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The development of antibiotic resistance is increasing worldwide. Third-generation cephalosporins-resistant Enterobacterales 
(ESBL-E) and carbapenems-resistant Enterobacterales (CRE) have been placed in the critical category by the World Health 
Organization on its list of global priority pathogens.
ESBL-E is a group of Enterobacterales bacteria that exhibit resistance to beta-lactams, broad-spectrum beta-lactams, and 
third-generation cephalosporins. The CTX-M-15 enzyme, responsible for resistance, is the most identified identified in the 
ESBL-E group bacteria.
In parallel with the increase in infectious diseases caused by the ESBL-E group bacteria, the use of carbapenems increased, 
resulting in an increase in carbapenem resistance. Carbapenemases are classified into three groups: A, B, and D. OXA 
(Oxacillin-hydrolyzing carbapenemase) enzymes that form Class D carbapenemases are endemic in Türkiye.
The first CRE strain was detected in the 1980s and soon spread worldwide. Carbapenemase groups A, B, and D are observed 
in various countries and are even considered endemic in some, such as Türkiye.
At EUCAST (European Committee on Antimicrobial Susceptibility Testing) and CLSI (Clinical and Laboratory Standards 
Institute) guidelines, the carbapenem group of antibiotics are suggested as preferred agents for the treatment of 
ESBL-producing Enterobacterales serious infections.
There are three approaches for treating infections caused by carbapenem-resistant Enterobacterales: 1) re-evaluation of 
treatment options with existing antibiotics (fosfomycin, colistin, tigecycline, such as the use of older antibiotics), 2) treatment 
with two carbapenems (combination of two different carbapenems), 3) treatment with new β-lactam and beta-lactamase 
inhibitor combinations or with new antibiotics (Ceftazidime/avibactam, Meropenem/vaborbactam, Plazomicin, Eravacyclin; 
the use of new antibiotics).
An increase in the prevalence of multidrug-resistant bacterial infections such as CRE and ESBL-E is causing antibiotic 
resistance to pose a global threat today. An international, multidisciplinary approach is needed to combat this global threat.
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Antibiotic resistance is a growing problem worldwide. 
Current resistance genes are against all antibiotics, 

and highly resistant pathogens are becoming prevalent. 

Gram-negative bacteria have developed many structural 
adaptations as enzymes that disrupt the structure of 
antibiotics, causing the widest spectrum of resistance 
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including expanded-spectrum beta-lactamases (ESBL), 
AmpC β-Lactamases, and carbapenemases[1]. Particularly, 
carbapenemase-producing Enterobacterales are of serious 
importance.

Enterobacterales are Gram-negative bacteria, a member 
of the intestinal flora, and also a common etiologic agent 
of both community and nosocomial infections. Through 
contaminated food, water, and hands, Enterobacterales 
easily spread between human beings and also develop 
antibiotic resistance by transferring genetic material. Most 
of the time, they use horizontal gene transfer mediated by 
plasmids and transposons[2-4].

The World Health Organization (WHO) recently published 
a Global Priority Pathogens List of the vital resistant 
pathogens. The third-generation cephalosporin-resistant 
Enterobacterales (ESBL-E) and carbapenems-resistant 
Enterobacterales (CRE) are in the critical category of that 
list[5].

Extended Spectrum Beta-Lactamase Producing 
Enterobacterales (ESBL-E)

Enterobacterales group bacteria that exhibit resistance 
to beta-lactams, broad-spectrum beta-lactams, and 
third-generation cephalosporins are named as ESBL-E. 
ESBL-E, such as TEM-1, TEM-2, SHV1, and OXA-10, has been 
predominantly associated with nosocomial outbreaks 
because the resistance is caused by point mutations 
and transferred by plasmid. The CTX-M-15 type ESBL-E is 
the most commonly identified and is common in many 
countries in Europe, Asia, Africa, and the United States[6-8]. 
It has been shown in several studies that the prevalence 
of health care-related infectious disease caused by ESBL-E 
group bacteria has increased over the years[9].

TEM- and SHV-type ESBLs are most often found in Escherichia 
coli and Klebsiella pneumoniae; TEM beta-lactamases 
have been found mainly in clinical isolates of E. coli[10,11]. 
The majority of SHV-type ESBLs are found in strains of K. 
pneumoniae. The SHV-1 beta-lactamase is most commonly 
found in K. pneumoniae and is responsible for up to 20% of the 
plasmid-mediated ampicillin resistance in this species[12,13].

