood estimates as discussed by Hillmer

and Tio (10) and for approximate likelihood estimators (5).

It was found that MSE is substantially high for Godolphin

type estimators for the MA models for the last five values

of θ when one of the latent roots of θ is close to the edge of

the invertibility region (in our case outside the inner square

of Figure 1). However, for series of large length such as

500, θ̂σ performs satisfactorily in a sense as less nonin-

vertible estimates appear for and θ performance in terms

of MSE is comparable with θ̂e. We have reported results

for the last six values of θ of Table 1a when n=500, as for

smaller series lengths, for these types of MA(1) models, ̂θσ

shows poor performance. However, θ̂Y is preferable as

compared to θ̂σ for smaller series lengths such as n=50,

100.

iv. The Yule-Walker type of estimator θ̂Y is stable

even near the boundary of the invertibility region and pro-

vides a good initial estimate to compute θ̂e. It was found

that almost always AR(7) is sufficient to provide such esti-

mates for the MA(1) models defined in Table 1a-b. Table 3

shows on average the order of AR model for different

series lengths as different values of Σ.

v. Moment estimators are inefficient. However, for the

models with ν12= ν21= 0, they may provide satisfactory ini-

tial estimates well inside invertibility region (14) as results
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Figure 2: Bias ±2 SD (bias and SD are computed by simulation)

for θ̂e [via Kawman filtering (KΓ θ̂Y (Yule-Walker type

estimator-VW))] and Godolphin type estimator (GT)) for

given values of θ and Σ.

Figure 3: Bias ±2 SD (bias and SD are computed by simulation)

for θ̂e [via Kawman filtering (KΓ θ̂Y (Yule-Walker type

estimator-VW))] and ̂θG (Godolphin type estimator-GT)

for given values of θ and Σ.

Figure 6: MSE of θ̂e,  θ̂Y and θG for given values of θ and  Σ, ....represents

1.0   -0.5 1.0    0.5
MSE When Σ = and represents MSE when Σ

-0.5   1.0 0.5    1.0

Figure 4: Bias ±2 SD (bias and SD are computed by simulation)

for θ̂e [via Kawman filtering (KΓ θ̂Y (Yule-Walker type

estimator (VW))] and Godolphin type estimator-(GT) for

given values of θ and Σ.

Figure 5: Bias ±2 SD (bias and SD are computed by simulation)

for θ̂e [via Kawman filtering (KΓ θ̂Y (Yule-Walker type

estimator-VW))] and ̂θG (Godolphin type estimator-GT)

for given values of  θ and Σ.

Figure 7: MSE of θ̂e,  θ̂Y and θG for given values of θ and  Σ, ....represents

1.0   -0.5 1.0    0.5
MSE When Σ = and represents MSE when Σ

-0.5   1.0 0.5    1.0
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show when ν11= 0.2, ν12= ν21= 0, ν22=0.2.

vi. Monte-Carlo Confidence Intervals. For this section

we will be using θ as a scalar quantity and any element of

parameter matrix Θ. Now we will discuss the Monte-Carlo

method for constructing confidence interval for θ which

might be possible while doing extensive simulation experi-

ment or a sample time series is available for the fitted

model.

Suppose θ̂ is a consistent estimator of θ with cumula-

tive distribution function Fθ. Let θ* be a sample from Fθ.

Now the variation in θ* about θ̂ can be used to infer the

variation of θ̂ about θ. Suppose θ̂ - θ follows Fo so θ* - θ̂

follows Fo. Then upper and lower 1/2 α confidence limits

for θ* may be obtained either analytically or via simulation,

see Ripley 1987 using empirical cdf of  θ∗. Thus (1-)- con-

fidence interval for θ̂ is

θ ∈ ( θ̂ - FFo
-(1 - 0.5α ) , θ̂∗ -  Fo

-(0.5 α ));

when L  =  Fθ
-(0.5 α) =  θ̂ -  Fo

-(0.5 α )

and U= Fθ
-(1 - 0.5 α) =  θ̂ -  Fo

-(1-0.5 α )

and Fo is symmetrical about 0 then we can have U - θ̂ = θ̂

- L and θ - ∈ (L,U). In our case Fo can be assumed as

normal asymptotically (as apparent from our extensive

simulation experiment which can also be confirmed using

any standard Package such as MINITAB). Bunkland (2)

calls it a Monte-Carlo confidence interval. For the construc-

tion of Monte-Carlo confidence region we extend the work

latter on using simulated annealing for efficient computa-

tion.

