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ORIGINAL ARTICLE

Purpose: The aim of this study is to evaluate the effectiveness of Teachable Machine (TM), a code-free web-based artificial 
intelligence (AI) platform, in the detection and classification of vitreomacular interface diseases (VMIDs) in optical coherence 
tomography (OCT) images. 
Methods: A dataset of 445 cross-sectional OCT images from patients with VMID, along with 200 images from healthy 
individuals, was retrospectively prepared at a tertiary health-care institution. The OCT images were categorized into three 
groups: Epiretinal membrane (ERM), macular hole (MH), and vitreomacular traction (VMT). Subsequently, a deep learning 
(DL) model for VMID classification was developed using TM, a code-free web-based AI platform. The model underwent 
training on 160 ERM, 96 MH, 100 VMT, and 160 normal images, followed by testing on 40 ERM, 25 VMT, 24 MH, and 40 normal 
images. Sensitivity, specificity, and receiver operating characteristic curve were calculated to evaluate the effectiveness of 
the developed model. 
Results: The DL model showed 100% sensitivity and specificity in detecting any VMID compared to normal eyes. For 
detecting VMT, TM had 100% sensitivity, 98.08% specificity, and an AUC of 0.99. In ERM detection, sensitivity and specificity 
were both 100%, with an AUC of 1.00. MH detection had 91.67% sensitivity, 100% specificity, and AUC of 0.958. 
Conclusion: This study demonstrates that TM can be used with high efficiency in detecting and classifying VMID. TM 
application, which performs image classification with DL, can be considered an effective alternative, especially for physicians 
who do not have coding knowledge to develop AI models.
Keywords: Artificial intelligence; deep learning; epiretinal membrane; macular hole; teachable machine; vitreomacular 
interface disorders; vitreomacular traction.
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The group of diseases known as vitreomacular interface 
disorders (VMIDs) occurs as a result of incomplete 

separation of the posterior vitreous, leading to pathologies 
such as vitreomacular adhesion (VMA), vitreomacular traction 
(VMT), macular hole (MH), or epiretinal membrane (ERM). 
Depending on the degree of involvement of the foveal region 
and the duration of the disease, various levels of visual loss or 

complaints such as metamorphopsia may occur.[1] At present, 
optical coherence tomography (OCT) is commonly used for 
the diagnosis of these diseases. The development of OCT 
has been highly effective in diagnosing macular diseases 
and evaluating the necessity and efficacy of treatments.[2] In 
addition to this, an ophthalmologist is still required to make 
definitive retinal diagnoses based on OCT findings.
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Artificial intelligence (AI) involves the ability of computer 
systems to simulate human intelligence processes, 
including tasks such as learning and problem-solving, to 
a level commonly associated with human capabilities.
[3] Deep learning (DL) is a subfield of AI that relies on 
multilayer artificial neural networks (convolutional neural 
networks [CNN]) to achieve advanced functions such as 
computer vision, speech recognition, and natural language 
processing.[4] Recently, several AI models have been 
developed for the diagnosis of ophthalmology-specific 
pathologies, as in other medical disciplines.[4-8] AI models 
using retinal imaging techniques such as OCT and color 
fundus photographs have shown high accuracy comparable 
to experts in diagnosing various retinal diseases.[9-11] 
Especially, DL-based models have been popular in recent 
years for analyzing and classifying various retinal diseases.
[4,5,9,12] While the application of AI techniques such as 
DL often requires coding knowledge, there has been an 
increasing inclination toward code-free machine learning 
classification models finally, facilitated by AI platforms such 
as Google’s Teachable Machine (TM).[13] To the best of our 
knowledge, there is no study evaluating the effectiveness 
of code-free AI applications in the classification of VMID.

The aim of our study is to evaluate the effectiveness of 
the code-free TM application in the identification and 
classification of VMID using spectral domain (SD) – OCT 
images.

Materials and Methods 

Preparation of the Dataset
Between January 2018 and May 2021, cross-sectional 
horizontal single-line fovea-centered retinal SD-OCT 
images of patients diagnosed with VMID at the tertiary 
ophthalmology center were retrospectively reviewed. The 
images were classified into three main groups based on the 

presence of ERM, MH, and VMT by two retinal specialists 
(H.Ö. and A.K.), and images with a quality index <25 were 
excluded. As a result, a dataset of 445 retinal OCT images 
from 362 patients was saved in .jpeg format for use in the 
developed DL model. Among the total of 445 OCT images, 
200 had ERM, 125 had VMT, and 120 had MH. In addition, 
a control group of 200 macular-centered cross-sectional 
SD-OCT images was recorded from 100 healthy individuals 
without any retinal pathology (Fig. 1).

All images were cropped to 224 × 224 pixels to be 
fovea-centered while ensuring the removal of any 
patient and device information present in the images. 
Subsequently, the available images from each group 
were subjected to random division, allocating 80% to the 
training set and the remaining 20% to the test set. Each 
image class was methodically categorized and organized 
for utilization in both the training and test sets.