Carbapenem Resistant Enterobacterales (CRE)

Increased ESBL-E prevalence causes excessive consumption 
of carbapenems, leading to the emergence and spread of 
carbapenem resistance, especially in Enterobacterales[14]. 
Attention should be taken in the diagnosis, treatment, 
and prevention of CRE infections. Bacteria may have 
multiple resistance mechanisms to carbapenems, 

but the most common is carbapenemase enzyme 
production. Carbapenem-resistant Enterobacterales 
produce carbapenemases by many ways to break down 
antibiotics[15,16].

Carbapenemases are classified into a total of three groups, 
A, B, and D, according to the Ambler classification.

The Class A carbapenemase, the most common group, 
consists of KPC (Klebsiella pneumoniae carbapenemase) 
and IMI (Imipenem-hydrolyzing beta-lactamase) type. 
KPC is the most common carbapenemase gene among 
Enterobacterales.

Class B is defined by metallo-beta-lactamase (MBL) 
structures. These enzymes include NDM (New Delhi metallo 
beta-lactamase), IMP (Imipenem-resistant Pseudomonas), 
and VIM (Verona integron-encoded metallo-lactamase). 
These carbapenemases are usually found in plasmid vectors 
and other transposable elements, making their transfer 
to other bacteria easy. High sequence diversity (15-17%) 
makes it difficult to detect these enzymes by molecular 
tests and slows down research about their prevalence. 
Current epidemiology studies suggest that NDM-1 is the 
most common cause of carbapenem resistance[17,18].

OXA (Oxacillin-hydrolyzing carbapenemase) enzymes form 
Class D carbapenemases. OXA-48 carbapenemases, first 
detected in Türkiye in 2001, also pose a public health threat. 
Due to variable carbapenem resistance prevalence, the 
spread of OXA-48 was initially underestimated. However, 
multiple countries have interregional distribution, and 
OXA-48 is endemic to Malta and Türkiye since 2015[19-23].

All around the world, researchers face and identify various 
carbapenemase genes due to international travel.

KPC, NDM, and OXA-48 are mostly found in K. pneumoniae. 
In a review of 4440 carbapenem-resistant Enterobacterales 
isolates submitted to the United States Centers for Disease 
Control and Prevention (CDC) in 2017, 32 percent produced 
a carbapenemase, and among those, 88 percent possessed 
the KPC beta-lactamase. OXA-48 β-lactamase was originally 
described in a Klebsiella pneumoniae isolate from Istanbul, 
Türkiye, in 2001. It is now widespread in K. pneumoniae, and 
Türkiye was reported as having the highest epidemiologic 
level called endemic in 2015[17,18,24,25].

Change in Resistance Over the Years
Since the discovery of the CRE strain in the 1980s, it has spread 
exponentially around the world[26]. Surveillance studies show 
that some classes of carbapenemases are common in certain 
parts of the world. In this context, while NDM-1 type is the 
most common type of carbapenemase in India, Pakistan, and 
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Sri Lanka; KPC type in the American continent and Europe; 
OXA-48 is endemic in Türkiye and Malta[27].

The first case of carbapenemase-producing 
Enterobacterales was identified in Serratia marcescens 
in Japan during a plasmid-mediated outbreak in seven 
hospitals. Then, with broad spread distribution, it 
(bla-IMP-1) spread throughout Japan[26]. Since then, 52 
IMP gene variants have been established, with endemicity 
restricted to Japan and Taiwan[28].

Soon, VIM was identified in P. aeruginosa strains[29]. In the 
beginning of the 2000s, VIM type carbapenemase-producing 
K. pneumoniae and E. coli have also been reported to be 
endemic in Greece[30,31].

However, the major threat to the MBL-producing 
Enterobacterales was revealed by the isolation of the 
NDM enzyme producing ST14 K. pneumoniae strain from 
a Swedish patient receiving healthcare in New Delhi, 
India[32].

KPC producing Enterobacterales, especially K. pneumoniae 
due to ST258 enzyme, cause aggressive pandemics. These 
species are endemic in Greece, Israel, and the American 
continent[33]. Actually, the KPC endemicity is expected; just 
five years after KPC was first isolated from K. pneumoniae 
at a North Carolina hospital in 1996[34], an outbreak of KPC 
producing bacteria occurred among hospitalized patients 
in the northeastern United States[35].