CONCLUSION

In this study we have examined the behavior of four

estimators of parameters of bivariate MA(1) model for the

series of small, moderate and large lengths. Although the

estimators θ̂e, θ̂Y and θ̂σ are asymptotically equivalent

well inside the invertibility region, it was found that, for par-

ticular parameter values, their sampling properties for

moderate series length can differ substantially. Near the

boundary of the invertibility region the exact maximum like-

lihood estimator θ̂e offers substantial gain (in terms of

MSE) over the Yule-Walker type estimator θ̂Y and Godol-

phin type estimator θ̂σ. In particular, it seems likely that

practical situations arise in which the Godolphin type esti-

mator θ̂σ would be regarded as undesirable while θ̂Y still

provides good initial estimates for computing θ̂e. Godol-

phin's (8) method may not be as computationally econom-

ical as it is for univariate MA(q) model, however, this

approach is economical as compared to exact likelihood

estimation (via Kalman filtering) at the cost of an increase

in MSE. The moment estimator θ̂M is consistent and the

value of ̂θM depends on initial estimates. The moment esti-

mate performs satisfactorily for those values of θ for which

latent roots are close to zero.

CONCLUDING REMARKS

1. Our study was limited to the analysis of a few meth-

ods of estimation for the bivariate MA(1) model. This

Monte Carlo experiment can be extended to vector ARMA

(p,q) models to study the performance of methods of esti-

mation (such as conditional sum of squares and uncondi-

tional sum of squares estimators, exact likelihood

estimators).

2. The Yule-Walker type estimator θ̂Y was used as

initial estimator to initialize optimization routine to get θ̂e or

θ̂σ. Bivariate extension of Durbin (6) estimator may also be

used. This estimator may have less bias although it is not

always guaranteed that this estimator provides invertible

model when actually the model is invertible (22).

Table 3: Average AR order* required for Yule-Walker type estima-

tor for the MA (1) models of Table 5.1.

1.0     0.5 1.0    -0.5
Σ = Σ =

1.0 -       1.0 

S.No.
Series length Series length

50 100 500 50 100 500

1
2
3
4
5
6
7
8
9

10
11
12
13
14

2
2
2
2
2
2
2
2
2
2
2
2
2
2

2
2
2
2
2
2
2
3
3
3
3
3
4
3

2
3
3
3
3
3
3
5
5
5
5
5
7
5

2
2
2
2
2
2
2
2
-
3
2
2
-
-

2
2
2
2
2
2
2
3
-
4
2
3
-
3

2
2
2
3
3
3
4
5
4
7
5
5
-
-

* See Tiao and Box 1981) 
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3. The choice of m, the total number of auto/cross

correlations involved in computing θ̂σ should be propor-

tional to the series length to get stable estimates of θ such

that the estimates are unchanged up to, say the third dec-

imal place (for further details on θ̂σ, see (4).

APPENDIX

An initial estimator for VMA(1) model
In practice finite order VAR models are needed to rep-

resent MA(q) model (17). We have used a test as sug-

gested by Tiao and Box (21) to determinea l, order of VAR

model and found that this test provided useful finite order

VAR approximations for VMA(1) model for the purpose of

estimation.

Here we are not interested in digressing to order

determination of the AR models (12).

An initial estimator for VMA(1) model may be sug-

gested using high order VAR representation given by

It can be shown that and 

(1.2) gives ΛJ =θ1
J, J=1,2,....,m, 

s=1,.....,m                        (1.1)

Thus an estimator θ1 for θ1 will be obtained by solving the

above system of equations (1.1) for  θ1
J, J=1,....,m. Note

we are not using the information present in θ1
J, J=2,....,m.

An estimate of  is given by (1.2). We may use the following

algorithm to compute the estimate of Σ is given by 

(1,2)

We may use the following algorithm to compute the esti-

mate of θ.

