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The chemotherapy treatment applied to several advanced 
cancers fails due to drug resistance.[1] The identification of 

molecular pathways will contribute to the development of 
alternative therapeutic strategies for cancer. Recent studies 
have reported the roles of Sirtuin 2 (SIRT2) in cancer patho-
genesis. Thus, that makes SIRT2 modulation a possible al-
ternative approach to cancer treatment.[2] There are seven 
Sirtuin family proteins in mammals, SIRT1 to SIRT7.[3] SIRT2 
is a NAD-dependent deacetylase that is involved in various 
cellular processes including cell proliferation, cell death, cell 
migration and microtubule dynamics.[4, 5] The physiological 
roles of SIRT2 differ according to cell types. SIRT2 has been 
reported to be both oncogenic and tumor suppressive. SIRT2 
is usually found in the cytoplasm.[3] However, it is known that 
the distribution of SIRT changes across intracellular compart-
ments.[6] The present article reviews the impact of SIRT2 on 
molecular pathways and drug resistance.

1. SIRT2 Pathway Associated Molecules
SIRT2 possesses an important role in tumorigenesis con-
sidering both tumor-promoting and tumor-suppress-
ing functions.[3] The identified deacetylation substrates 
of SIRT2 are histones, α-tubulin, p300, nuclear factor 
kappa B (NFκB), phosphoenolpyruvate carboxykinase 1 
(PEPCK1), lactate dehydrogenase 1 (LDH1) and forkhead 
box O3 (FOXO3).[7] Some of the molecules increased by 
SIRT2 inhibition are hypoxia inducible factor 1 subunit 
alpha (HIF1α), vascular endothelial growth factor (VEGF) 
and heme oxygenase-1 (HO-1).[8] SIRT2 downregulates 
FOXM1 expression in colon cancer via transforming 
growth factor-beta (TGFβ) mitogen-activated protein 
kinase (RAF-MEK-ERK) signaling pathway.[9] The Kruppel-
like factor 4 (KLF4) has activator or inhibitor effects on 
carcinogenesis similar to SIRT2. The reduced SIRT2 induc-
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es KLF4 expression and inhibits myeloma cell prolifera-
tion and migration.[5] In another multiple myeloma study, 
SIRT2 knockdown inactivated RAS/ERK signaling and cell 
proliferation.[10] Aldo-keto reductase family 1 member 
C1 (AKR1C1) is one of the promoting factors in malig-
nancy. SIRT2 suppresses AKR1C1 activity in nonsmall cell 
lung cancer.[11] SIRT2/cMYC pathway inhibits apoptosis 
in cholangiocarcinoma through metabolic regulation.
[12] Chaperone Hsp70 is another substrate of SIRT2 path-
way. Silencing SIRT2 triggers apoptosis and mitophagy 
in breast cancer cell line.[13] SIRT2 suppression also leads 
to activation of p53-p21 pathway and spindle assembly 
checkpoint in mitosis through P300/CBP-associated fac-
tor (PCAF).[14] Molecular mechanisms of SIRT2 in tumori-
genesis are not fully elucidated yet due to its complex 
and unpredicted response.[7]

2. Chemosensitivity by SIRT Inhibition
SIRT2 inhibition attenuate growth of specific cancer cells.
[15] The inhibition of SIRT2 can enhance the cytotoxicity 
of Lapatinib and it can be investigated further as a novel 
strategy for overcoming Lapatinib resistance in nasopha-
ryngeal cancers.[1] In another study, SIRT2 inhibitor im-
proved the antitumor effect of paxitaksel in breast cancer 
cell lines.[16] It also enhance sorafenib’s effects in hepato-
cellular carcinoma cell lines.[17] SIRT2 inhibitors have anti-
tumor and proapoptotic activity in nonsmall cell lung can-
cers.[18, 19] Melanoma is one of the cancers that show high 
resistance to chemotherapeutics. There are several studies 
about Sirtuin involvement in drug-resistant melanomas. 
It is reported that SIRT2 inhibition increases cisplatin sen-
sitivity and reduces downstream molecules of epidermal 
growth factor receptor (EGFR) pathway in melanoma. ERK 
1/2 is one of the downstream signaling molecules of EGFR 
pathway.[20] SIRT2 is involved in multidrug-resistant acute 
myeloid leukemia through extracellular signal-regulated 
kinase (ERK) 1/2 signaling pathway.[21] Loss of SIRT2 en-
hanced chemotherapy sensitivity in acute myeloid leuke-
mia.[22] High SIRT2 expression was detected in castration-
resistant prostate cancer (CRPC) and neuroendocrine 
prostate cancer (NEPC). SIRT2 promotes cell proliferation, 
migration, invasion while reducing apoptosis via ERK 1/2 
pathway.[23] Cell death triggered by dysregulated mitosis is 
a term that stands for a mitotic catastrophe. SIRT2 deacety-
lates the structural maintenance of chromosomes protein 
1 (SMC1A) and mitosis. Inhibition of SIRT2 or increasing 
SMC1A acetylation causes abnormal chromosome segre-
gation and promotes mitotic catastrophe in cancer cells. 
Mitotic catastrophe enhances cancer vulnerability to che-
motherapy.[24]

3. Chemosensitivity by SIRT Expression
Contrary to SIRT2 inhibition, there are studies in the liter-
ature that states the effects of high SIRT2 levels on drug 
sensitivity in specific cancer groups. In ovarian cancer, 
overexpression of SIRT2 enhanced cisplatin sensitivity.[25] 
The upregulation of SIRT2 increased cell viability in cispla-
tin/paclitaxel-treated endometrial cancer cells and activat-
ed MEK/ERK signaling pathway.[26] Mitogen-activated pro-
tein kinase phosphatase-1 (MKP-1) in cancer cells leads to 
multidrug resistance against chemotherapeutic agents via 
decrement in drug-induced JNK activation. The suppres-
sion of SIRT2 in the renal tubular epithelial cell inhibited 
cisplatin treatment sensitivity based on the MKP-1 expres-
sion.[27]

Conclusion
SIRT2 plays oncogenic or tumor-suppressor roles in differ-
ent cells. In recent years, researches on the effects of SIRT2 
suppression were mostly towards the chemosensitivity. ERK 
pathway takes part in both chemoresistant and chemosen-
sitive SIRT2 impacts. Based on the results of corresponding 
studies, it can be inferred to the possible existence of addi-
tional substrates belonging the another pathway. The iden-
tification of SIRT2 molecular pathways will help to develop 
alternative therapeutic strategies in cancer. Further studies 
should investigate SIRT2 in detail to understand molecular 
mechanisms for different cancer models.
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