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SUMMARY: Different methods for approximating accumulated claim distribution are reviewed and
compared with illustrations. Monte Carlo method is restressed when personal computers are available.
Simulation results show that desired accuracy can be achieved by increasing the simulated sample size. 
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INTRODUCTION 
Consider a non-life insurance operation being trans-

acted through an interval of time (0, t), where t is operational
time (7). Further assume that claims are occurring randomly
and independently in each class of business. Furthermore,
let us assume that the number of claims occurring in (0,t)
follows the Poisson distribution and is given by

Pr {N(t) = k } = qk(t) = e-t tk /k!; k = 0, 1, 2,...                   (1.1)

where the probability distribution function of the independ-
ent time interval, between successive events being

Pr {T ≤ t } = 1− e-t; t > 0                                                    (1.2)

Further assume that Y ≥ 0, the size of an individual
claim is a random variable independent of the epoch of
claim occurrence and of the interval between it and the
prior claim (16). The distribution function P(y) of Y is
defined by

Pr {Y ≤ y} = P(y); Y ≥ 0                                                   (1.3)

Following the above assumption, we define the distri-
bution function of X(t), i.e. the claim incurred in (0,t):

F(x,t) = Pr {X(t) ≤ x}

where Pk*(y) is called k-fold convolution of P(y) and is
defined by

Pk∗ (y) = ∫Y0 P(k−1)∗ (y−z) dp1∗ (z); k = 1, 2, 3,...

and

P1∗ (y) = P (y), for y ≥ 0
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METHODS FOR APPROXIMATING
ACCUMULATED CLAIM DISTRIBUTION 
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The distribution function, F(x,t) given by (1.4) is known
as ‘Accumulated Claim Distribution’ function (ACD-func-
tion). When claim number process follows Poisson distri-
bution and distribution of size of individual claim is not
specified, the process will be denoted by ‘Poisson/Gener-
alized Model’. F(x,t) is infinitly divisible for details (7,12,
13,19, 21).

Probabilities for Poisson/Exponential model can be
computed without much difficulty as in this case exact
calculation are feasible (17). We shall be using Poisson/
Exponential model frequently for comparative purposes
whilst applying various techniques for computation and
approximation of F(x,t). F(x,t) plays instrumental role for
computing retention limit, safety margin loading and prob-
ability of ruin (4). 

The objective of this article is to review the existing
approximation techniques for F(x,t) and inform our expe-
riences. 

Some properties of interest (here) are discussed in
PPrrooppeerrttiieess  ooff  FF((xx,,tt)). TTeecchhnniiqquueess  ffoorr  aapppprrooxxiimmaattiioonn  ooff  FF((xx,,tt))
ffuunnccttiioonn discusses different techniques of approximation
of F(x,t). Along with illustration of Poisson/Exponential
case for small, moderate and large values of t. A tech-



niques for approximating F(x,t), using Laguerre Polynomi-
als (9), is discussed in this section briefly.

Simulation can also be used for computing F(x,t) and
results are encouraging and discussed in MMoonnttee  CCaarrlloo
mmeetthhoodd..

PROPERTIES OF F(x,t) 
We will discuss some of the properties of F(x,t) which

are of use while computing this function. 
Let us now define the moment generating function of

the ACD-function, F(x,t), by the following integral

M(s, t) = ∫∞0 e−sx dx F(x,t)                                               (2.1)

when the claim number process is Poisson then (2.1)
becomes
M(s, t) = exp {t (P(s) − 1}                                                            (2.2)

where

P(s) = ∫∞0 e−sx dx P(x) (2.3)

and s is an auxiliary variable. 
The moments of ACD-function can be found using

following expression:

µr = (−1)r dr M(s,t)/dsr s=0 for r = 0, 1, 2,...                      (2.4)

The following first four moments about origin for
Poisson/Generalized model can obtained from (2.4).

µ’1 = P1t
µ’2 = P2t + (P1t)2

µ’3 = P3t + 3P1P2t2                                                                    

µ’4 = P4t + 3P2
2 t2 + 4P1P3 t2 + 6P1

2P2t3 + P1
4 t4          (2.5)

where P1, P2, P3 and P4 are first four moments of P(y).
The moments about mean (µ’r) in terms of moments

about origin (µr) are given by

and the m. g. f.  of F (x,t) is given by

M(st) = {1− (P(s) − 1)t/n}-n for n > 0                                   (2.8)

In case n tends to infinity, (2.8) straight away reduces
to the Poisson/Generalized case given by (2.2).

TECHNIQUES FOR APPROXIMATION OF F(x,t)
FUNCTION 

Direct numerical calculations of F(x,t) often lead to
very cumbersome expressions (17), which are not handy
for practical purposes, therefore, one of the major prob-
lems in risk theory is search for a suitable approximations
for F(x,t).

There are numerous methods for obtaining approxi-
mate expressions of F(x,t) such as Normal approximation,
Edgeworth series expansion of F(x,t) Esscher approxima-
tion, NP method, inversion of characteristic function (Seal
1979), Pearson frequency curves (5), Gamma approxi-
mation (Seal 1976) Generalized Lambda (2, 3, 14), and
Laguerre polynomial approximation (9). 