VIM enzymes were predominant at the beginning in 
Greece, one of the countries with the highest CRE ratios 
worldwide, but after 2007 KPC became the predominant 
carbapenems in the country[33]. Finally, OXA-48 outbreaks 
have been reported in several countries, but only in Türkiye, 
Japan, and Taiwan is it accepted to be endemic[36].

Treatment Options If Resistance Is Detected
According to EUCAST (European Committee on 
Antimicrobial Susceptibility Testing) and CLSI (Clinical 
and Laboratory Standards Institute) guidelines, for 
the treatment of Enterobacterales-caused infections, 
carbapenems could be used[37,38].

Carbapenems, including imipenem, meropenem, 
doripenem, and ertapenem, are the first-choice agents 
for the treatment of ESBL-producing Enterobacterales. 
Carbapenems are highly stable against the hydrolysis of 
ESBL[39].

However, with the increase of CRE, carbapenems are 
becoming ineffective. Considering the various mechanisms 
of carbapenem resistance, there are different approaches to 
treat CRE infections: reassessment of existing antibiotics as 

treatment options, combined treatment with carbapenems, 
and new antibiotics with new β-lactamase inhibitors[40].

1- Reconsidering Existing Antibiotics
Some "old antibiotics" could be used for the treatment of 
CRE.

Fosfomycin:

Fosfomycin is active against a majority of CRE, particularly E. 
coli, and has been used successfully as an oral formulation 
for the treatment of uncomplicated urinary tract infections 
for several decades. However, during monotherapy 
with fosfomycin, rapid resistance may develop. In vitro 
studies also demonstrated the appearance of resistant 
subpopulations within 30-40 hours of drug exposure[41].

Fosfomycin resistance can also be affected by the in vitro 
sensitivity method used. The approved MIC (Minimum 
Inhibitory Concentration) detection method is agar 
dilution using agar media supplemented with 25 µg/ml of 
glucose-6-phosphate. Resistance rates are higher in studies 
in which disk diffusion or microbroth dilution susceptibility 
testing were used than in studies with a reference agar 
dilution[42,43].

Fosfomycin therapy can be recommended for 
uncomplicated UTIs with ESBL-producing E. coli as a 
step-down outpatient therapy. However, for complicated 
UTIs, prostatitis, UTIs with K. pneumoniae, more data from 
well-designed studies are required[44].

Polymyxins (Colistin and Polymyxin B)
Colistin (or polymyxin E) has activity against most species in 
the order Enterobacterales (except for Serratia marcescens 
and Proteus, Providencia, Morganella, and Hafnia species) 
and is a key drug in the treatment of CRE infections. 
Nevertheless, CRE, especially K. pneumoniae, began to 
develop resistance to colistin, reducing the effectiveness of 
the drug as a monotherapy[45,46].

Colistin is administered as an inactive prodrug—colistin 
methane sulfonate—which results in a prolonged 
period of low plasma concentrations of the active 
drug and theoretically increases the risk of resistance 
development[46]. Consequently, colistin is used as part of 
dual treatment with meropenem, which reduces mortality, 
especially in septic shock and fatal comorbidity[47].

Polymyxin B, the other approved agent in the polymyxin 
class of antibiotics, is not formulated as a prodrug, which 
mitigates concerns related to a delayed increase in its 
plasma concentration. However, less is known about its 
pharmacokinetic, efficacy, and safety profiles. Because of 
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these concerns, the standard practice over the past decade 
has been to use colistin or polymyxin B in combination 
with at least one other agent of a different class when its 
use is warranted[48].

In addition, tigecycline is also available as an option for 
the treatment of CRE in some cases. The use of high doses 
of tigecycline has been investigated and shown to be 
effective in treating CRE infections[49].

2- Options of Combination Therapy

Combined Treatments with Carbapenems:

The dual use of carbapenems in the treatment of CRE 
infections is known as “double carbapenems.” Usually, 
the combination consists of a long-term infusion of 
meropenem or doripenem over 3 or 4 hours followed 
by an initial dose of ertapenem, with 2 g of meropenem 
added every 8 hours. The greater affinity of ertapenem 
to KPC plays a “sacrificial role,” since it is preferably 
hydrolyzed by carbapenemase, which allows maintaining 
a high concentration of the simultaneously administered 
second carbapenem[50,51].