The study protocol was approved by the institutional 
non-interventional research ethics committee (No: 
2022/68). Informed consent was obtained from all 
participants. All principles of the Helsinki Declaration were 
followed.

TM Platform and Model Training
TM (version 2.0) was released by Google in 2017. This 
platform utilizes the pre-trained with transfer learning 
MobileNet-V2 CNN for image classification. CNN is a 
powerful DL technique widely employed in image 
recognition software, known for its remarkable success.
[13,14] The TM application is a free, web-based tool available 
to the public for image classification. Users can simply 
upload their preferred images to the TM platform and 
simply develop their own AI models.

To develop the model, the online TM platform, which 
utilizes the TensorFlow online DL library without requiring 
coding, was utilized. The study was conducted through 

Fig. 1. Spectral domain-optical coherence tomography images for each group. (a) Epiretinal membrane, (b) Macular hole, (c) Vitreomacular traction, 
(d) Normal.

(a) (b) (c) (d)
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the website https://teachablemachine.withgoogle.com/. 
For VMID classification, four image classes were created in 
the program, namely ERM, VMT, MH, and normal. To train 
the model, 160 ERM, 96 MH, 100 VMT, and 160 normal 
images were uploaded to the program in their respective 

image classes (Fig. 2). The OCT images used for model 
training were “trained” using the following default setting 
parameters (Epochs 50, batch size 16, and learning rate 
0.001).

Model Testing
The developed DL model was tested using a test set 
consisting of 40 ERM, 25 VMT, 24 MD, and 40 normal 
images, which were randomly separated from each image 
class at a ratio of 20%. The test images were input into the 
model by selecting the “file” option in the “input” section, 
allowing the model to be tested with ERM, MH, VMT, and 
normal images, respectively (Fig. 3).

Statistical analysis was conducted using SPSS (Version: 
22.0, SPSS Inc., IBM, Chicago, IL, USA). The sensitivity and 
specificity rates of the developed model in detecting any 
VMID class and each VMID class were calculated. In addition, 
the effectiveness of the model in image classification 
was determined by performing a receiver operating 
characteristic (ROC) curve analysis and calculating the area 
under the ROC curve (AUC). The calculated AUC values were 
considered follows: 0.5 indicates no discrimination, 0.5–0.7 
indicates inadequate discrimination, 0.7–0.8 indicates 
acceptable, 0.8–0.9 indicates excellent, 0.9–1.0 indicates 
outstanding, and 1.0 indicates full agreement.

Results
The mean age of the 462 participants included in the study 
was 67.2±11.25, with 57.79% being females. In this study, a 
total of 129 SD-OCT images were utilized to test the model, 
comprising 40 images with ERM, 25 images with VMT, 24 

Table 1. Comparison of the model predictions with reference labels

  Ground truth

   ERM VMT MH Normal

TM 
 ERM 
  Image, n 40 0 0 0
  % 100.0% 0.0% 0.0% 0.0%
 VMT 
  Image, n 0 25 2 0
  % 0.0% 92.6% 7.4% 0.0%
 MH 
  Image, n 0 0 22 0
  % 0.0% 0.0% 100.0% 0.0%
 Normal 
  Image, n 0 0 0 40
  % 0.0% 0.0% 0.0% 100.0%

TM: Teachable Machine; ERM: Epiretinal membrane; VMT: Vitreomacular traction; MH: Macular hole.

Fig. 2. The user interface of the Teachable Machine platform used to de-
velop the deep learning model.

Fig. 3. Predictions of the developed model on sample test images
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images with MH, and 40 normal images. The distribution 
of these test images and the comparison of the model’s 
detected results with the reference classes were performed 
to identify VMID classes and normal images from the 
cross-sectional OCT images. The summarized findings are 
presented in Table 1.

The developed model demonstrated 100% sensitivity and 
specificity in detecting VMID regardless of the specific class. 
When analyzing VMID classes individually, the sensitivity 
and specificity for VMT detection were 100% and 98.08%, 
respectively, with an AUC of 0.99. For ERM detection, both 
sensitivity and specificity were 100%, resulting in an AUC 
of 1.00. In MH detection, the sensitivity was 91.67% and 
the specificity was 100%, with an AUC of 0.958. The ROC 
curves illustrating the developed model’s performance in 
detecting VMID classes are presented in Figure 4.

Discussion
This study found that the developed model using the 
code-free internet-based AI platform, TM application, can 
be effectively utilized for the classification of VMID. In the 
field of ophthalmology, various DL models have already 
demonstrated successful use in diagnosing and classifying 
diseases such as diabetic retinopathy and age-related 
macular degeneration, glaucoma, and retinopathy of 
pre-maturity.[4,8,10,11,15-20] However, to the best of our 
knowledge, there is no AI-based study that detects and 
classifies VMID diseases with a code-free approach. The 
results of this study demonstrate the promising potential 
of AI-based approaches for the accurate detection 
and classification of VMID disorders and contribute to 
the literature on the role of code-free AI platforms in 

ophthalmologic research and clinical practice.

