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INTRODUCTION
The introduction of nickel–titanium 
(NiTi) alloys in the late 1980s led 
to a revolution in endodontics as 
these files were shown to have con-
siderable advantages over stainless 
steel (SS) files, especially in relation 
to the safety of instrumentation (1). 
NiTi files were able to overcome the 
issue of rigidity and low resistance 
to cyclic fatigue associated with 
stainless steel instruments. Other 
than the advantage of increased 
flexibility and shorter treatment 
time, NiTi wires also resulted in 
fewer procedural errors such as zip-
ping, ledges, or transportation due 
to their superelasticity, compared 
with SS files (1, 2).

NiTi wires have gained a special commercial applications in dentistry because of their shape 
memory effect, and corrosion resistance. These properties of the alloy occur as a result of tran-
sition from the austenite to martensite form. This transformation requires “twinning,” which is a 
reversible atomic process that divides the lattice into two symmetric parts at an angle and allows 
reduction of strain during the transformation phase (3).

Phase Transformations
The NiTi alloys used for manufacturing of the endodontic instruments contain approximately 56% 
(wt) of nickel and 44% (wt) of titanium. (4) However, even a 0.1% change in the composition of these 
alloys can result in a 10°C change in the transformation temperature, which can subsequently af-
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formed (9). The stress-induced martensitic state is not stable 
at room temperature, so an immediate retransformation from 
the martensitic to the austenite phase occurs once the stress 
is released. This leads to a spring-back of the endodontic in-
strument to the original shape when it is removed from the 
canal (10).

A stress-induced change without permanent deformation 
for up to 8% strain is possible in NiTi alloys, as opposed to 1% 
in stainless steel (11). On releasing the stress, the martensite 
form reverts back to the original shape, that is, the austenite 
form (12).

Superelasticity
NiTi alloys show the phenomenon of superelasticity where the 
stress remains constant, despite the increase in strain up till 
a certain range. Their superelastic property is caused by the 
austenite transforming into the martensite form. The strain 
remains constant during this transformation until the whole 
NiTi mass has converted to the martensite form, which would 
indicate that the superelasticity phase has ended (13). If defor-
mation is continued beyond this point, the stress/strain curve 
will take the shape of classic relationship as the potential of 
the crystals in the structure to absorb strain is exhausted (8). 
However, if the plastic deformation limit is not reached, the 
deformation will remain reversible.

Fracture mechanisms
NiTi instruments possess a risk of separation or fracture during 
use because of torsional or cyclic fatigue (14). Distortion of ro-
tary NiTi files is often not visible without magnification. Conse-
quently, these instruments can fracture without any warning 
signs as opposed to SS instruments where distortion can be 
perceived easily (15). Cyclic fatigue occurs due to the instru-
ment rotating in a curved canal and generating repetitive ten-
sion/compression cycles that eventually lead to metal fatigue 
(16), whereas torsional fatigue is a result of different parts of 
the file rotating at different speeds. Clinically, torsional fatigue 
is the result of the instrument tip binding to the canal dentin, 
whereas the shank continues to rotate, creating a torque that 
results in torsional fracture (17). Torsional fatigue resistance 
is basically how much a file can twist before fracturing. This 
property is desirable during the use in a narrow and con-
stricted canal where torsional load would be high during use.

Manufacturers are constantly trying to develop changes in 
NiTi rotary systems to improve the mechanical properties of 
these instruments, especially the fatigue resistance. One of 
the changes incorporated was heat treatment of these alloys, 
which produced instruments with superior mechanical prop-
erties (18). Other methods used produced instruments with 
different cross-sectional designs, or incorporated new manu-
facturing processes (19).

Thermal treatments
Thermal treatments aim to affect the transition temperatures 
of the NiTi alloys and subsequently modify the fatigue resis-
tance, whether it is torsional or cyclic fatigue (20). A propri-
etary thermal treatment is applied to the alloy during the 
R-phase when it undergoes martensite transformation. This 

fect the mechanical characteristics of these alloys (5). At room 
temperature, these alloys are in the austenite form, which is a 
body-centered cubic structure (6). On cooling, the austenite 
form becomes a monoclinic structure called martensite (Fig. 1) 
because of a classic linear thermal contraction.

