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Cancer in breast is the most common malignant tumor 
in females altogether, accounting for around 36% of 

all cancer incidences.[1] Breast cancer is a disease with di-
verse etiology and clinical diversity.[2] Various factors, in-
cluding genetics, environmental influences, and hormon-
al status, have a substantial impact on the risk of breast 
cancer. While female sex and advancing age are the most 

common risk factors, about 10% of cases of breast cancer 
are caused by genetic mutations, specifically those related 
to BRCA1 and BRCA2.[1, 3] Invasive ductal carcinoma, which 
affects 50–75% of patients, is the most common histology 
for breast cancer. It is followed by invasive lobular carci-
noma, and the remaining histologies comprise rarer ones.
[4] Based on the expression of the ER, PR, and HER2, four 
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major subtypes of invasive breast cancer can be distin-
guished using immunohistological techniques.[5] A combi-
nation of surgery, radiotherapy, chemotherapy, targeted 
therapies, and endocrine therapies are commonly used in 
the treatment plan, which is usually based on the findings 
of the diagnostic process.[6,7] After breast cancer is surgi-
cally removed, radiation therapy is used to get rid of any 
microscopic disease that may still be present.[8,6] Radiation 
treatment is certainly helpful in oncology, as evidenced 
by its ability to reduce the risk of local tumor relapse and 
raise total survival rates for a variety of cancer types.[9] 
Although there has been substantial progress in our un-
derstanding of how radiation therapy (RT) affects breast 
cancer, there are still many unanswered questions, espe-
cially about gene expression. Different cells with unique 
genetic and epigenetic profiles make up breast tumors. 
Different breast cancer subtypes respond differently to 
radiation therapy in terms of gene expression, which has 
an impact on several types of biological pathways and 
clinical outcomes. It is still unclear how radiation affects 
various tumor subpopulations and the gene expression 
patterns associated with them. The molecular effects of 
radiation therapy can be better understood by combin-
ing the expression of gene data with other omics data, 
such as proteomics and metabolomics. Treatments can be 
customized for each patient according to their cancer sub-
type by identifying a particular change in gene expression 
that occurs in response to radiation therapy. Additionally, 
the prediction of treatment outcomes can be enhanced by 
identifying biomarkers linked to RT response. To fill these 
knowledge gaps and improve the understanding of how 
radiation therapy affects gene expression, collaborative 
efforts combining computational analysis and advanced 
molecular biology techniques are needed.

Methods

Data Sources 
Gene Expression Omnibus, or GEO, is a national genetic data 
repository that includes information from next-generation 
sequencing and microarray analysis. Using GEO2R, differen-
tially expressed genes (DEGs) can be found by comparing 
two or more GEO datasets.[10] The GEO platform (httpwww.
ncbi.nlm.nih.govgeo) provided the research data used in 
this study. 

Dataset Screening
The following measures were used to select GEO datasets 
studies involving subtypes of BC, descriptions of the tech-
nology and platforms utilized, expression profiling by array, 
and analysis with GEO2R Analyzer. In this study, two gene 

expression profiles (GSE 59732 and GSE 59734) were re-
trieved from the GEO database. GSE 59734, which uses plat-
form GPL571, and GSE 59732, which includes 96 samples of 
breast cancer cell lines treated with radiation therapy, were 
selected (Fig. 1).

Differential Expression Gene Extraction
In both datasets, samples were defined as luminal HER2 posi-
tive, luminal HER2 negative, basal, and basal HER2 positive. 
With a value p less than 0.05 and a log FC threshold of 1.2, 
DEGs were found. For GSE 59732, 4955 expressed genes were 
observed, and for GSE 59734, 7196 expressed genes were ob-
served (Fig. 2). A Venn diagram was made using the tool Fun-
Rich. Data can be presented graphically using the FunRich 
tool (httpwww.funrich.org) in the form of Venn diagrams, pie 
charts, bar graphs, columns, heatmaps, and doughnuts. Each 
data can have its font, scale, and color modified.[11]