Edgeworth series approximation
The normal approximation (1) to F(x,t) is in fact a very

special case of a more generalized form of Edgeworth
series expansion (Kendall and Stuart 1977) F(x,t) in
Edgeworth expansion is given by
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Using the expected value of a claim amount as a unit
of measurement such that

P1 = ∫∞0 x dP(x) = 1

We have first four moments about mean

µ1 = 0
µ2 = P2t
µ3 = P3t
µ4 = P4t + 3P2

2t2

In Polya/Generalized case, when qk(tt) is
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(1). This series (3.3) is semi-convergent when n → ∞ for a
fixed value of t. However, by taking suitable number of
terms this expansion provides reasonable results in the
neighborhood of mean value of X(t) (Table 1). From risk
theoretical point of view the main region of interest, whilst
studying ACD-functions, is the neighborhood of mean
value to the extend of two to three times the standard
deviation. We, therefore, need some improvement in the
Edgeworth expansion and this improved method of
approximation for F(x,t) is called normal power method
and is given by (1,18). The approximated value of F(x,t) is
given by

moments µ1, µ2,..., µm about  origin exist. Making use of
the definition of Laguerre polynomials, we write
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x0 t=10 t=100 t=1000

Seal
1972

NP Exact
Seal

NP Exact Seal
1972

NP

-3 - - .00037 .00098 .00098 .00098

-2 .00234 .00338 .01669 .01683 .02091 .02092

-1 .15470 .15885 .15833 .15865 .15862 .15865

0 .54489 .54397 .51411 .51409 .50446 .50446

1 .84384 .84134 .84163 .84134 .84137 .84134

2 .96236 .96113 .97186 .97201 .97547 .97546

3 .99308 .99274 .99718 .99721 .99823 .99823

4 .99897 .99820 .99983 .99983 .99994 .99994

5 .99987 .99906 .99990 .99990 .99999 1.00000

Table 1
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provided x ≥ t + (p3 / 6p2)(1-9 / γ2
1) and p1, p2 and p3 exist.

Accuracy of this approximation is demonstrated in case
of Poisson/Negative Exponential case (Illustration 2). As
apparent from Table 1, for small values of t, NP method
gives poor results but provides satisfactory fit for middle
range and gives surprisingly good results for large values of
t. However, for x-t, NP method provides satisfactory results
even for small values of t. This method uses only first three
moments about mean and gives reasonably close results
when the skewness is of moderate size i.e.  γ1 ≤ 2.

Illustration 1 (Poisson/Exponential model)
qk(t) = e-t . tk / k!, k = 0, 1, 2, ...
p(x) = 1−e-t x > 0
x0 = (x−t) / √(p2t)

Laguerre approximation
The F(x,t) can be approximated using Laguerre

polynomials (Magnus et al. 1988) assuming the first m
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where θn(x) = e-x . xn-1 / Γn for x ≥ 0 Cr are arbitrary coef-
ficients and L(n)

r (x) are Laguerre polynomials for r = 0, 1,
2,...m. The values of n and Cr may be determined by the
method of moments (9).

The gamma approximation
We have seen in the foregoing sections that various

techniques can be followed to arrive at the approximate
form of ACD-function. Among these methods NP approx-
imation may be preferred because of its simplicity.
Buhlmann (1974) has also recommended this technique.
Seal (1976) on the other hand emphasized on a simple
gamma distribution (Pearson-type III) for approximating
F(x,t). We have also experienced that ACD-function in
following form can be used

( ) ( )∫Γα≅µ+ α+ −α−
′

za
0

y
z

dy  ye1tztF 1

( )α+αα= z,G

(3.10)

where G (.,.) notation is for the incomplete gamma ratio,
and α is a function of t given by

α = 4/ β = 4µ3 / µ2

and

z = (µ + ηt) / √(tp)2



where µ and µ are second and third moments about
mean of F(x,t) and η is safety loading margin.

Simple programmable calculators can be used to
compute incomplete gamma ratio in (3.24). Also tables of
the incomplete gamma ratio prepared by Khamis and
Rudert (11) can be used. Both Bhattacharjee (1970) and
Chi-Leung Lau (1980) have produced computer pro-
grammes for computing the incomplete gamma ratios. An
important feature of using the gamma distribution as an
approximation (3.10) to F(x,t) is that only the first three
moments of the distribution of the claim amount are
required. Table 2 exhibits the closeness of the values of
F(x,t), for Poisson/Exponential case when t = 10.

Values computed by Seal (17) and values calculated
by using NP formula are also given for comparison pur-
poses.

Pearson system of curves
Consider the ACD-function and let us assume that in

the Poisson/Generalized case its parameters can be esti-
mated from the moments of kF(x,t) given by (2.7) then an
appropriate form of Pearson System of Curves (5), can be
chosen to give an approximation of F(x,t) for known
values of β1 and β2. Assuming that the given Curve is one
of the Pearson System of Curves then table of the
standardized deviates, for different values of β1 and β2,
can be used for various practical purposes. However, util-
ity of this method is restricted because the limited range of
the tables of percentage points of Pearson System of
Curves for given β1 and β2.