On further cooling down to Ms, that is, “Martensite Start” tem-
perature, the contraction accelerates (7). However, when it is 
further cooled, the contraction rate becomes linear again until 
a certain point, that is, the “Martensite Finish” (Mf), indicating 
the point where the proportion of martensite phase in the al-
loy reaches 100%. Reheating this martensite phase will even-
tually reverse the process and yield an austenite form (Fig. 2). 
An intermediate phase, that is, the R-phase, or “Rhombohedral 
phase”, occurs on cooling before the martensitic transforma-
tion is complete (8).

When the external stresses are placed on a NiTi wire, the 
austenite form is converted to martensite (stress-induced 
martensite) form, which can accommodate greater stress 
without increasing the strain (up to 8%). As a result, a NiTi file 
has transformational elasticity, also known as superelasticity, 
or the ability to return to its original shape after being de-

Figure 1. Martensitic transformation: Pseudoplastic behavior of NiTi 
is based on austenite and martensite crystal configurations, which de-
pend on temperature
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Surface treatments
When electric current is used to deposit metallic ions on one of 
the electrodes, the process is called electroplating. Any electro-
chemical process that would aim to reduce the surface irregu-
larities of a material is known as electropolishing (8). Physical 
vapor deposition is a process whereby NiTi instruments are 
coated with a thin layer of titanium nitride. This results in an 
improved cutting efficiency and corrosion resistance without 
affecting the superelasticity of these instruments (35).

Recently introduced NiTi file systems
BT-RaCe (FKG Dentaire) is a new file system introduced in 
2013, derived from conventional austenite NiTi. These files 
have characteristic uniform triangular cross section and a 
blunt tip design called the booster tip. They undergo a surface 
electrochemical treatment that increases the resistance to 
cyclic fatigue (36). The booster tip is claimed to reduce the oc-
currence of deviation and transportation. This specialized tip is 
the unique feature of the BT-RaCe system that allows it to track 
canal curvatures with less stress and increased safety. Burklein 
et al. compared root canal preparations using the ProTaper 
Next and BT-RaCe systems and found no significant differ-
ences between them in canal transportation and straighten-
ing. The triangular cross section design has the tendency to 
make the instrument more flexible than other cross section 
designs (21, 37).

Hyflex CM (Coltène/Whaledent) is a NiTi rotary system that 
was first manufactured in 2011, and it is the first thermo-me-
chanically treated NiTi endodontic alloy. NiTi files made up 

heat treatment maintains a crystallographic structure and 
apparently gives these files a higher fracture resistance and 
increased flexibility (21). Recently, manufacturers have devel-
oped NiTi superelastic alloys with a special heat treatment so 
that these NiTi alloys have a stable martensite phase in differ-
ent clinical conditions. There are kinds of heat-treated NiTi al-
loys available: M-wire, R-phase, and CM wire.

The M-wire was introduced in 2007, and is essentially a ther-
mally processed NiTi alloy that is stable at body temperature. 
It was developed via thermo-mechanical processing and con-
tains three crystalline phases: deformed and micro-twinned 
martensite, R-phase, and austenite (6). The presence of the 
martensite phase improves the fatigue resistance of the file, 
but at the expense of hardness, which prompts the need for dif-
ferent surface treatments (22). Examples of M-wire files in mar-
ket are ProFile GT series, Vortex files, ProTaper Next, Reciproc, 
and WaveOne. Literature reports a significantly improved 
cyclic fatigue resistance of M-wire, for example, ProTaper Next 
in comparison with conventional NiTi instruments. However, 
many studies show no difference in cyclic fatigue of M-wire 
and conventional NiTi files (23-26).

The other crystalline phase, that is, the R-phase (pre-marten-
sitic) occurs along a very narrow temperature range on the 
heating or cooling curve between martensitic and austenitic 
forms. These instruments have increased resistance to cyclic 
fatigue along with greater flexibility than conventional NiTi 
files (27). An example is the twisted file (TF), which is manu-
factured using the twisting method. The basic austenite phase 
is transformed into the R-phase by heating and cooling. Serial 
heating and cooling would convert the twisted R-phase back 
to the austenite crystalline phase, which would become su-
perelastic while stressed. This treatment can result in increased 
cyclic fatigue resistance of TF (11). However, literature reports 
that the R-phase instrument has a lower torsional strength 
than conventional NiTi files (28-31).