PPI Network Visualization
Using software STRING (httpwww.string-db.org), a protein-
protein interaction (PPI) network—which is defined by dy-
namic and complicated interactions between two or more 
proteins—was built for the identified DEGs.[12] DEGs were 
uploaded with the organism named Homo sapiens to mod-
el various proteins. Disconnected nodes were eliminated 
based on an interaction score of more than 0.04 which was 
used to estimate the statistical relevance of the network 
interaction connection. The gene interaction network was 
then generated using the Cytoscape tool. The hub genes 
in the protein-protein interaction were identified using the 
cytoHubba plugin, and these hub genes were subsequent-
ly selected for their potential DEGs.[13] 

Gene Ontology and KEGG Pathway Analysis
The Enrichr tool (httpmaayanlab.cloudEnrichr) was used 
for the analysis and identification of KEGG paths (httpwww.
genome.jp) and there are three categories according to the 
Gene Ontology terms Biological Process, Cellular Compo-
nent, and Molecular Function. Using substantial molecu-
lar datasets generated by high-throughput experimental 
methodologies, KEGG pathway analysis contributes to the 
understanding of signaling pathways and provides infor-
mation on the interactions and co-regulation of several 
proteins involved in metabolic and cellular functions.[14]

Construction of a Regulatory Network of Hub Genes
Gene regulation, gene co-expression, drug-gene interac-
tion networks, and other general networks can all be inves-
tigated using the visual analytics platform Network Ana-
lyst tool (httpnetworkanalyst.ca).[15] In this study, we used 
network analyst to analyze the gene-disease association of 
hub genes.
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Results
Using the GEO2R tool, two gene expression profiles—GSE 
59732 and GSE 59734—were studied. The list of upregu-
lated genes was downloaded, the p-value was 0.05, and 
the cutoff limit was a log FC value of 1.2. Using the Funrich 
tool, genes that fulfilled the cutoff standards were selected 
for Venn diagram analysis (Fig. 3). In the two mentioned da-
tasets, 61 genes were shown to have significantly differing 
expression levels (Table 1). 

Upregulated DEGs from both datasets were uploaded to 
the online String tool. The lowest needed interaction score 
option was chosen with the medium confidence option se-

lected, and the disconnected genes were hidden. The net-
work consists of 788 edges and 311 nodes in total (Fig. 4). 
After the submission of the list of upregulated expressed 
genes, Enrichr's ontology option presented several options, 
including GO-CC, GO-MF, and GO-BP. Gene Ontology study 
showed that the upregulated DEGs were enriched in GO-
BP such as regulation of peptidyl-tyrosine phosphoryla-
tion, positive regulation of cell migration, response to EGF 
(epidermal growth factor), endodermal cell differentiation, 
positive regulation of protein phosphorylation, endoderm 
formation, positive regulation of cell motility, regulation 
of protein ERK1 and ERK 2 cascade, regulation of protein 

Figure 1. Distribution of gene expression values for the GSE 59732 and GSE 59734 datasets. The gene expression value of a single patient sample 
is shown by each box plot. The y axis does not have any units.
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phosphorylation and peptidyl-tyrosine autophosphoryla-
tion (Fig. 5A). For Gene Ontology Cellular Component anal-
ysis, the upregulated DEGs were mainly enriched in focal 
adhesion, cell-substrate junction, platelet alpha granules, 
intracellular organelle lumen, endoplasmic reticulum lu-
men, platelet alpha granule lumen, intermediate filament 
cytoskeleton, cytoplasmic vesicle, and cytoskeleton (Fig. 
5B). Gene Ontology Molecular Function study showed that 
upregulated DEGs were enriched in phosphatase bind-