In the following Illustration 2, Poisson/Inverse Guass-
ian model is considered.

Illustration 2: Poisson/Inverse Guassian model
qk(t) = e−t tk / k!, k = 0, 1, 2, ...

and

P(x) = {
λ

/ 2pπx3}1/2 exp {−λ (x−µ)2 / 2µ2x}
x > 0, µ > 0, λ > 0

The moments about mean of F(x,t) in this case are
given by (20)
µ2 = (1 + 1 / λ)t

µ3 = (3 / λ2 + 3 / λ + 1)t
µ4 = (1 + 6 / λ + 15 / λ3)t + 3(1 + 1 / λ)2 t2

Further assume µ = 1 and λ = 2.20408 (18), which
leads to β1 = 2.88810/t and β2 = 4.050869 + 3.

The criterion for application of Pearson type III curve,
i.e. 2β2 − 3β3 = 6, to some extent holds in this case. It,
therefore, follows that F(x,t) for the above values of β1 and
β2 can be approximated by a Pearson type III with the
parameter p = (4 / β1) − 1 (5).

Monte Carlo method
Monte Carlo techniques can also be used to approxi-

mate F(x,t) when claim occurrence distribution qk(t) and
claim amount distribution are known. Using this experi-
mental mathematics (15) F(x,t) can be simulated. For the
simulation of ACD-function, a randon number is generated
to get random deviates from qk(t) by solving the equation
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X0 Seal (1972) NP Method Gamma

Guassian∗ Simpson∗∗ P(α, a+z√α)∗∗∗

-2 .00234 .00338 .00371 .00371 .00371

-1 .15470 .15865 .15267 .15267 .15274

0 .54489 .54397 .54427 .54460 .54461

1 .84384 .84135 .84485 .84498 .84499

2 .96236 .96113 .96367 .96245 .96248

3 .99308 .99274 .99730 .99305 .99290

4 .99897 .99890 .99962 .99876 .99888

5 .99987 .99986 .99992 .99981 .99984

Table 2: Values of F(x,t) in Poisson/Exponential case (t = 10 and X0 = (x-t) /√(2t)).

* Guassian Quadrature formula was used for integrating the Gamma function.
* * Simpson’s general formula was used for integrating Gamma function (10).
* * * Khamis and Rudert (11) tables were used.

( )∑
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k
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m
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where n denotes the sample size and x(i) denotes the
value of the order Statistic.

The empirical distribution function Sn(x) gives an
unbiased estimate of F(x,t) and standard error of Sn(x)
depends on n with upper bound 1/2√n. In risk theory right
hand tail area of F(x,t) is of importance and the values of
the order 10-1 to 10-3 are of interest for practical purposes
such as determining retention limit for reinsurance. If high
precision is required then 106 or more sample points are
needed from F(x,t). Monte Carlo technique, though gives
reasonably good result, but due to the cost involved its
use is not very popular. This technique can now be used
frequently as personal computer are available and this

simulation can be done on a personal computer. Another
advantage is that Monte Carlo techniques can be used
even when qk(t) is not a Poisson distribution provided that
it is suitable for computer input (15).

In illustration 3 Poisson/Exponential model is simu-
lated and results are given in Table 3. It is found that there
is no significant difference at level .05, in simulated distri-
bution and results of Seal (17) (Kolmogorov-Smirnov test
was used). During this simulation experiment we have
noted we can get desired accuracy by increasing the
sample size at the cost of increase in CPU time. However,
for practical purposes a simulated sample of size 1000 is
sufficient to get accuracy up to third decimal place.

In last it is of interest to mention that ACD-function can
be computed by numerical inversion of characteristic
function. Seal (1977, 18) discussed in detail the methods
for inversion of characteristic function and computed
F(x,t) for Poisson/Exponential, Poisson/Inverse Gauss-
ian, Waring/Exponential and Waring/Inverse Gaussian
models.

Illustration 3 Poisson/Exponential model (t=10).

qk(t) = e−t tk / k!,       k = 0, 1, 2,...

P(y) = 1 − e−y, y > 0

x0 = (x-t) / √pt
2
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x0 Seal (1972) F (x0,10) Simulated F (x0, 10)

-3 - -

-2 .00234 .003

-1 .15470 .163

0 .54489 .539

1 .84384 .849

2 .96230 .962

3 .99308 .998

4 .99897 1.000

5 .99987 1.000

Table 3

(The Kolmogorov-Smirnow Statistics, DN is. 03869 and DN = 1.2)(.05)

where 0 ≤ ζ ≤ 1 is a random number. Say k = k1 is the
solution of (3.11), then k1 random numbers r11, r12,....,r1k1
are generated using the equation
r1i  = P(x)

Using (3.12), we obtain x11, x12,...., x1k1 random devi-
ates, and

gives the first sample point of the ACD-function.
Following the aforestated technique, a number of

sample points of F(x,t) can be generated to get desired
accuracy. An estimate of f(x,t) can be obtained by con-
structing empirical distribution function Sn(x) (8), given by
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