CM wires were introduced in 2010. They have a lower nickel con-
tent (52% wt.), as compared to other NiTi files. To incorporate 
extreme flexibility, these files undergo special thermo-mechan-
ical treatment that also improves the shape memory effect of 
these files. Consequently, they do not have the rebound effect 
after unloading, and their original shape is restored after heat 
application or autoclaving procedure. Clinically, this incurs the 
benefit of pre-bending this file before placing in a curved canal, 
especially with patients with limited mouth opening. The CM 
wire has a stable martensite phase because the austenite fin-
ishing temperature is above the working temperature. This im-
plies that thermally processed controlled memory alloys would 
mostly or totally be in the martensite phase at body tempera-
ture (32) (Fig. 3). CM instruments also have increased resistance 
to cyclic fatigue (300%–800% more fatigue resistant) because of 
their unique manufacturing process as they do not rebound to 
their original shape (33). However, they have one major draw-
back of increased tendency of permanent plastic deformation 
during use. Due to this weakness, these instruments are recom-
mended for single use only (34). Some commercial brands of 
CM files include Hyflex CM, Thypoon Infinite Flex NiTi Files, V-
Taper 2H, and Hyflex electrical discharge machining (EDM).

a b

Figure 3. Comparison of austenitic (ProTaper Next) and martensitic 
NiTi files (CM wire). (a) The austenitic NiTi file cannot be bent at room 
temperature; (b) The martensitic file can be bent at room temperature
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point, rectangular at the middle, and becoming triangular at 
the coronal part. A speed of 500 rpm with a torque of 2.5 N/
cm is recommended for this system (19, 59).

Vortex Blue and Protaper Gold (Dentsply) were first introduced 
in 2011 as ProFile Vortex Blue. These files are manufactured 
through a complex heating–cooling proprietary treatment re-
sulting in a visible titanium oxide layer on the surface, which 
imparts a blue colour to the alloy. They are now available as 
two gold and two blue heat-treated systems. Two of them are 
used in reciprocating motion (Reciproc Blue, VDW; WaveOne 
Gold), and other two are used in rotary motion (ProFile Vortex 
Blue; ProTaper Gold) (60). These systems can be deformed and 
hence also display controlled memory effect (61). They differ 
from CM wire systems as they are ground before they undergo 
the post-machining heat treatment (44). The austenite fin-
ish temperature of Vortex Blue was found to be around body 
temperature (38°C) whereas the martensitic start temperature 
is around 31°C. Despite having lower transformation tem-
peratures, these systems contain a greater amount of stable 
martensite than M-wire, thus increasing the softness and duc-
tility of the alloy (62). ProTaper Gold has a transformation tem-
perature well above the body temperature, leading to mainly 
martensitic or R-phase under clinical conditions (63). The flex-
ibility and fatigue resistance of all Blue heat-treated and Gold 
instruments was found to be high as compared with the con-
ventional NiTi and M-wire instruments (56, 61-70). All Gold and 
Blue heat-treated systems produce well-centered canal prepa-
rations in especially severely curved canals (58, 71, 72).

Max-Wire (Martensite-Austenite-electropolish-fileX), recently 
introduced by FKG Dentaire, is the first endodontic file system 
that combines both the shape memory effect and superelas-
ticity in a single system in clinical applications. The two avail-
able marketed instruments of Max-Wire are XP-endo Shaper 
and XP-endo Finisher (both FKG Dentaire). These files are rela-
tively straight in their martensitic phase at room temperature, 
which changes to curved shape due to phase transformation 
to the austenitic phase when exposed to intracanal temper-
ature. Hence, it possesses the shape memory effect when in-
serted into the canal (martensite state to austenite state) and 
exhibits superelasticity during canal preparation. The curved 
shape of these files enables them to adapt very well to canal ir-
regularities (60). Studies have reported significantly increased 
cyclic fatigue resistance of XP-endo Shaper compared to 
Hyflex CM, Vortex Blue, and iRaCe (73, 74). However, they had 
less torsional resistance compared to Vortex Blue (74, 75)

2Shape File System (MicroMega) is a new generation file sys-
tem produced with a proprietary heat treatment (T-wire), 
which aims to enhance both the flexibility and cyclic fatigue 
resistance by 40% in comparison to One Shape (53, 76). This 
system has the latest generation of cross section with triple 
helix, two main cutting edges, and one secondary cutting 
edge, which make a perfect compromise between cutting ef-
ficiency and debris removal. 2Shape rotary file system consists 
of two files: a TS1 (25/.04) and TS2 (25/.06) (77).