ing, protease binding, keratin filament binding, vascular 
endothelial growth factor 2 binding, MAP kinase activity, 
vascular endothelial growth factor receptor binding, plate-
let-derived growth factor receptor binding, metalloendo-
peptidase inhibitor activity, hyaluronic acid binding, and 
metalloaminopeptidase activity (Fig. 5C). The KEGG path-
way study revealed that DEGs are enriched in pathways 
that are related to proteoglycans in cancer, microRNAs in 
cancer, focal adhesion, regulation of actin cytoskeleton, 
shigellosis, adhere junction, ECM-receptor interaction, 
GnRH signaling pathway, human papillomavirus infection, 
parathyroid hormone synthesis, secretion and action (Fig. 
5D). To find out the hub genes, genes selected by the top 
10 nodes ranked by degree and displayed the shortest 
path were selected by using the offline tool Cytoscape (Fig. 
6). In the cytohubba plug-in, it was found that the epider-
mal growth factor receptor gene (EGFR, degree=134) has 
the maximum connectivity with other genes followed by 
fibronectin 1 (FN1, degree= 110), CD44 (degree= 88), snail 
family transcriptional repressor 2 (SNAI 2, degree= 64), 
mitogen-activated protein kinase 3 (MAPK3, degree= 64), 
matrix metalloproteinase 14 (MMP14, degree= 58), TIMP 
metallopeptidase inhibitor 1 (TIMP1, degree= 56), integrin 
subunit alpha 5 (ITGA5, degree= 56), vimentin (VIM, de-
gree= 56), platelet and endothelial cell adhesion molecule 
1 (PECAM1, degree=52). The network following hub gene 
enrichment is seen in Figure 7. P value in statistics suggests 
that certain factors are significant. Strongly linked results 
with the intended disease are indicated by a P value of less 
than 0.05. Table 3 of the Network Enrichment (www.Net-
workAnaylst.ca) lists cancer diseases amongst the several 
common diseases that are listed and studied. The FDR, P 
value, expected values, and number of hits are shown. The 

Figure 2. Gene expression in GSE59732 and GSE59734.

Figure 3. Venn diagram showing 61 genes in the GSE 59732 and GSE 
59734 datasets that were expressed differentially.

Table 1. Dataset information of GSE 59732 and GSE 59734 
Microarray datasets obtained from GEO

Datasets	 Luminal HER2	 Luminal HER2	 Basal	 Basal HER2 
	 negative	 positive		  positive

GSE 59732	 24	 18	 48	 6
GSE 59734	 24	 30	 36	 6
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fact that almost every single one of the FDR values is very 
small and all of the P values are less than 0.05 suggests that 
hub genes are also associated with the disease that has 
been observed. EGFR and MAPK3 are two genes that are 
expressed in most of the cancers listed in Table 3 including 
breast cancer.

Discussion

Radiation therapy (RT) is a significant treatment for many 
cancer types, including breast cancer (BC). It can be used 
alone or in combination with other therapies.[16] Following 
a mastectomy, radiotherapy treatment is currently provid-

Figure 4. STRING protein protein interaction network.788 edges and 311 nodes in this network. Genes are symbolised by circles, while interaction 
is symbolised by lines.
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ed based on the patient's clinicopathologic criteria, which 
determine their risk of local or regional recurrence (LRR), 
rather than their likelihood of benefiting from the therapy.
[17] This study investigated the upregulated gene expres-
sion by using bioinformatics tools in two datasets (GSE 

59732 and GSE 59734) having microarray data of gene ex-
pression in breast cancer cell lines which is treated with ra-
diation therapy. Genes that were found to be differentially 
expressed (DEGs) had a log FC value of 1.2 and a p-value 
less than 0.05. Venn diagram revealed 61 genes that were 
significantly upregulated DEGs in both datasets (Table 2). 
The upregulated expressed genes were subjected to GO 
and KEGG pathway enrichment analysis by the Enrichr tool. 
The GO analysis indicated significant enrichment in bio-
logical processes such as regulation of peptidyl-tyrosine 
phosphorylation, favorable regulation of cell migration, 
and response to epidermal growth factor. These pathways 
are essential in many physiological and pathological situa-
tions, such as the proliferation and metastasis of cancer. In 
terms of cellular components, the differentially expressed 
genes were enriched in focal adhesion, cell-substrate junc-
tion, and platelet alpha granules. This suggests that these 
genes play vital roles in cell adhesion, signaling, and intra-
cellular trafficking, which are crucial in maintaining cellu-
lar integrity and function. The molecular function analy-
sis highlighted significant enrichment in activities such 
as phosphatase binding, protease binding, and keratin 
filament binding. These functions are essential for various 
signaling pathways and structural components within the 
cell. KEGG pathway analysis identified several pathways 
associated with the upregulated DEGs. Notably, pathways 
involved in proteoglycans in cancer, microRNAs in cancer, 
focal adhesion, and regulation of the actin cytoskeleton 
were significantly enriched. These pathways are known to 
be critical in cancer growth and progression, emphasizing 
the potential role of these DEGs in cancer.