Colistin–Fosfomycin Combinations:

The rationale for the combination of colistin and fosfomycin 
is the potentially enhanced penetration of fosfomycin 
resulting from the permeabilizing effect on the bacterial 
outer membrane caused by colistin. The real benefit of this 
combination is still uncertain; a small number of in vitro 
experiments and observational clinical studies provide 
some evidence. Clinical experience with fosfomycin for 
the treatment of MDR Gram-negative infections remains 
limited to small case series[52].

Tigecycline-Based Combinations:

Two in vitro studies have reported improved bactericidal 
activity of colistin–tigecycline compared with 
monotherapy. The addition of meropenem to tigecycline 
or to tigecycline–colistin did not show any advantage. 
This effect has also been observed in in vivo models. The 
combination of tigecycline and colistin was superior to 
monotherapy, even in isolates with high MICs for the two 
drugs[53,54].

Aminoglycoside-Based Combinations:

Aminoglycosides are an effective therapeutic option 
for CRE, even in the presence of colistin resistance. The 
rate of aminoglycoside susceptibility among CRE is 
variable and based on local epidemiology. An improved 
bactericidal effect for aminoglycosides in combination 
compared with monotherapy has been suggested in a 

few studies, even in the presence of isolates with high 
MIC for aminoglycosides[55,56]. Another study reported a 
reduced emergence of resistance at low concentrations 
for tigecycline–amikacin compared with other regimens 
(colistin–tigecycline and colistin–amikacin)[57].

3- New Antibacterial Drugs:
This group can be distinguished as newly approved 
antibiotics[58].

Ceftazidime/avibactam is a new β-lactam/β-lactamase 
inhibitor combination. The innovation is based on 
avibactam, a synthetic β-lactamase inhibitor active against 
β-lactamases from Ambler classes A, C, and D[59]. Initial 
trials show a decline in mortality rate from 9% to 32% 
when used together with colistin[60]. However, resistance 
to ceftazidime/avibactam has been reported during 
treatment[61]. This condition must be considered by 
clinicians when prescribing antibiotics.

Ceftazidime-avibactam and ceftolozane-tazobactam 
are combinations of cephalosporins (ceftazidime and 
ceftolozane) with inhibitors (avibactam and tazobactam) 
which show good activity against ESBL-producing 
Enterobacterales[62].

Meropenem/vaborbactam is also a new β-lactam/β-lactamase 
inhibitor. Vaborbactam is a serine-β-lactamase inhibitor 
that strengthens meropenem activity[40]. This combination 
inhibits Ambler Class A and C serine carbapenemases. There 
is limited clinical data, but in vivo results have shown that 
99% of KPC producing Enterobacterales are sensitive to 
meropenem-vaborbactam[63].

Plasomycin is a new generation semi-synthetic 
aminoglycoside[64] with activity against bacteria that 
produce aminoglycoside-modifying enzymes. Studies 
report that plasomycin has a higher potential against 
KPC-producing Enterobacterales compared to other 
aminoglycosides. Plasomycin showed wide spectrum 
activity against Gram-positive cocci and Gram-negative 
bacilli, but MBL producers, especially NDM-producers 
with methyl transferase, are resistant to this antibiotic[65]. 
In addition, clinical studies in which plasomycin is used to 
treat various ESBL-producing bacteria-caused infections 
show similar results to standard treatment regimens[62].

Eravacycline is a synthetic fluoroquinolone[66] with 
broad-spectrum antimicrobial activity against Gram-positive, 
Gram-negative, and anaerobic bacteria, regardless of their 
resistance to other classes of antibiotics.

In addition to the drugs currently approved, imipenem/
silastatin and relebactam (Merck), cefiderocol (Shionogi), 
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SPR741 (SperoTherapeutics), zidebactam (Wockhardt), 
nacubactam (Roche), and VNRX 5133 (VenatoRx 
Pharmaceuticals)[58] are new molecules in their beginning 
development periods.

As a result, CRE creates a rapidly increasing global threat as 
reported by WHO. These bacteria have various and multiple 
drug resistance mechanisms that make them difficult to 
control and to diagnose early. The rapid evolution of CRE 
and ESBL-E in terms of developing resistance to antibiotics 
is one of the biggest threats to infection treatment. An 
international, multidisciplinary approach is urgently 
needed to overcome this global threat. This context is an 
urgent call for developing new therapeutic guidelines for 
treating CRE infections, including the reuse of existing 
antibiotics and the development of new drugs.
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