One Curve (MicroMega) is a single file NiTi rotary system intro-
duced in 2017, based on one single file for shaping root canal 
(78). One Curve file system is produced with a C-wire heat 

of CM wire do not have superelastic properties, neither at 
room temperature nor at body temperature in comparison 
to conventional NiTi files (22). The austenite finish temper-
ature of Hyflex CM is 47–55°C, which is above the intracanal 
temperature (38). These files are reported to have a 300% 
times higher resistance to cyclic fatigue than conventional 
NiTi systems (38-41). This system tends to reduce the canal 
straightening effect due to its controlled memory effect. 
Studies have confirmed the reduced canal straightening of 
Hyflex CM when compared to other file systems (39, 40, 42). 
Instruments based on the CM wire also have an increased 
flexibility compared to M-wire and other conventional NiTi 
instruments (43-46). They also have increased cutting effi-
ciency in lateral action compared to conventional NiTi sys-
tems, in spite of having greater flexibility (47, 48).

All these characteristics of Hyflex CM are attributed to the 
greater proportion of the martensitic component in the alloy 
(39, 40). The files of this system consists of various cross-sec-
tional designs and tapers, that is, triangular (sizes 25,.08 taper 
and 20,.06 taper) and quadrangular (sizes 20,.04 taper, 25,.04 
taper, 30,.04 taper, and 40,.04 taper) (49).

The Hyflex EDM (Coltène-Whaledent) file system introduced 
in 2016 is considered as an evolution of the Hyflex CM, as 
Hyflex EDM is produced with CM alloy and uses the EDM tech-
nology. EDM is a recognized noncontact machining process 
that allows a precise quantity of material removed via pulsed 
electric discharge. (50) Work pieces are machined in the EDM 
manufacturing process by generating a potential between a 
work piece and a tool. The sparks produced in this process 
cause the surface layer of the material to melt and evaporate 
(51). This creates a unique surface of new NiTi files and pro-
vides them with excellent mechanical properties by giving 
the instruments a rough and hard surface and increasing their 
cutting efficiency (52, 53). The transformation temperatures 
of Hyflex EDM are found to be higher compared to Hyflex 
CM. According to the X-ray diffraction analysis, Hyflex EDM 
consists of martensite and substantial amounts of R-phase, 
whereas Hyflex CM has a mixture of martensite and austenite 
phases (54). The lack of austenitic phase in Hyflex EDM could 
be due to its raised austenitic start temperature (as ~42°C) 
that prevents the formation of austenite at room or body 
temperature (38, 54). Hyflex EDM still has a higher hardness 
than conventional CM wires, despite absence of or reduced 
austenitic phase, thus substantiating the hardening effect of 
EDM (54). Hyflex EDM exhibits a significantly increased cyclic 
fatigue resistance in comparison to Hyflex CM, M-wire based 
instruments, and conventional NiTi systems (19, 43, 54-57). 
This system also tends to create centered canal preparations, 
hence respecting the original root canal anatomy (49, 58, 59). 
Currently, there is no evidence regarding the superiority of 
Hyflex EDM cutting efficiency. This system is composed of 
three instruments used in a sequence: one for coronal (size 
25,12 taper) enlargement; one for glide path (size 10,.05 ta-
per); and last one for canal shaping. The file for canal shaping 
has a variable taper, 0.25 mm tip with a taper 0.08 for the 
initial 4 mm, which decreases to 0.04 toward the midpoint. 
Hyflex EDM also has different cross section designs along its 
length, having a quadrangular cross section at the starting 
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the entrance of the canals as they can be pre-bent to maintain 
the flexed shape.

While we are riding the wave, let us not forget that an ex-
perienced endodontist is the foremost formula for success, 
whereas the material being used is only a secondary factor. 
Prudent use of contemporary devices along with the basics of 
anatomy will lead to a predictable higher quality of root canal 
treatment on a broader basis, thus helping to preserve more 
teeth for a greater number of years.
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