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Introduction

Müller cells (MCs) (retinal gliocytes, Müller glia) are the most 
common of the 3 glial cells found in the human retina, fol-
lowed by astroglia and microglia. Retinal gliocytes were first 
described by Heinrich Müller (1). The MC is the only retinal 
glial cell sharing a common cell line with retinal neurons. MCs 
have been shown to originate from neural crest cells (2). 

A single progenitor cell forms both MCs and retinal neu-
rons. The early phase of neurons born at the apical border 
of neuroepithelium adjacent to the pigment epithelium pro-
duces cone cells, horizontal cells, and ganglion cells, while 
the second phase of cells produces MCs, rod photorecep-
tors, bipolar cells, and amacrine cells (2–3). 

MCs cover the entire thickness of the retina and have 
interactions with every type of neuronal cell body. MCs are 
aligned radially in the retina. The uppermost portion of the 
MCs creates the internal limiting membrane, which sepa-
rates the retina from the vitreous. The cell bodies sit on the 
inner nuclear layer. The apical portion extends to the rear to 
form the outer limiting membrane and separates the inter-

nal and external parts of the photoreceptors. MCs contain 
blood vessels in the plexiform and nerve fiber layers (Fig. 1). 
MCs fill gaps in the retina that the neuron cells do not fill. 
As all glial cells do, they serve as support cells for neurons. 
MCs contribute to the internal blood-retinal barrier formed 
by endothelial cells by inducing the synthesis of tight junction 
and tight junction proteins (4).

MCs contribute important structural and metabolic 
functions to ensure the viability and stability of retinal cells. 
They work in a symbiotic relationship with neurons. MCs 
interconnect the neural elements of the retina with synapses 
and dendrites. MCs serve as a soft substrate for neurons 
to protect them in case of mechanical trauma and also for 
neuronal development and neuronal plasticity. Furthermore, 
MCs may differentiate into neural progenitors or stem cells 
that reproduce lost photoreceptors and neurons under 
pathological conditions (5, 6). Research continues to exam-
ine their role in neural regeneration in humans (7, 8). Studies 
in human models have shown that MCs have the potential 
to serve as stem cells in the adult retina and are rod pho-
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toreceptor progenitors. Damage to retinal cells causes MCs 
to undergo gliosis. It is known that the destruction of MCs 
can lead to the development of a macular hole or pseudo-
hole. The result of the response depends on the damage 
and the organism in which damage occurs. In the zebrafish 
genus, MCs have been shown to differentiate into multipo-
tent progenitor cells. The progenitor cell may be divided and 
differentiated into a number of retinal cell types, including 
photoreceptor cells that may have been damaged during in-
jury (9–11). 

The unique funnel shape of MCs, the radial alignment in 
the retina, and more suitable physical properties allow light 
to be transmitted from the vitreous to the photoreceptors 
behind the retina (3, 4). The cytoplasm of MCs contains sev-
eral mitochondria that help to reduce light scattering and are 

enriched with long, thin filaments that form the dielectric an-
isotropy. The characteristics of MCs contrast with the rest 
of the retina, which has a surprisingly high light scattering 
effect. Other research has shown that MCs have acted as a 
funnel to provide light to rod and cone photoreceptors in 
the mammalian eye, similar to fiber optic plates (12). 

MCs are thought to synthesize retinoic acid from retinol 
and to recycle the photopigments via the transport and con-
version of bleached photopigments. Additionally, they con-
tribute to the generation of the electroretinogram (ERG) b-
wave, the slow P3 component of the ERG, and the scotopic 
threshold response (13, 14). 