Various AI models developed for VMID have been described 
in recent years. Previous studies have demonstrated the 
utility of DL models in ERM detection, segmentation, and 
post-operative prognosis estimation. Lo et al. achieved 
successful ERM detection with 98.7% sensitivity and 98% 
specificity using OCT images.[12] In addition, Sonobe et al. 
demonstrated that their DL model, utilizing 3D-OCT images, 
outperformed the classical machine learning approach, 
support vector machine, in ERM detection.[9] Similarly, 
various AI-assisted studies, such as the computation of MH 
detection volume, have been reported in the literature. Lu 
et al. developed a DL-based system to automatically classify 
serous macular detachment, cystoid macular edema, 
MH, and ERM pathologies in OCT images. The model 
achieved accuracies of 0.957 for ERM detection and 0.978 
for MH detection, demonstrating comparability with the 
physicians.[21] Compared to other VMID conditions, there 
are relatively fewer studies focusing on VMT pathologies.

DL models typically entail intricate processes that demand 
coding and programming proficiency. In recent years, 
studies investigating the applicability of DL algorithms for 
medical image classification without the need for coding 
have been published. The obtained results demonstrate the 
success of this novel approach. This highlights the potential 
of using AI in medical imaging without the requirement 
of coding and suggests that it could lead to significant 
advancements in medical diagnosis and research. Recent 
studies have shown that TM, a code-free DL platform, can 
also be successfully used to analyze medical images.[22-24]

Previous studies reported classification accuracy rates 
above 90% when transfer learning was used to train 

Fig. 4. ROC curve analysis. (a) Macular hole, (b) Vitreomacular traction, (c) Epiretinal membrane.

(a) (b) (c)
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relatively large datasets. Despite the high accuracy levels 
of DL-based models in many ophthalmic diseases, there 
are still several clinical and technical challenges to their 
real-time application in clinical practice. The algorithm 
learns from the presented data. If the training image set 
provided to the model is small or does not represent the real 
patient population, the software cannot produce accurate 
results. More evidence is needed to obtain high-quality 
ground truth labels for different imaging tools. Our study 
has a relatively small sample size in our sample groups and 
needs to be supported with more images. Nevertheless, 
it has shown a high success rate with a small amount of 
data. One of the most important factors here is the use of 
transfer learning models, which can achieve high accuracy 
rates with a small amount of data.[25]

The model we have developed can help expedite the 
diagnostic process for these diseases and reduce the 
cost of VMID disease diagnosis. It is particularly useful 
for regions where access to retinal specialists is limited 
due to various reasons, such as economic issues or 
medical resource allocation. Individuals detected with 
abnormalities by the DL model can be referred to a retinal 
specialist for further examination and timely treatment 
allocation. In our study, the DL model did not exhibit any 
deficiencies when compared with ophthalmologists. This 
supports the potential use of DL in OCT interpretation. 
In addition, the fact that the study was conducted with a 
code-free application provides ease of use. The availability 
of the application for free access can also be considered an 
advantage. The exportability feature of the trained model 
also enables its utilization by other users.

The limitations of this study should be taken into 
consideration. First, VMAH is more prevalent in older 
age groups and often coexists with pathologies that can 
affect the clarity of OCT imaging, such as cataracts. In 
our study, only clear OCT images were used. In addition, 
the OCT images were collected only from one imaging 
center. Device settings, camera systems, and population 
characteristics can influence OCT images and the system’s 
performance. To further validate this system, future studies 
will require data sets from different eye centers and larger 
patient groups. Furthermore, in complex OCT images with 
multiple abnormalities (such as choroidal neovascular 
membrane, serous macular detachment, and diabetic 
macular edema), it is of great importance to identify 
each pathology separately. Due to the limited number of 
images, our study used a very small number of OCT images 
with multiple abnormalities. To validate and optimize our 
system and to make it an efficient AI tool for clinical cases, 

larger datasets consisting of complex OCT images will be 
required.

Our study has the potential to increase diagnostic 
efficiency, facilitate easier access to expert knowledge, 
simplify therapeutic decision-making, and reduce overall 
health-care costs. In addition, when the automatic DL model 
is integrated with clinical workflows, it can help clinicians 
prevent medical errors and misdiagnoses. Therefore, the 
derived model can potentially serve as a clinical decision 
support system to promote patient safety. The DL-based 
automated model can assist clinicians in reducing their 
workload and preventing health-care worker burnout.

Conclusion
Our study demonstrates that the code-free AI application, 
TM, is an effective tool for the detection and classification 
of VMID. The developed DL model exhibited high sensitivity 
and specificity in detecting various VMID pathologies, 
including ERM, VMT, and MH. The code-free approach 
offered by TM allows for ease of use and accessibility, 
making it a valuable asset in ophthalmology, particularly 
for clinicians without coding knowledge. With its promising 
performance in VMID classification, TM has the potential to 
enhance diagnostic accuracy and streamline the evaluation 
of retinal OCT images. The results of this study highlight 
the utility of code-free AI applications in ophthalmic 
diagnosis and pave the way for further advancements in 
the integration of AI technologies into clinical practice for 
improving patient care and outcomes.
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