Using Cytoscape and the cytoHubba plugin, the top 10 
hub genes were identified on their degree of connectiv-
ity. EGFR (Epidermal growth factor receptor) emerged as 
the gene with the highest connectivity, followed by fi-
bronectin 1 (FN1), CD44, SNAI2, MAPK3, MMP14, TIMP1, 
ITGA5, VIM, and PECAM1. These hub genes play an im-
portant role in many cellular processes, particularly those 
that are connected to cancer. Numerous intracellular sig-
nals that control cell growth, proliferation, survival, mi-
gration, and differentiation are triggered by the EGFR.[18] 
The EGFR is widely expressed in many cancer types and 
has a major part in treatment resistance, metastasis, and 
proliferation, among other key aspects of cancer devel-
opment. The EGFR pathway can become dysregulated 
due to overexpression or persistent activation, which 
is linked to a poor prognosis in many human malignan-
cies and can encourage tumor activities including angio-
genesis and metastasis.[19,20] Numerous cell types express 
the fibronectin (FN) family, which is involved in blood 
coagulation, wound healing, host defense, cell prolifera-

Figure 5. Enrichr tool is used for the study of GO and KEGG path-
way enrichment. (a) Top 10 biological processes that are enriched 
in upregulated DEGs. The number of genes is shown on the x axis, 
while the biological process is shown on the y axis. (b) Cellular func-
tion in upregulated DEGs was enriched at the top. Gene number is 
shown by the x axis, while cellular function is shown by the y axis. (c) 
Top eniched molecular function in DEGs that are upregulated. Gene 
number is shown by the x axis, while molecular function is shown 
by the y axis. (d) Top enriched KEGG pathways for DEGs that are up-
regulated. Gene number is shown by the x axis, while KEGG pathway 
names are shown by the y axis.
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Table 2. List of 61 upregulated DEGs common in both the dataset GSE 59732 and GSE 59734