MCs have effects on voltage-gated ion channels, neu-
rotransmitter receptors, and various carrier systems (15). 
These properties allow MCs to control the activity of reti-
nal neurons by regulating the extracellular concentration 
of neuroactive substances such as potassium (K+), gamma-
aminobutyric acid (GABA), and glutamate. They protect 
neurons from harmful changes in the ionic environment. 
Furthermore, they control the composition of extracellular 
fluid by mediating intracellular ion, water, and bicarbonate 
transport. In rats, aquaporin-4 in the MCs was reported to 
transfer water to the vitreous (14). These cells also synthe-
size and store glucose, and provide glucose to neighboring 
cells. MCs contain glycogen, mitochondria, and intermediate 
filaments. They are immunoreactive for vimentin, and for 
glial fibrillary acidic protein (GFAP), to some extent. These 
second filaments are normally found in the inner half and the 
ends of MCs. However, following trauma to the retina, in 
cases such as retinal detachment, both vimentin and GFAP 
are massively up-regulated and present throughout the cell 
(17, 18). MCs remove neural waste, such as carbon dioxide 
and ammonia and recycle used amino acid transmitters. It 
has been shown that MCs in chicken embryos were impor-
tant in inducing glutamine synthetase, an actor in the regula-
tion of glutamine and ammonia concentrations in the central 
nervous system (19). 

MCs not only participate in extracellular homeostasis, 
neuronal waste removal, and transport of metabolites, but 
also directly contribute to the processing of information in 
the retina. They may produce, store, or release neuroactive 
substances, most likely in immediate reaction to neuronal 
activity or metabolic condition. Such materials may include 
adenosine 5'-triphosphate (ATP), glutamate, and D-serine. 
The protective effects of reactive MCs include the regula-
tion of ATP-degrading ectoenzymes. This effect is achieved 
by increasing the extracellular presence of adenosine, a 
neuroprotectant, by preventing the osmotic release of ATP, 
which can protect retinal ganglion cells from apoptosis, and 
by increasing the release of antioxidants and neurotrophic 
factors (4, 20). 

Figure 1. Schematic drawing of the relationship between a Müller cell 
and other retinal neurons.
A: Amacrine cell; B: Bipolar cell; C: Cone cell; G: Ganglion cell; GCL: Ganglion 
cell layer; H: Horizontal cell; ILM: Inner limiting membrane; INL: Inner nuclear 
layer; IPL: Inner plexiform layer; M: Müller cell; MMV: Müller micro-villi; OLM: 
Outer limiting membrane; ONL: Outer nuclear layer; OPL: Outer plexiform 
layer; PROS: Photoreceptor outer segments; R: Rod cell; RPE: Retinal pigmented 
epithelium.

ILM

GCL

IPL

INL

OPL

ONL

OLM

MMV

PROS

RPE

CHOROID



Gungor Kobat et al., Importance of Müller Cells 61

Since they defend the retina against free radicals, MCs 
may have a significant neuroprotective effect. MCs protect 
neurons through the secretion of neurotrophic factors, in-
take and degradation of glutamate and excitotoxins, and 
antioxidant and glutathione secretion (17). MCs synthesize 
glutathione from glutamate, cysteine, and glycine. Reduced 
glutathione is delivered to neurons and acts as a cleanser for 
free radicals and reactive oxygen compounds. In the event of 
hypoxia or hypoglycemia, the glutathione level in MCs is dra-
matically reduced. A lack of glutathione due to ischemia may 
increase the intraretinal level of oxygen-derived free radicals. 
MCs obtained from older animals contained a smaller quan-
tity of glutathione compared to the cells seen in young ani-
mals. Therefore, the decrease in the MC-mediated defense 
against free radicals due to age may accelerate the pathogen-
esis of retinopathy in elderly patients (16, 20). 

Another means of neuroprotection is the uptake and/or 
detoxification of potentially harmful substances or particles 
by MCs. This includes phagocytosis of dead neurons or pig-
ment epithelial cells and debris from foreign bodies, such as 
copper particles or latex particles. MCs are thought to re-
move large molecules from the extracellular matrix and pos-
sibly induce glutathione synthetase, the only enzyme present 
in the retina for ammonia detoxification. They can play a role 
in both neuronal debris phagocytosis and the release of neu-
roactive substances such as GABA, taurine, and dopamine. 
It has been demonstrated that neurotransmitters (GABA as 
well as acetylcholine) served as important mediators in the 
deterioration and preservation of a suitable retinal microen-
vironment in turtles (16, 17, 20). 