Algorithm 1
Step 1. Set l = 1, specify p

Step 2. Solve (1.1) for Λj's taking m= l. Compute

Step 3. Test Ho : lo = l using test statistic

M(l) = (n* -1/2- lk) logeU,

where , 

and M(l) ~X2
k
2 and M(O) ~2X2

k
2 (21).

Step 4. If M(O)>2X2
k
2 (0.05) or M()>X2

k
2 (0.05) then

l = l+1 and go to step 2.

Step 5. Stop

In Step 2 of the above algorithm can be solved for {Λj}

using Whittle (23) algorithm,

Exact likelihood estimation of VMA(1) model
using Kalman filter

The transition and measurement equations for k-vari-

ate MA(1) model are (9),

αt=Tαt-1+R  ∈t

Xt=hTαt

where αt = (α1t, α2t,.....,αkt)T, Xt = (X1t,X2t,.....,Xnt)T,

∈t = (∈1t,∈2t,.....,∈kt)T, and ∈t ~ N(O, Σ The matrices T, R

and h are given by

For Kalman filter, initial conditions are as follows (20).

a1/o =  ao =  0

Poo=TPooT  TT+R Σ  RTT

Thus using the above expression for Po, Po can be deter-

mined as follows:

,

which gives P1111  =  Σ  +  θ11Σ  θ11
TT

P1122  =    Σ  θ11
TT

P2222  =  θΣ  θ11
TT

168
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On applying prediction and updating equations (9), it can

be shown that the one step prediction error vector νt and

the corresponding covariance matrix are given by

ν  t = Xt+ θ1Σ  F-1t-1 ν  t-1, t ≥1
Ft = F1-θ1Σ  F-1t-1θ1T,Σ t ≥2

where νo=0 and F1 = Σ  + θ1Σ    θ1T.

Hence, for given values of θ and Σ, the (-2 log likelihood)

function, 

for k-variate MA(1) can be computed using the following

algorithm.

Algorithm 2
Step 1. For t=1, set ν1=X1, compute

F1 = Σ  + θ1Σ    θ1T.      FLIK = log|F1|+νT1F-11ν1.
Step 2. t = t + 1

Step 3.  ν  t = Xt - θ1Σ  F-1t-1ν  t-1
Step 4.  Ft = F1-θ1Σ  F-1t-1θT1Σ ; if |Ft|<(1+δ)|Σ  |,

then go to Step 7 for quick recursion, 

when δ is prefixed number (7, 20).

Step 5.   FLIK = FLIK + logFt +νTtFt-1ν

Step 6. If t<n, go to Step 2.

Step 7. Quick recursion then follow step 5.

Step 8. If t<n, go to Step 7.

Step 9. Stop.

The choice of δ, which is generally a small positive

number, say, 0.01 or 0.001, determines the trade-off

between accuracy and computational efficiency for the

approximation to the likelihood function using quick recur-

sion. Results concerning the trade-off between accuracy

and computational efficiency for the approximation are

given in (4) for two bivariate MA(1) models with different θ1

and the same Σ matrix.

METHOD OF MOMENTS FOR VMA(1)

Algorithm 3
Recall K-variate MA(1) model

Xt=∈t-θ1∈t-1, t=0, ± 1,.....

where ∈t ~ N(0,Σ) and E(∈i∈j) = δi jΣ and δi j is Kronecker

delta.

Σ  = Γ  (0) - θ1Σ   θ1T

We have

θT = - Σ  -1 = Γ  (1) (3.1)

and replacing Γ(O) and Γ(1), the cross-covariance matrix

functions at lag O and 1 by sample estimates C(o) and C(1)

gives

Σ =C(0) - θ̂1Σ    θ̂1T

θ̂T= Σ  -1C (1) (3.2)

This system equation may be expressed as

(I- θ̂1⊗ θ̂1)-1 Vec ( Σ̂)=Vec(C(0))
Vev ( θ̂1)=-(I ⊗  C(1)T Vec ( Σ̂-1) (3.3)

These equations may be solved iteratively for Σ̂ and  θ̂1 in

that order, using the most recent estimates at each step

and setting θ̂1=0 at the start.
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