Serial No	 Gene Symbol	 Gene Title

1	 GSTP1	 glutathione S-transferase pi 1
2	 AKR1B1	 aldo-keto reductase family 1 member B
3	 TTC39A	 tetratricopeptide repeat domain 39A
4	 MSN	 moesin
5	 CLDN3	 claudin 3
6	 IFI16	 interferon gamma inducible protein 16
7	 LOC101928916///NNMT	 uncharacterized LOC101928916///nicotinamide N-methyltransferase
8	 IGFBP5	 insulin like growth factor binding protein 5
9	 GSE1	 Gse1 coiled-coil protein
10	 COL4A2	 collagen type IV alpha 2 chain
11	 COTL1	 coactosin like F-actin binding protein 1
12	 PRKCDBP	 protein kinase C delta binding protein
13	 EMP3	 epithelial membrane protein 3
14	 DFNA5	 DFNA5, deafness associated tumor suppressor
15	 FOXA1	 forkhead box A1
16	 XBP1	 X-box binding protein 1
17	 TGFB1I1	 transforming growth factor beta 1 induced transcript 1
18	 EXT1	 exostosin glycosyltransferase 1
19	 GLIPR1	 GLI pathogenesis related 1
20	 S100A2	 S100 calcium binding protein A2
21	 SNAI2	 snail family transcriptional repressor 2
22	 SLC24A3	 solute carrier family 24 member 3
23	 KIAA1324	 KIAA1324
24	 LARGE1	 LARGE xylosyl- and glucuronyltransferase 1
25	 HTRA1	 HtrA serine peptidase 1
26	 ITGA6	 integrin subunit alpha 6
27	 ANXA9	 annexin A9
28	 SRPX	 sushi repeat containing protein, X-linked 2
29	 POPDC3	 popeye domain containing 3
30	 HMGA2	 high mobility group AT-hook 2
31	 TGM2	 transglutaminase 2
32	 ITGA3	 integrin subunit alpha 3
33	 JAG1	 jagged 1
34	 CHST3	 carbohydrate sulfotransferase 3
35	 RMND5B	 required for meiotic nuclear division 5 homolog B
36	 SHOX2	 short stature homeobox 2
37	 SLC9A3R1	 SLC9A3 regulator 1
38	 PRNP	 prion protein
39	 SLC39A14	 solute carrier family 39 member 14
40	 CTTN	 cortactin
41	 ALDH6A1	 aldehyde dehydrogenase 6 family member A1
42	 NDUFA10	 NADH:ubiquinone oxidoreductase subunit A10
43	 IDH2	 isocitrate dehydrogenase (NADP(+)) 2, mitochondrial
44	 BLVRB	 biliverdin reductase B
45	 UPP1	 uridine phosphorylase 1
46	 MT1E	 metallothionein 1E
47	 PLAU	 plasminogen activator, urokinase
48	 RGL2	 ral guanine nucleotide dissociation stimulator like 2
49	 EMP1	 epithelial membrane protein 1
50	 CNNM4	 cyclin and CBS domain divalent metal cation transport mediator 4
51	 GRHL2	 grainyhead like transcription factor 2
52	 BMP1	 bone morphogenetic protein 1
53	 MAP7D1	 MAP7 domain containing 1
54	 VPS45	 vacuolar protein sorting 45 homolog
55	 TNFRSF10B	 TNF receptor superfamily member 10b
56	 GNAS	 GNAS complex locus
57	 ACVR1B	 activin A receptor type 1B
58	 GAS6	 growth arrest specific 6
59	 LDHB	 lactate dehydrogenase B
60	 GRTP1	 growth hormone regulated TBC protein 1
61	 EMP2	 epithelial membrane protein 2
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tion, and adhesion and migration. It was found that FN1 
levels were higher in BRCA, or breast, tissues than in nor-
mal tissues.[21] CD44 plays an in the regulation of several 
signaling pathways, including those involving protein 
kinases, cytoskeletal alterations, intracellular pathways, 
proteinases, and transcription factors. Angiogenesis, in-
vasion, division, proliferation, and changes in metabolism 

in cancer cells are all enhanced by these pathways.[22] The 
behaviour of cancer stem cells (CSCs) may be impacted 
by SNAI2's role in normal tissues, where it enhances stem 
cell function. In CD44+CD24− CSCs from breast tumors, 
SNAI 2 is highly expressed. Overexpression of SNAI2 has 
been shown to generate a highly regenerative popula-
tion of breast cancer cells capable of initiating tumor 

Figure 7. Network with ten hub gene enrichment – EGFR, FN1, CD44, 
SNAI2, MAPK3, MMP14, TIMP1, ITGA5, VIM, PECAM1.

Figure 6. Top ten hub gene networks using the Cytoscape tool. The 
color indicates the degree of connection; the lowest degree is repre-
sented by yellow, the intermediate degree by orange, and the high-
est degree by red.

Table 3. For ten hub genes, network enriched values and associated cancer disease 