MCs are important for the preservation of retinal home-
ostasis and play a role in the regulation of the blood-retinal 
barrier. Thus, the blood need and angiogenesis of the retina 
are controlled (21). In general, MCs increase the barrier 
function of the vascular endothelium through the secretion 
of factors such as pigment epithelium-derived factor, throm-
bospondin-1, neurturin, and glial cell-derived neurotrophic 
factor. In response to hypoxia, a high glucose level, or inflam-
mation conditions, multiple signaling pathways are activated 
in MCs, followed by an increase in proangiogenic factors, such 
as vascular endothelial growth factor (VEGF), basic fibroblast 
growth factor (bFGF), matrix metalloproteinases, netrin-4, 
and angiopoietin-4. These changes are important features 
of retinal diseases, including diabetic retinopathy (DR), reti-
nal vein occlusion, macular telangiectasia type 2, and some 
forms of age-related macular degeneration (ARMD) (22–26). 
It will be of great interest to learn if including neurotrophins 
and perhaps other trophic factors with anti-VEGF drugs is 
beneficial to preserve neuronal viability in patients subjected 
to long-term anti-VEGF treatment for DR, diabetic macular 
edema, advanced neovascular ARMD, retinopathy of prema-

turity, and other hypoxic retinal diseases (27). 
Posterior vitreous separation from the retina is associ-

ated with mechanical stress in MCs, resulting in the secre-
tion of vascular permeability factors, including bFGF. MCs 
are also a source of matrix metalloproteinases that break 
down occludin, a tight binding protein. This stimulates high 
glucose proteinase production. Epiretinal membranes are 
a prominent type of scar that connects retinal tissue with 
hypertrophic MC fibers. These membranes are thought to 
protect the retina from the effects of pathogenic factors in 
the vitreous. After partial separation of the vitreous from 
the retina, vitreous fibers adhering to MCs at the vitreoreti-
nal attachment sites exert traction on the cells. This event 
activates cells and results in cellular hypertrophy and pro-
liferation as well as vascular leakage. Mechanically stressed 
MCs secrete growth factors (e.g., bFGF) and ATP. The intra-
cytoplasmic swelling of MC corresponds to retinal swelling 
and liquefaction necrosis of MCs and leads to cystoid mac-
ular edema. MCs have been detected in epiretinal tissues in 
fibrovascular-contractive retinal disorders, such as prolifer-
ative vitreoretinopathy (PVR) and proliferative DR (28–34). 

Primary MC failure has been proposed as the cause of 
different cases of retinal degeneration, including hepatic and 
methanol-induced retinopathy and glaucoma. Almost all 
pathogenic stimuli activate MCs. Reactive MCs demonstrate 
protective and toxic effects on photoreceptors and neurons. 
They contribute to oxidative stress and glutamate toxicity 
due to glutamate uptake and glutathione synthesis failures. 
Reduction of intercellular potassium and water permeability 
causes neuronal hyperexcitability and edema (35–38). 

In a glaucomatous retina, MCs are reactivated (gliosis). 
Reactive MCs undergo various changes in their cellular phys-
iology, biochemical, and morphological properties. Reactive 
MCs can also produce cytotoxic factors, including nitric ox-
ide, tumor necrosis factor alpha, reactive oxygen species, 
and prostaglandin E2, thereby inducing apoptosis of the reti-
nal ganglion cell and causing cell death (25, 39–43).

Conclusion
MCs have an important architectural and metabolic role that 
affects the retina. MC dysfunction may cause the develop-
ment of vitreoretinal diseases, such as PVR, DR, macular 
edema, retinal vein occlusion, macular telangiectasia type 2, 
ARMD, retinal degeneration, hepatic- and methanol-induced 
retinopathy, and glaucoma. Greater understanding of the 
functions of MCs and the results of dysfunctions will be of 
great importance in the development of new therapeutic ap-
proaches for some vitreoretinal diseases.
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