Pathway	 Total	 Expected	 Hits	 p	 FDR	 Genes

Proteoglycans in cancer	 201	 0.26	 5	 2.55E-06	 0.000812	 EGFR, FN1, CD44, MAPK3, ITGA5
MicroRNAs in cancer	 299	 0.386	 4	 0.000382	 0.0135	 EGFR, CD44, ITGA5, VIM
Bladder cancer	 41	 0.053	 2	 0.0012	 0.0347	 EGFR, MAPK3
Endometrial cancer	 58	 0.075	 2	 0.00239	 0.0634	 EGFR, MAPK3
Central carbon metabolism in cancer	 65	 0.084	 2	 0.00299	 0.0682	 EGFR, MAPK3
Non-small cell lung cancer	 66	 0.0853	 2	 0.00309	 0.0682	 EGFR, MAPK3
Melanoma	 72	 0.0931	 2	 0.00366	 0.0682	 EGFR, MAPK3
Pancreatic cancer	 75	 0.0969	 2	 0.00397	 0.0682	 EGFR, MAPK3
Glioma	 75	 0.0969	 2	 0.00397	 0.0682	 EGFR, MAPK3
Colorectal cancer	 86	 0.111	 2	 0.00519	 0.075	 EGFR, MAPK3
Prostate cancer	 97	 0.125	 2	 0.00656	 0.079	 EGFR, MAPK3
Choline metabolism in cancer	 99	 0.128	 2	 0.00682	 0.079	 EGFR, MAPK3
Breast cancer	 147	 0.19	 2	 0.0146	 0.143	 EGFR, MAPK3
Pathways in cancer	 530	 0.685	 3	 0.0267	 0.229	 EGFR, FN1, MAPK3
Thyroid cancer	 37	 0.0478	 1	 0.0468	 0.355	 MAPK3
Acute myeloid leukemia	 66	 0.0853	 1	 0.0821	 0.511	 MAPK3
Renal cell carcinoma	 69	 0.0892	 1	 0.0857	 0.511	 MAPK3
Chronic myeloid leukemia	 76	 0.0982	 1	 0.0941	 0.516	 MAPK3
Chronic myeloid leukemia	 76	 0.0982	 1	 0.0941	 0.516	 MAPK3
Viral carcinogenesis	 201	 0.26	 1	 0.232	 0.652	 MAPK3
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spheres.[23] Cell survival and proliferation are facilitated by 
MAPK3's activation of many nuclear transcription factors, 
including c-Jun and c-fos, through the phosphorylation of 
downstream cytoplasmic proteins. The overexpression of 
MAPK3 has been related to the development, spread, me-
tastasis, and therapeutic resistance of certain carcinomas.
[24] The membrane-type MMP matrix metalloproteinase 14 
is involved in both the prognosis and development of tu-
mors. According to earlier studies, MMP 14 is significantly 
expressed in several cancer types and, via changing the 
extracellular matrix, facilitates tumor invasion and metas-
tasis. But recently, there haven't been many findings on 
the roles of MMP 14 and BCSC 1 in human breast cancer.
[25] TIMP-1, or tissue inhibitor of metalloproteinases-1, has 
been identified as a prognostic sign for BC. After being 
shown to be a growth factor, TIMP-1 was later demon-
strated to inhibit matrix metalloproteinases (MMPs).[26] 
It has been documented that ITDGA5 increases drug re-
sistance, metastasis, and tumor progression.[27] Vimentin 
(VIM) is a type III intermediate filament that functions as 
a mesenchymal marker and is found in numerous tissues 
during development. It helps to maintain the integrity of 
cells and tissues. Its expression is thought to be a hallmark 
of the epithelial-to-mesenchymal transition (EMT), which 
denotes advanced tumor dedifferentiation and a strong 
likelihood of tumor invasion in malignancies, includ-
ing breast cancer.[28] PECAM-1 mediates several essential 
biological processes, such as platelet aggregation, T cell 
activation, leukocyte emigration at inflammatory sites, 
vascular development, and maintenance of the vascular 
endothelial barrier function. Additionally crucial to the 
angiogenesis of human tumors is PECAM-1.[29] 

The Network Analyst tool was used to conduct network 
enrichment analysis, which identified several diseases con-
nected to the hub genes, with cancer being a prominent 
finding. The analysis indicated significant associations 
between the hub genes and various cancer types, includ-
ing breast, endometrial, bladder, and non-small cell lung, 
among others. EGFR and MAPK3 were notably associated 
with most of the cancer types listed, highlighting their es-
sential roles in cancer biology.

Identifying hub genes in breast cancer cell lines treated 
with radiation therapy provides insights into the cellular 
mechanisms involved in the response to radiation. The hub 
genes identified in response to radiation therapy can serve 
as biomarkers to predict radiosensitivity. Understanding 
how radiation interacts with hub genes can help develop 
combination drugs that target several pathways at once, 
decreasing the risk of resistance and improving treatment 
results.

Limitations
Incomplete or biased datasets can lead to incorrect iden-
tification of hub genes, significantly impacting research 
and therapeutic development. Furthermore, studies on 
cell lines may fail to capture the complexity of tumors in 
patients, potentially yielding inaccurate results. The use of 
bioinformatics tools can also result in false positives or false 
negatives.
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